Skip to main content
Log in

HS-based reversible data hiding scheme using median prediction error

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, reversible-data-hiding (RDH) scheme has been developed rapidly. In this paper, based on the local distribution of pixels in a block, (30) a histogram shifting (HS) based RDH scheme using median prediction error is proposed to increase the embedding capacity (EC) and decrease the distortion of stego image. First, we scan an original image to form the non-overlapping blocks. Then each block is sorted for locating its median. So, the median is used as the center to embed data into the pixels distributing on both sides of the median pixel in the block. Finally, the receiver can seek the same median of the block for data extraction and the recovery of the original image. Besides, we use the decomposed location message to modify the original pixels with overflow/underflow. (12) As the median is close to the mean value of block, the generated prediction error histogram is sharper than other schemes, which can provide a high capacity and lower distortion. Thus, the EC of the proposed algorithm outperforms that of the other algorithms. Experiments show the proposed scheme can provide a higher embedding rate and lower distortion as it takes advantage of the local correlation in a block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Proc Publ IEEE Signal Proc Soc 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  2. A.M. Alattar (2004) Reversible watermark using difference expansion of quads, in: Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP’04). IEEE international conference on, 3, IEEE, pp. iii–377 .

  3. Al-Qershi Osamah M, Khoo BE (2010) "Reversible Watermarking Scheme Based on Two-Dimensional Difference Expansion (2D-DE)." Second International Conference on Computer Research and Development IEEE, 228–232

  4. Andalibi M, Chandler DM (2015) Digital image watermarking via adaptive logo Texturization. IEEE Trans Image Process 24(12):5060–5073

    Article  Google Scholar 

  5. Arham A, Nugroho HA, and Adji TB (2017) Multiple layer data hiding scheme based on difference expansion of quad. ignal Processing 137:52–62.

  6. Chen YC, Shiu CW, Horng G (2014) Encrypted signal-based reversible data hiding with public key cryptosystem. J Vis Commun Image Represent 25(5):1164–1170

    Article  Google Scholar 

  7. Chen H et al (2016) Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering. Signal Process Image Commun 46:1–16

    Article  Google Scholar 

  8. Coltuc D (2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensic Secur 6(3):873–882

    Article  Google Scholar 

  9. De Vleeschouwer C, Delaigle JF, Macq B (2003) Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans Multimedia 5(1):97–105

    Article  Google Scholar 

  10. Dragoi IC, Coltuc D (2014) Local-Prediction-Based Difference Expansion Reversible Watermarking. IEEE Trans Image Proc Publ IEEE Signal Proc Soc 23(4):1779-1790

  11. Gao G et al (2017) Reversible data hiding with contrast enhancement and tamper localization for medical images. Inf Sci 385–386:250–265

    Article  Google Scholar 

  12. Jafar IF, Darabkh KA, Saifan RR (2016) SARDH: a novel sharpening-aware reversible data hiding algorithm. J Vis Commun Image Represent 39:239–252

    Article  Google Scholar 

  13. Jiang RQ, Zhou H, Zhang W (2018) M Reversible Data Hiding in Encrypted Three-Dimensional Mesh Models. IEEE Trans Multimedia 20(1):55–67

    Article  Google Scholar 

  14. Kim C, Shin D, Leng L (2018) Lossless data hiding for absolute moment block truncation coding using histogram modification. J Real-Time Image Proc 14:101–114

    Article  Google Scholar 

  15. Kim C, Shin D, Leng L et al (2018) Separable reversible data hiding in encrypted halftone [J]. Displays 55:71–79

    Article  Google Scholar 

  16. Lee CF, Weng CY, Kao CY (2019) Reversible data hiding using Lagrange interpolation for prediction-error expansion embedding. Soft Comput 23:9719–9731

    Article  Google Scholar 

  17. Li S, Zhang XP (2019) Toward construction-based data hiding: from secrets to fingerprint images. IEEE Trans Image Proc 28(3):1482–1497

    Article  MathSciNet  Google Scholar 

  18. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Proc Publ IEEE Signal Proc Soc 20(12):3524–3533

    MathSciNet  MATH  Google Scholar 

  19. Li X et al (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Proc Publ IEEE Signal Proc Soc 22(6):2181–2191

    Article  MathSciNet  Google Scholar 

  20. Liao X, Shu C (2015) Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels [J]. J Vis Commun Image Represent 28:21–27

    Article  Google Scholar 

  21. Liao X, Li KD, Yin JJ (2017) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tools Appl 76(20):20739–20753

    Article  Google Scholar 

  22. Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions [J]. Signal Process Image Commun 58:146–156

    Article  Google Scholar 

  23. Liao X, Guo SJ, Yin JJ (2018) New cubic reference table based image steganography. Multimed Tools Appl 77(8):10033–10050

    Article  Google Scholar 

  24. Liao X , Yu Y , Li B (2019) A new payload partition strategy in color image steganography. IEEE Trans Circuits Syst Video Technol 1–14

  25. Lin SL et al (2013) Improving histogram-based reversible information hiding by an optimal weight-based prediction scheme. J Inf Hiding Multimedia Signal Proc 4(1):19–33

    Google Scholar 

  26. Mielikainen J (2006) LSB matching revisited. IEEE Signal Proc Lett 13(5):285–287

    Article  Google Scholar 

  27. Ou, Bo, et al. (2017) High-fidelity reversible data hiding based on geodesic path and pairwise prediction-error expansion. Neurocomputing. 226:23–34.

  28. Puteaux P, Puech W (2018) An efficient MSB prediction-based method for high-capacity reversible data hiding in encrypted images [J]. IEEE Trans Inf Forensics Secur 13(7):1670–1681

    Article  Google Scholar 

  29. Qin C, Chang CC, Liao LT (2012) An adaptive prediction-error expansion oriented reversible information hiding scheme. Pattern Recogn Lett 33(16):2166–2172

    Article  Google Scholar 

  30. Ravi U, Rajarshi P, Munaga VP (2019) Reversible data hiding using B-tree triangular decomposition based prediction. IET Image Process 13(11):1986–1997

    Article  Google Scholar 

  31. Shen S, Huang L, and Tian Q (2015) A novel data hiding for color images based on pixel value difference and modulus function. Multimed Tools Appl 74:707–728.

  32. Shi YQ (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  33. Shiu CW, Chen YC, Hong W (2015) Encrypted image-based reversible data hiding with public key cryptography from difference expansion. Signal Process Image Commun 39:226–233

    Article  Google Scholar 

  34. Tao JY, Li S, Zhang XP (2019) Towards Robust Image Steganography. IEEE Trans Circuits Syst Video Technol 29(2):594–600

    Article  Google Scholar 

  35. Thodi DM, Rodríguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Processing A Publ IEEE Signal Proc Soc 16(3):721-730

  36. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  37. Tian H, Zhao Y, Ni R, Qin L, Li X (2013) LDFT-based watermarking resilient to local desynchronization attacks. IEEE Trans Cybern 43(6):2190–2201

    Article  Google Scholar 

  38. Wang J, Ni J, Zhang X, Shi YQ (2017) Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Trans Cybern 47(2):315–326

    Google Scholar 

  39. Weng S, Pan JS, and Zhou L (2016) "Reversible data hiding based on the local smoothness estimator and optional embedding strategy in four prediction modes." Multimedia Tools Appl 1–23

  40. Wu HT et al (2018) A novel reversible data hiding method with image contrast enhancement. Signal Process Image Commun 62:64–73

    Article  Google Scholar 

  41. Yi S, Zhou YC (2019) Separable and Reversible Data Hiding in Encrypted Images Using Parametric Binary Tree Labeling. IEEE Trans Multimedia 21(1):51–64

    Article  Google Scholar 

  42. Yi H ,Wei S , Jianjun H (2009) Improved reduced difference expansion based reversible data hiding scheme for digital images, 2009 9th International Conference on Electronic Measurement & Instruments, Beijing 4(315):4-318

  43. Yi S, Zhou Y, Hua Z (2018) Reversible data hiding in encrypted images using adaptive block-level prediction-error expansion [J]. Signal Process Image Commun 64:78–88

    Article  Google Scholar 

  44. Zhang X, Wang S (2006) Efficient Steganographic embedding by exploiting modification direction. Commun Lett IEEE 10(11):781–783

    Article  Google Scholar 

  45. Zhang W, Hu X, Li X, Yu N (2013) Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression [J]. IEEE Trans Image Process 22(7):2775–2785

    Article  Google Scholar 

  46. Zhang W et al (2016) Reversible data hiding in encrypted images by reversible image transformation. IEEE Trans Multimedia 18(8):1469–1479

    Article  Google Scholar 

Download references

Acknowledgments

In this paper, we would like to thank the anonymous reviewers and associate editor for their comments that greatly improved the paper. This work is partially supported by the National Natural Science Foundation of China under Grant No. 61304255, the Natural Science Foundation of Chongqing under grand no.cstc2019jcyj-msxm2486, and Southwest University (No. SWU1909766, No. SWU1909785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqing Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, W. HS-based reversible data hiding scheme using median prediction error. Multimed Tools Appl 79, 18143–18165 (2020). https://doi.org/10.1007/s11042-020-08682-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08682-3

Keywords

Navigation