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Abstract Adding physics to facial blendshape animation is an active research topic. Existing physics-based 
approaches of facial blendshape animation are numerical, so they require special knowledge and skills, 
additional preprocess, large computer capacity, and expensive calculations leading to low animation frame rates, 
and are not easy to learn, implement and use. To tackle these problems, we propose an analytical approach and 
develop a blending force-based framework for physics-based facial animation. The proposed approach 
introduces the equation of motion to consider inertial effects, damping effects and the resistance against 
deformations, combines them with source and target facial shapes to formulate the mathematical model of 
dynamic deformations, and develops a simple and efficient closed-form solution. The blending force-based 
framework incorporates the new proposed slider force-based, exponentiation force-based and random force-
based methods built on the obtained closed form solution to achieve highly efficient facial animation. 
 Compared with facial blendshape animation using geometric linear interpolation, the proposed approach is 
physics-based. It not only creates all the blended shapes generated by linear interpolation, but also a much larger 
superset of blended shapes. Unlike linear interpolation which can only generate blended shapes with a same 
deformation rate, the proposed approach can generate blended shapes with different deformation rates, resulting 
in special effects of acceleration and deceleration. Compared to existing physics-based approaches of facial 
blendshape animation which are numerical, the proposed approach is the first time to develop an analytical 
approach of physics-based facial blendshapes. It does not require any special knowledge and skills and is easy to 
learn, implement and use. More importantly, it can avoid the additional preprocess of numerical methods and 
create various physics-based facial blendshape animations highly efficiently. Moreover, it can be used to 
estimate physical parameters from real shapes and developed into an interactive and real-time physics-based 
shape manipulation tool. 
 
Keywords facial blendshapes·physics-based facial animation·dynamic deformations·equation of motion·
analytical solutions 

1 Introduction 

Facial blendshapes are the predominant choice for realistic facial animation in the movie industry and a standard 
feature of commercial animation packages [1]. They have driven animated characters in Hollywood films and 
attracted a lot of research attentions.  
 Facial blendshapes can be divided into geometric and physics-based. Linear interpolation plays a dominant 
role in geometric facial blendshapes. It can be mathematically formulated as [1] 
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where x , 0x  and jx  contains the coordinates of all the vertices of a new facial shape (called the blended shape 

in this paper) to be created, a neutral shape, and the thj  blendshape (called the target shape), respectively, 
10 ≤≤ jw  is a weight, and N  is the total number of all the target shapes.    

 Linear interpolation based facial blendshapes are very popular since they have the advantages of simplicity, 
expressiveness and interpretability. In spite of this, the following limitations have been identified in [2]. First, 
the linear interpolation constrains the space of facial expressions to lie in an affine subspace. Since not all values 
of the weight jw  yield plausible facial deformations such as nonlinear and rotational deformations [3], the 
space of facial expressions should not be considered affine. Some approaches such as pose space deformation-
based corrections [4] have been proposed to deal with nonlinearities which are not represented by the affine 
model. Second, facial blendshapes could be regarded as samples from a hypothesized manifold of facial 

*Department of Creative Technology, Faculty of Science and Technology, Bournemouth University, Poole, 
BH12 5BB, United Kingdom 
 

Manuscript Click here to download Manuscript Facial blendshapes.pdf 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/mtap/download.aspx?id=899676&guid=1c439e21-fe69-4b69-b84a-cd006a24a9ee&scheme=1
http://www.editorialmanager.com/mtap/download.aspx?id=899676&guid=1c439e21-fe69-4b69-b84a-cd006a24a9ee&scheme=1


expressions. Generating a new facial shape requires enough target facial shapes to sample the manifold and 
define local linear interpolation functions. Creating enough target facial shapes is usually an iterative and labour 
intensive process. New techniques of facial blendshapes are required to create a superset of blended shapes 
which contain not only the subspace of the blended shapes generated by linear interpolation but also those which 
linear interpolation is unable to generate. Some efforts have been devoted to extend the subspace such as 
splitting the face model into segments and applying a local affine model to each segment [5] and capturing 
geometric shapes regulated by physics-inspired deformations [6, 7]. However, these approaches are difficult to 
consider complex physical behaviours. Third, linearly combining blendshapes tend to move groups of vertices 
jointly as blocks over time which cannot render fine temporal behaviours. Linear interpolation changes facial 
shapes with a same deformation rate. Generating special effects such as acceleration and deceleration effects [28] 
require animating facial shape changes with different deformation rates.     
 Physics-based facial blendshapes are to add physics to facial blendshapes which has a potential to tackle the 
above problems. Especially, when physics-based simulations are combined with data-driven approaches, 
realistic facial animation can be created. Apart from its capacity in tackling the above problems, another 
important feature of physics-based approaches is that the simulation parameters can be controlled to achieve the 
desired effects [8]. These simulation parameters include mass, damping coefficient, stiffness coefficient, rest 
shape volume, and static bone structure etc.  
 Existing physics-based facial animation is obtained by various numerical methods such as the finite element 
method which simulates facial models as thin shell [2] or a solid volume [8]. As stated in [3], “these methods 
can simulate all the desired dynamic effects, but are extremely difficult and time-consuming to set up” since 
they require special knowledge and skills, additional mesh preprocessing, large computer capacity, and high 
computational costs and are not easy to learn, implement and use. Therefore, they are not applicable to the 
situations where real-time animation or high animation frame rates are required. In facial animation, 
computational complexity is a fundamental constraint, and real-time performance is often much more important 
than a highly accurate facial shape [9]. 
 In this paper, we will make the first attempt to develop analytical physics-based facial blendshape animation. 
Considering the previous work [2, 3] on facial animation uses Newton’s second law of motion which does not 
take damping effects into account, we will use the equation of motion adopted in [10, 22] to incorporate inertial 
effects, damping effects, and the resistance against shape deformations. The mathematical model of dynamic 
deformations is obtained by combining the equation of motion with the deformation constraints from source and 
target facial shapes. An analytical solution of the mathematical model is derived and used to develop an efficient 
blending force-based animation framework consisting of slider force-based, exponentiation force-based and 
random force-based facial blendshapes which can create various blended facial shapes highly efficiently. Unlike 
existing numerical methods which must process polygon models first such as converting polygon meshes into 
finite element or mass-spring meshes, the proposed analytical approach directly uses polygon vertices for 
physics-based facial blendshapes. 
 The main technical contributions made by this paper are: 1) the mathematical model of dynamic 
deformations which integrates the equation of motion and the constraints of the source and target shapes; 2) the 
first analytical approach of dynamic facial blendshape animation which is easy to learn, implement and use by 
animators without special knowledge and skills of numerical calculations and able to create facial blendshape 
animation with high animation frame rates; 3) an easy-to-use and efficient blending force-based facial animation 
framework which integrates slider force-based, exponentiation force-based, and random force-based facial 
blendshapes. 
 The remaining parts of this paper are organized as follows. Section 2 briefly reviews the existing work 
followed by formulation of the mathematical model and analytical solutions of the mathematical model in 
Section 3. The blending force-based animation framework is investigated in Section 4. And the conclusions and 
further work are discussed in Section 5.       

2. Related work 

The proposed approach is related to facial shape interpolation and physics-based facial animation. In this section, 
we briefly review the research in these two fields. 
 Facial shape interpolation is the most intuitive and commonly used technique in facial animation practice. 
It can be divided into linear and nonlinear interpolation. Linear interpolation [11-15] plays a dominant role in 
facial blendshapes. Region-based linear interpolation of 3D face models proposed in [16] increases flexibility 
for modelling local deformations while keeping the model coherent. A bilinear model was applied to natural 
spatiotemporal phenomena such as dynamic faces and bodies [17]. A higher order generalisation of linear model 
called multilinear was used for modelling identity, expression, and speech independently in [18]. The cosine 
interpolation proposed in [19] and other variations such as spline can provide acceleration and deceleration 
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effects at the beginning and end of an animation. An optimization scheme was proposed in [20] to automatically 
explore the nonlinear relationship of facial blendshape animation from captured facial expressions.  
 Unlike these purely geometric face shape interpolation methods which blend source and target shapes 
through one weight or a set of weights, our proposed approach introduces one source shape and one target shape 
as the constraints of the equation of motion in the physics-based mathematical model, and uses blended forces 
and different values of the time variable involved in the equation of motion to create different blended shapes.    
 Physics-based facial animation is introduced to consider underlying physics of facial animation and tackle 
the problems of purely geometric facial animation. Various physics-based approaches have been proposed. Due 
to the limitation of space, here we only review mass-spring systems and the finite element method.  
 Mass-spring systems actuated by vector muscles were introduced to animate facial expressions in [21]. 
Video-based tracking of facial features was used to calculate muscle actuation parameters in [22]. Physically-
plausible shape blending was obtained by linearly interpolating spring rest length parameters of a mass-spring 
system between source and target shapes [23].  
 The finite element method is the most popular numerical method especially in computational sciences and 
engineering. It was introduced to simulate facial surgery in [9]. 3D finite element simulations were integrated 
into a computer-aided surgical planning system in [24], and used to develop an anatomically accurate model for 
facial animation in [15]. Rig-space physics uses the underlying finite element model and explores the 
interactions between physical models and artistic rigging [25]. Physical face cloning was obtained through 
nonlinear finite element simulations with a neo-Hookean material [26]. Recently, finite element simulations 
were combined with facial blendshapes to preserve volume and avoid self-collisions during facial animation [2], 
used to enhance facial blendshape rigs [3], integrated with a data-driven approach to develop data-driven 
physics [27], and applied with a novel muscle activation model to achieve physics-based face modelling and 
animation [8].   
 Different from physics-based facial blendshapes using numerical methods which require an additional 
preprocess to convert polygon meshes into finite element or mass-spring meshes, special knowledge and skills 
to implement and use them, and large computer memory and high computational costs to realize the simulations 
leading to low animation efficiency, the proposed analytical approach directly works on the vertices of polygon 
models and avoids the problems of numerical methods.    

3. Mathematical model and analytical solution 

We use the same equation of motion adopted in [10, 22] to approximate facial deformations 
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where m  denotes mass which is used to provide inertia effects, c  stands for the damping coefficient which is 
introduced to provide damping effects, k  means the stiffness coefficient which reflects the resistance of facial 
skin against facial deformations, t  is the time variable, the superscript i  indicates the thi  component, i. e.,    

xx =)1( , yx =)2( , and zx =)3(  which represent the three components of deformations, and xff =)1( , yff =)2( , 

and zff =)3(  indicate the three components of forces.   
 The face model at the neutral pose 0=t  has no deformations, and the deformation rate at this pose is also 
zero. At the deformed pose 1=t , the face model is deformed into various target shapes. Therefore, the 
following constraints can be obtained. 
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where the subscripts “1” and “2” indicate the neutral pose and deformed pose, respectively, and )(
1

ix  and )(
2
ix  

stand for the coordinate values of the undeformed and deformed face models respectively. 
 Equations (2) and (3) are the mathematical model of dynamic facial blendshapes. Various numerical 
methods can be used to solve the mathematical model. However, these numerical methods have the problems 
discussed before. In this paper, we will develop a simple and efficient analytical solution of the mathematical 
model. 
 According to the theory of differential equations, the solution to nonhomogeneous second-order ordinary 
differential Equation (2) contains a general solution )(i

hx  to the homogenous version of Equation (2) and a 
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particular solution )(i
px  caused by the right-hand-side mathematical expression. The general solution to the 

homogenous version of Equation (2) can be converted into a characteristic equation by letting 
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 Substituting Equation (4) into (2), the homogenous version of the nonhomogeneous second-order ordinary 
differential equation (2) are changed into the following characteristic equation 

 02 =++ kcrmr                                                            (5) 
 The two roots of Equation (5) can be written into the following form 
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 Depending on the different values of mkc 42 − , the roots given by Equation (6) and the analytical solution to 
Equations (2) and (3) can be divided into the following three cases to be discussed in Subsection 3.1, 3.2, and 
3.3, respectively. 

3.1 Analytical solution for 042 =− mkc  

When 042 =− mkc , Equation (6) gives two repeated real roots below 
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 The general solution of the homogenous version of Equation (2) for this case is 
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where 1c  and 2c  are two integration constants.  
 The particular solution of the nonhomogeneous second-order ordinary differential equation (2) can be taken 
to be 
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where 3c  and 4c  are two unknown constants.  
 Substituting Equation (9) into (2), the two unknown constants are determined. Introducing them back into 
Equation (9), the particular solution is obtained below. 
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 Putting Equations (8) and (10) together, the solution to Equation (2) is found to be 
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 The two integration constants 1c  and 2c  can be determined by substituting Equation (11) into the 
constraints (3) which gives 
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3.2 Analytical solution for 042 >− mkc  

When 042 >− mkc , Equation (6) gives two different real roots below 
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 The general solution of the homogenous version of Equation (2) for this case is 
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 Putting the above equation and Equation (10) together, the solution to Equation (2) is  
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 Substituting Equation (16) into the constraints (3) to determine the two integration constants 1c  and 2c , and 
introducing them back into Equation (16), we obtain 
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3.3 Analytical solution for 042 <− mkc  

When 042 <− mkc , Equation (6) gives two different complex roots below 
432,1 jqqr ±=                                                                 (19) 

where j   is an imagery number, and 
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 The general solution of the homogenous version of Equation (2) for this case is 
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 Putting the above equation and Equation (10) together, we obtain the solution to Equation (2) 
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 Substituting Equation (22) into the constraints (3) to determine the two integration constants 1c  and 2c , and 
introducing them back into Equation (22), we obtain 
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 From one of Equations (13), (18) and (24), we can obtain the force functions. Substituting them into the 
corresponding equations (12), (17) or (23), we can calculate coordinate values of the blended shapes at time t . 
In the following section, we will use them to develop an analytical blending force-based animation framework. 
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4. Blending force-based animation framework 

Unlike existing geometric facial blendshapes which obtain new shapes by interpolating between one source 
shape and target shapes, our proposed approach will use the time variable t  in Equations (12), (17) and (23) to 
interpolate the force )(if  which continually deforms one source shape into one or more target shapes. As shown 

in Equations (12-13), (17-18) and (23-24), )(
1

ix  presents a source shape, )(
2
ix  stands for a target shape, and )(ix  

is a blended shape. Equations (12), (17) and (23) are the functions of time variable t  only. Therefore, we can 
implement a time slider to interpolate the force )(if  for each of the combinations between one source shape )(

1
ix  

and each of target shapes )(
2
ix . 

 Existing facial blendshapes use weight sliders to directly blend among source and target shapes. In contrast, 
our proposed approach uses weight sliders to blend the forces obtained from one source shape and each of target 
shapes, and use the blended forces to create new blended shapes. Such a method of manipulating time and 
weight sliders to interpolate and blend forces and using the blended forces to create new blended shapes is 
called slider force-based facial blendshapes.     
 A professional blendshape model can involve 100 or more weights [1]. Manually manipulating such many 
weight sliders are time-consuming and can be difficult to find all or desired blended shapes. In order to avoid 
manually manipulate many sliders, we will propose exponentiation force-based and random force-based facial 
blendshapes to automatically generate blended shapes for animators to select from them.  
 The proposed blending force-based animation framework will integrate slider force-based, exponentiation 
force-based, and random force-based facial blendshapes which will be introduced in Subsection 4.1, 4.2 and 4.3 
below, respectively. The generated facial blendshape animations are shown in the accompanied video.  

4.1 Slider force-based facial blendshapes  

Facial blendshapes can be divided into two different types. One is between one source shape and one target 
shape, and the other is between one source shape and two or more target shapes. The slider force-based method 
is applicable to both types of facial blendshapes 
 We have implemented Equations (12), (17) and (23) into time sliders to manipulate forces which continually 
deform the source shape into the corresponding target shape.  
 With the implemented slider force-based facial blendshapes, we first compare the blended shapes generated 
by the proposed approach and linear interpolation.  
 

 

 

 
                                                0=t      2.0=t     4.0=t    6.0=t    8.0=t      1=t  

(a)        (b)         (c)          (d)          (e)          (f) 
Fig. 1 Comparison of blended shapes generated by the proposed approach and linear interpolation 

 
 The parameters q  and iq  ( )4,3,2,1=i  involved in Equations (12-13), (17-18) and (23-24) depend on mass 
m , damping coefficient c , and stiffness coefficient k . It indicates that different mass, damping coefficient, and 
stiffness coefficient can be used to achieve different facial shapes through different values of )(ix . Here we take 
two groups of different values to demonstrate this and compare with facial blendshapes using linear 
interpolation. The first group is: 5.1=m , 8=c , and 10=k , and the second group is: 8.0=m , 5.7=c , and 

20=k . The source shape of a cartoon face at the neutral pose 0=t  and its target shape at the deformed pose 
1=t  obtained from the link https://www.creativebloq.com/3d-world/download-files-3d-world-211-61420631 

are shown in the column (a) and column (f) of Figure 1.   
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 The blended shapes at the poses 2.0=t , 4.0 , 6.0  and 8.0  from the first group of values are shown in (b)-(e) 
of the first row of Figure 1. The blended shapes from linear interpolation are shown in (b)-(e) of the second row. 
And those from the second group of values at the same poses are shown in (b)-(e) of the third row. 
 Comparing the images depicted in the figure, three conclusions can be drawn. First, the analytical approach 
of the dynamic facial blendshapes proposed in this paper uses the first group of mass, damping coefficient, and 
stiffness coefficient to achieve the same visual results (First row of Figure 1) of facial blendshapes as those 
generated by linear interpolation (Second row). It indicates that the proposed approach has a capacity to 
generate all the blended shapes generated by linear interpolation. Second, the analytical approach of the 
dynamic facial blendshapes uses the second group of mass, damping coefficient and stiffness coefficient to 
achieve different results as clearly demonstrated by the images shown in (c), (d) and (e) of the third row. It 
indicates that the blended shapes generated by linear interpolation are a subset of the blended shapes generated 
by the approach proposed in this paper. The proposed approach can generate a larger superset of blended shapes 
than linear interpolation. When two or more target shapes are blended together, the superset generated by the 
proposed approach will become much bigger than the subset generated by linear interpolation. Third, linear 
interpolation can only generate blended shapes with a same deformation rate. Differently, the proposed 
approach can generate blended shapes with different deformation rates, i. e., acceleration and deceleration 
effects stated in [28]. As shown in the figure, the shape changes from (b) to (d) of the third row generated by the 
proposed approach demonstrate a larger deformation rate than linear interpolation, and the shape changes from 
(d) to (f) of the third row generated by the proposed approach demonstrate a smaller deformation rate than linear 
interpolation. This feature is useful since it can be used to create special acceleration and deceleration effects 
[28].  
 Figure 2 shows more applications of the proposed approach in creating blended shapes between one source 
shape (first column of Figure 2) and seven target shapes (last column).  
 We have calculated the CPU time and found that obtaining all the new coordinate values of 14,232 polygon 
vertices for a facial animation of 1,389 frames (1,389 blended facial shapes) only takes one second on a PC with 
Intel® Xeon® CPU E5-1650 V2 @ 3.5 GHz and 32 GB of memory. The numerical method based on the 
physics-based model of soft tissues including muscle activation described in [8] takes more than two minutes on 
a laptop with a 3.1 GHz Intel Core i7 processor and 16 GB of main memory to generate a new facial shape for a 
model with 6,393 surface vertices and 8,098 volumetric vertices. Our proposed analytical approach of physics-
based facial blendshapes is highly efficient.   

 

 

 

 

 

 

 
      0=t      2.0=t     4.0=t    6.0=t    8.0=t      1=t  

Fig. 2 Blended facial shapes of a cartoon face created by using slider force-based facial blendshapes 
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We have also used the source shape of a human face at the neutral pose 0=t  and the target shapes at the 
deformed pose 1=t  obtained from the link http://people.csail.mit.edu/sumner/research/deftransfer/data.html to 
create facial blendshapes. The obtained blended shapes at the poses 2.0=t , 4.0 , 6.0  and 8.0  are depicted in 
Figure 3 where the first, second and third rows show cry, fury and laugh expressions, respectively, and the first 
column is the source shape, and the last column is the target shapes. These images indicate the proposed 
approach successfully created new blended shapes from a source and a target shape.  

 

 

 

 
                                                  0=t      2.0=t    4.0=t    6.0=t   8.0=t      1=t  

Fig. 3 Blended facial shapes of a human face created by using slider force-based facial blendshapes 

4.2 Exponentiation force-based facial blendshapes  

In order avoid manually manipulate the implemented time sliders to generate new blended shapes for the 
situations with a lot of time sliders, this subsection and the following subsection will develop two methods to 
automatically generate blended shapes. 
 Assuming we have one source shape and N  target shapes. By calculating the difference )(

1
)(

2
ii xx −  between 

each of the N  target shapes )(
2
ix  and the source shape )(

1
ix , we obtain one force )(if  from Equations (13), (18) 

and (24). In total, N  forces )(i
jf ),,3 ,2 ,1( Nj 3=  are obtained. The blended force )(i

bf  is obtained from the 
following linear combination of the N  forces  

)10(

1             
11

)()(

≤≤

== ∑∑

j

N

j

N
i

jj
i

b

w

wfwf
                                                (25) 

 If each of the weight jw  ( ),...,3,2,1 Nj =  is uniformly discretized into L  discrete values Llwjl /=  ( l =0, 1, 

2, 3, …, L ). The total weight combinations will be NL .  
 For example, if we take the left one of Figure 4 to be a source shape, and the remaining 5 shapes in the same 
figure to be target shapes, we have 5=N . If each of the weight jw  ( )5,...,3,2,1=j  is discretized into 3=L  

discrete values, we obtain total 24335 =  weight combinations.  
 Since 054321 ===== wwwww   leads to a zeroed blending force which will not generate any new shapes, 
the actual blended forces are 242 which can be used to create blended shapes at any poses in the time interval 

10 ≤≤ t .    

 
Fig. 4 Source shape and target shapes of a cartoon face used in exponentiation force-based facial blendshapes 
(Figure 5) and random force-based facial blendshapes (Figure 8) 
 
 At each time instant t , we can use the 242 blended forces to create 242 blended shapes. If we consider the 
time instants t =0, 0.2, 0.4, 0.6, 0.8, and 1, we obtain 1,452 blended shapes. Figure 5 gives the 48 blended 
shapes taken from every 5 ones of the created 242 blended shapes at 1=t . 
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 Having obtained the 1,452 blended shapes, we can view them and select some preferred ones from them.  
 

  

 

 

 
Fig. 5 Blended shapes of a cartoon face created by using exponentiation force-based facial blendshapes 

 
For the human face shown in Figure 3, we use more expressions given in Figure 6 to demonstrate how to 

create new blended shapes with the approach of exponentiation force-based facial blendshapes. In Figure 6, the 
image from the left to the right shows the neutral, cry, fury, rage, surprise, and sad expressions, respectively.   

 

 
                                                   Neutral    Cry       Fury     Rage   Surprise    Sad 
Fig. 6 Source shape and target shapes of a human face used in exponentiation force-based facial blendshapes 
(Figure 7) and random force-based facial blendshapes (Figure 9) 

 
 With the same method used to generate blended shapes shown in Figure 5, the 5 facial expressions shown in 
Figure 6 determine 242 blended forces at each time instant t  which are used to create 242 blended shapes at the 
time instant. If we consider the time instants t =0, 0.2, 0.4, 0.6, 0.8, and 1, we obtain 1,452 blended shapes. 
Figure 7 gives 24 blended shapes taken from the 1,452 blended shapes. 
 

        

            
Fig. 7 Blended shapes of a human face created by using exponentiation force-based facial blendshapes 

 
 The above method of determining new blended forces and creating new blended shapes involves 
exponentiation. We call it exponentiation force-based facial blendshapes.  

4.3 Random force-based facial blendshapes  

Exponentiation force-based facial blendshapes give all NL  blended shapes. However, when N  and L  or one of 
them are very big, the exponentiation force-based facial blendshapes will generate a very large number of 
blended shapes. For example, when the discrete weights are increased from 0, 0.5 and 1 to 0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, and 1, the blended forces are increased from 242 to 161,050. If we use these 161,050 
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blended forces to create new blended shapes at the time instants t =0, 0.2, 0.4, 0.6, 0.8, and 1, we obtain 966,300 
blended shapes. Viewing all 966,300 blended shapes and selecting some from them is a time-consuming task. 
This problem can be overcome by generating uniformly distributed random numbers and using the generated 
random numbers to create new blended shapes for animators to view and select from them. In what follows, we 
will introduce this method.  
 If we have N  target shapes, the weights will be 1w , 2w , 3w , ..., Nw  according to Equation (25). All 
possible combinations of the N weights are all the permutations of 1, 2, 3,…, N respectively taken from the N 

numbers 1, 2, 3,…, N. The total number of all the permutations is ∑
=

=
N

r
r

N PN
1

 where 
)!(

!
rN

NPr
N

−
= . All the 

permutations are kept in a 2D array Per[ 1n ][ 2n ] ( NnNn ≤≤≤≤ 21 1 ;1 ). For example, when N=5, the total 

number of all the permutations will be =N 325, the permutations of 1 taken from the 5 numbers 1,2,3,4,5 will 
be kept as Per[1][1-5]={1 0 0 0 0}, Per[2][1-5]={0 2 0 0 0},…, Per[5][1-5]={0 0 0 0 5}], the permutations of 2 
taken from the 5 numbers will be kept as Per[6][1-5]={1 2 0 0 0},…, Per[25][1-5]={5 4 0 0 0}, and the last 
permutation of 5 taken from the total 5 numbers will be kept as Per[325][1-5]={5 4 3 2 1}.  
 From the source shape and the N target shapes, we can obtain N forces )(i

jf ( Nj ,...,3,2,1= ). If we want to 

select L weight combinations from the total N  weight combinations to create new blended shapes, we generate 
L uniformly distributed random numbers within the range between 1 and N , and use the generated L random 
numbers to identify which weight combinations should be used.   
 Taking N=5 as an example, if the generated random numbers contain 2, 25, and 325, the weight 
combinations Per[2][1-5]={0 2 0 0 0}, Per[25][1-5]={5 4 0 0 0}, and Per[325][1-5]={5 4 3 2 1} are identified 
and converted into Per[2][1-5]={0 1 0 0 0}, Per[25][1-5]= {5/9 4/9 0 0 0} and Per[325][1-5]={5/15 4/15 3/15 
2/15 1/15}. 
 Introducing each of the three weight combinations into Equation (25), the three blended forces are: )(

2
if , 

[ ] 945 )(
2

)(
1

ii ff + , and [ ] 152345 )(
5

)(
4

)(
3

)(
2

)(
1

iiiii fffff ++++  respectively. Substituting each of the three 
obtained blended forces into Equations (12), (17) and (23), the new blended shapes between 0=t  and 1=t  can 
be created.  
 If we take L = 50 and use the source (neutral) shape and the 5 target shapes shown in Figure 4 which gives 
N=5, we create 50 new blended shapes at each of t  values from 50 blended forces. Figure 8 gives the first 48 
ones of the 50 new blended shapes at the pose 1=t . 
 Since only 50 random numbers are used to create blended shapes, the blended shapes very close to 1=jw  
are not included in the 50 blended shapes. More random numbers can be used to improve this. 
 

 

 

 

 
Fig. 8 Blended shapes of a cartoon face created by using random force-based facial blendshapes 

 
 Still taking L = 50 but using the source (neutral) shape and the 5 target shapes shown in Figure 6, we have 
N=5, and create 50 new blended shapes at each of t  values from 50 blended forces. Figure 9 gives 24 blended 
shapes of the 50 new blended shapes at the pose 6.0=t .  
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Fig. 9 Blended shapes of a human face created by using random force-based facial blendshapes 

5. Conclusions and future work 

In this paper, we have developed a novel approach of physics-based facial blendshapes. The approach is based 
on the analytical solution to the mathematical model integrating the equation of motion and the constraints of 
source and target facial shapes. It is used to develop an easy-to-use and efficient facial animation framework 
which integrates slider force-based, exponentiation force-based, and random force-based facial blendshapes.  
 The experiments made in this paper indicate that the proposed analytical physics-based approach and 
blending force-based animation framework can create a superset of blended shapes which not only contains the 
blended shapes generated by linear interpolation, but also those which cannot be generated by linear 
interpolation. They can create blended shapes with different deformation rates and overcome the limitation of 
linear interpolation which can only generate blended shapes with a same deformation rate. The analytical 
equations and their use in facial blendshapes demonstrate simplicity, easiness, low computer capacity 
requirement, and very high computational efficiency of creating facial animation. 
 The proposed approach offers a rich set of opportunities for future research. First, the influences of facial 
muscle, other facial tissues, and rigid bone structures on facial deformations can be introduced into the proposed 
approach. This can be achieved by transforming their influences into external forces to be included in the right-
hand-side force functions. Second, the physical parameters, i. e., mass, damping coefficient and stiffness 
coefficient can be estimated to create realistic facial deformations. Different mass, damping coefficient and 
stiffness coefficient at different vertices [22] can be well estimated by minimizing the differences between the 
captured real facial shapes with  the blended facial shapes created by the proposed approach. Third, the 
developed analytical solutions are used as a shape blending tool in this paper. Actually, they can be also used as 
a shape manipulation tool. This can be obtained by using the force functions as sculpting forces. The sculpting 
forces can be taken to be constants, linear variations or nonlinear variations and the corresponding particular 
solutions can be derived and added to the general solutions to develop powerful physics-based shape 
manipulation handles and create different deformation effects.       
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