Skip to main content
Log in

Symmetry-aware kinematic skeleton generation of a 3D human body model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, an automatic method is proposed to generate a symmetry-aware kinematic skeleton for a human body model with an arbitrary pose and orientation. First, a template kinematic skeleton with semantics is embedded into the input human body model. Then, the joints of the embedded kinematic skeleton are refined according to the geometry of the human body model and some prior knowledge. Finally, a specific local coordinate system is defined on the kinematic skeleton and is used to distinguish the symmetry of the kinematic skeleton. In this way, the symmetric joints of the kinematic skeleton, e.g., the left knee joint and the right knee joint, can be distinguished. Quantitative and qualitative analysis and comparison show that the proposed method can generate a symmetry-aware kinematic skeleton with accurate joints and has no restrictions on the pose and orientation of the input human body model. Moreover, this paper presents validation of the proposed method in many applications, such as shape alignment, shape deformation, shape co-segmentation and shape correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Aguiar ED, Theobalt C, Thrun S, Seidel H (2008) Automatic conversion of mesh animations into skeleton-based animations. Comput Graph Forum 27(2):389–397

    Google Scholar 

  2. Aigerman N, Poranne R, Lipman Y (2015) Seamless surface mappings. ACM Trans Graph 34(4):72:1–13

    MATH  Google Scholar 

  3. Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Davis J (2005) Scape: shape completion and animation of people. ACM Trans Graph 24(3):408–416

    Google Scholar 

  4. Au OKC, Tai CL, Chu HK, Cohen-Or D, Lee TY (2008) Skeleton extraction by mesh contraction. ACM Trans Graph 27(3):44:1–10

    Google Scholar 

  5. Aujay G, Hétroy F, Lazarus F, Depraz C (2007) Harmonic skeleton for realistic character animation. In: ACM SIGGRAPH/Eurographics symposium on computer animation, pp 151–160

  6. Avril Q, Ghafourzadeh D, Ramachandran S, Fallahdoust S, Ribet S, Dionne O, de Lasa M, Paquette E (2016) Animation setup transfer for 3d characters. Comput Graph Forum 35(2):115–126

    Google Scholar 

  7. Baran I, Popović J (2007) Automatic rigging and animation of 3d characters. ACM Trans Graph 26(3):72:1–8

    Google Scholar 

  8. Bogo F, Romero J, Loper M, Black MJ (2014) Faust: dataset and evaluation for 3d mesh registration. In: IEEE Conference on computer vision and pattern recognition, pp 3794–3801

  9. Chen X, Golovinskiy A, Funkhouser T (2009) A benchmark for 3d mesh segmentation. ACM Transa Graph 28(3):73:1–8

    Google Scholar 

  10. Cornea ND, Silver D, Min P (2007) Curve-skeleton properties, applications, and algorithms. IEEE Trans Vis Comput Graph 13(3):530–548

    Google Scholar 

  11. Fechteler P, Hilsmann A, Eisert P (2016) Example-based body model optimization and skinning. In: Proceedings of the 37th annual conference of the European association for computer graphics, pp 5–8

  12. Feng A, Casas D, Shapiro A (2015) Avatar reshaping and automatic rigging using a deformable model. In: Proceedings of the 8th ACM SIGGRAPH conference on motion in games, pp 57–64

  13. Hajari N, Cheng I, Basu A (2016) Robust human animation skeleton extraction using compatibility and correctness constraints. In: IEEE International symposium on multimedia, pp 271–274

  14. Kleiman Y, Ovsjanikov M (2019) Robust structure-based shape correspondence. Comput Graph Forum 38(1):7–20

    Google Scholar 

  15. Le BH, Deng Z (2014) Robust and accurate skeletal rigging from mesh sequences. ACM Transact Graph 33(4):84:1–10

  16. Leordeanu M, Hebert M (2005) A spectral technique for correspondence problems using pairwise constraints. In: IEEE International conference on computer vision, pp 1482–1489

  17. Lien JM, Keyser J, Amato NM (2006) Simultaneous shape decomposition and skeletonization. In: ACM symposium on solid and physical modeling, pp 219–228

  18. Liu PC, Wu FC, Ma WC, Liang RH, Ouhyoung M (2003) Automatic animation skeleton construction using repulsive force field. In: Pacific Conference on computer graphics and applications, pp 409–413

  19. Liu T, Kim VG, Funkhouser T (2012) Finding surface correspondences using symmetry axis curves. Comput Graph Forum 31(5):1607–1616

    Google Scholar 

  20. Loper M, Mahmood N, Romero J, Pons-Moll G, Black MJ (2015) Smpl: a skinned multi-person linear model. ACM Trans Graph 34(6):248:1–16

    Google Scholar 

  21. Ma J, Choi S (2014) Kinematic skeleton extraction from 3d articulated models. Comput Aided Des 46(1):221–226

    Google Scholar 

  22. Marin R, Melzi S, Rodolà E, Castellani U (2020) Farm: functional automatic registration method for 3d human bodies. Comput Graph Forum 39(1):160–173

    Google Scholar 

  23. Ovsjanikov M, Ben-Chen M, Solomon J, Butscher A, Guibas L (2012) Functional maps: a flexible representation of maps between shapes. ACM Trans Graph 31(4):30:1–11

    Google Scholar 

  24. Ovsjanikov M, Mérigot Q, Pǎtrǎucean V, Guibas L (2013) Shape matching via quotient spaces. Comput Graph Forum 32(5):1–11

    Google Scholar 

  25. Pantuwong N, Sugimoto M (2012) A novel template-based automatic rigging algorithm for articulated-character animation. Comput Anim Virt Worlds 23(2):125–141

    Google Scholar 

  26. Poirier M, Paquette E (2009) Rig retargeting for 3d animation. In: Graphics interface, pp 103–110

  27. Ren J, Poulenard A, Wonka P, Ovsjanikov M (2018) Continuous and orientation-preserving correspondences via functional maps. ACM Trans Graph 37 (6):248:1–16

    Google Scholar 

  28. Saha PK, Borgefors G, di Baja GS (2016) A survey on skeletonization algorithms and their applications. Pattern Recogn Lett 76(1):3–12

    Google Scholar 

  29. Sahillioǧlu Y, Yemez Y (2013) Coarse-to-fine isometric shape correspondence by tracking symmetric flips. Comput Graph Forum 32(1):177–189

    Google Scholar 

  30. Sellamani S, Muthuganapathy R, Kalyanaraman Y, Murugappan S, Goyal M, Ramani K, Hoffman CM (2010) Pcs: prominent cross-sections for mesh models. Comput-Aided Des Appl 7(4):601–620

    Google Scholar 

  31. Sun J, Ovsjanikov M, Guibas L (2009) A concise and provably informative multi-scale signature based on heat diffusion. Comput Graph Forum 28(5):1383–1392

    Google Scholar 

  32. Wang M, Fang Y (2016) Local diffusion map signature for symmetry-aware non-rigid shape correspondence. In: ACM international conference on multimedia, pp 526–530

  33. Wang K, Razzaq A, Wu Z, Tian F, Ali S, Jia T, Wang X, Zhou M (2016) Novel correspondence-based approach for consistent human skeleton extraction. Multimed Tools Appl 75(19):11741–11762

    Google Scholar 

  34. Xu Z, Zhou Y, Kalogerakis E, Singh K (2019) Predicting animation skeletons for 3d articulated models via volumetric nets. In: 2019 International conference on 3D vision, pp 298–307

  35. Yang Y, Fu XM, Chai S, Xiao SW, Liu L (2018) Volume-enhanced compatible remeshing of 3d models. IEEE Trans Vis Comput Graph 25(10):2999–3010

    Google Scholar 

  36. Yoshiyasu Y, Yoshida E, Yokoi K, Sagawa R (2014) Symmetry-aware nonrigid matching of incomplete 3d surfaces. In: IEEE Conference on computer vision and pattern recognition, pp 4193–4200

  37. Yoshiyasu Y, Yoshida E, Guibas L (2016) Symmetry aware embedding for shape correspondence. Comput Graph 60(5):9–22

    Google Scholar 

  38. Zhang Z, Yin K, Foong KW (2013) Symmetry robust descriptor for non-rigid surface matching. Comput Graph Forum 32(7):355–362

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants No. 61732015 and No. 61472349, and Key Research and Development Program of Zhejiang Province under Grants No. 2018C01090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieqing Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Feng, J. Symmetry-aware kinematic skeleton generation of a 3D human body model. Multimed Tools Appl 79, 20579–20602 (2020). https://doi.org/10.1007/s11042-020-08933-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08933-3

Keywords

Navigation