Skip to main content
Log in

A Pre-processing framework for spectral classification of hyperspectral images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Classification of Hyperspectral images is mostly based on the spectral-spatial features in existing classification techniques. The captured Hyperspectral images from satellites may contain some noisy bands due to water absorption. The process of radiometric and atmospheric corrections leads to the removal of useful bands present in the acquired HSI. In this paper, a novel framework is proposed in which interpolation is used to accommodate the loss of noisy bands. Further, the extraction of hybrid features is performed using PCA and LPP to preserve spatial information, and these features are passed as input to the machine learning models. The proposed framework is compared with the existing spectral-spatial and spectral based frameworks by using the standard datasets-Indian Pines, Salinas, Pavia University, and Kennedy Space Centre. The accuracy of the classification is increased significantly when the proposed framework is blended with state-of-art classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aziz R, Verma CK, Srivastava N (2017) Dimension reduction methods for microarray data: a review. AIMS Bioeng 4(1):179–197

    Article  Google Scholar 

  2. Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491

    Article  Google Scholar 

  3. Burger JE, Gowen AA (2011) The interplay of chemometrics and hyperspectral chemical imaging. In: 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). pp 1–4. IEEE

  4. Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA (2014) Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process Magazine 31(1):45–54

    Article  Google Scholar 

  5. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Selected Topics Appl Earth Observ Remote Sensing 7(6):2094–2107

    Article  Google Scholar 

  6. Dell’Acqua F, Gamba P, Ferrari A, Palmason JA, Benediktsson JA, Árnason K (2004) Exploiting spectral and spatial information in hyperspectral urban data with high resolution. IEEE Geosci Remote Sens Lett 1(4):322–326

    Article  Google Scholar 

  7. Ding C, Li T (2007) Adaptive dimension reduction using discriminant analysis and k-means clustering. In: proceedings of the 24th international conference on Machine learning, pp 521–528

  8. Fagan M, DeFries R, Sesnie S, Arroyo-Mora J, Soto C, Singh A, Townsend P, Chazdon R (2015) Mapping species composition of forests and tree plantations in northeastern Costa Rica with an integration of hyperspectral and multitemporal landsat imagery. Remote Sens 7(5):5660–5696

    Article  Google Scholar 

  9. Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2013) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101(3):652–675

    Article  Google Scholar 

  10. Ganesan VSK, Vasuki S (2018) Maximin distance based band selection for endmember extraction in hyperspectral images using simplex growing algorithm. Multimed Tools Appl 77(6):7221–7237

    Article  Google Scholar 

  11. He X, Cai D, Min W (2005) Statistical and computational analysis of locality preserving projection. In: proceedings of the 22nd international conference on Machine learning, ACM. pp 281–288

  12. He X, Niyogi P (2004) Locality preserving projections. In: Advances in neural information processing systems, pp 153–160

  13. Keshava N (2003) A survey of spectral unmixing algorithms. Lincoln Lab J 14(1):55–78

    Google Scholar 

  14. Kruse FA, Boardman JW, Huntington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geoscience Remote Sens 41(6):1388–1400

    Article  Google Scholar 

  15. Li W, Prasad S, Fowler JE, Bruce LM (April 2012) Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans Geosci Remote Sens 50(4):1185–1198

    Article  Google Scholar 

  16. Lin Z, Chen Y, Zhao X, Wang G (2013) Spectral-spatial classification of hyperspectral image using autoencoders. In: 2013 9th International Conference on Information, Communications & Signal Processing, IEEE. pp 1–5

  17. Manian V, Velez-Reyes M (2008) Support vector classification of land cover and benthic habitat from hyperspectral images. Int J High Speed Electr Syst 18(02):337–348

    Article  Google Scholar 

  18. Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55 (7):3639–3655

    Article  Google Scholar 

  19. Plaza A, Martinez P, Perez R, Plaza J (2004) A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles. Pattern Recogn 37(6):1097–1116

    Article  Google Scholar 

  20. Plaza A, Martinez P, Plaza J, Perez R (2005) Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans Geoscience Remote Sens 43(3):466–479

    Article  Google Scholar 

  21. Rodarmel C, Shan J (2002) Principal component analysis for hyperspectral image classification. Surv Land Inf Sci 62(2):115–122

    Google Scholar 

  22. Shalizi CR (2009) The truth about principal components and factor analysis

  23. Singh S, Kasana SS (2018) Efficient classification of the hyperspectral images using deep learning. Multimed Tools Appl 77(20):27061–27074

    Article  Google Scholar 

  24. Tong L, Yu J, Xiao C, Qian B (2017) Hyperspectral unmixing via deep matrix factorization. Int J Wavelets, Multiresol Inf Process 15(06):1750058

    Article  MathSciNet  MATH  Google Scholar 

  25. Vasuki S, et al. (2017) Clustering based band selection for endmember extraction using simplex growing algorithm in hyperspectral images. Multimed Tools Appl 76(6):8355–8371

    Article  Google Scholar 

  26. Wang XD, Chen RC, Yan F, Zeng ZQ, Hong CQ (2019) Fast adaptive k-means subspace clustering for high-dimensional data. IEEE Access 7:42639–42651

    Article  Google Scholar 

  27. Wang X, Luo G, Tian L (2017) Application of hyperspectral image anomaly detection algorithm for internet of things. Multimed Tools Appl, pp 1–13

  28. Wang Y, Tang YY, Li L (2017) Spectral-spatial destriping of hyperspectral image via correntropy based sparse representation and unidirectional huber–Markov random fields. Int J Wavelets, Multiresol Inf Process 15(06):1750056

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang C, Everitt JH, Bradford JM (2008) Yield estimation from hyperspectral imagery using Spectral Angle mapper(SAM). Trans ASABE 51(2):729–737

    Article  Google Scholar 

  30. Yue J, Mao S, Li M (2016) A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sens Lett 7 (9):875–884

    Article  Google Scholar 

  31. Zhao K (2016) Classification for tree ages using hyperspectral images in british columbia, canada. In: Material Science and Environmental Engineering: The Proceedings of 2016 International Workshop on Material Science and Environmental Engineering (IWMSEE2016), World Scientific. pp 567–577

  32. Zhou F, Hang R, Liu Q, Yuan X (2019) Hyperspectral image classification using spectral-spatial LSTMs. Neurocomputing 328:39–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simranjit Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Kasana, S.S. A Pre-processing framework for spectral classification of hyperspectral images. Multimed Tools Appl 80, 243–261 (2021). https://doi.org/10.1007/s11042-020-09180-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09180-2

Keywords

Navigation