Skip to main content
Log in

Shape point set matching based on oriented shape context in turbulence-cluttered scene

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The main challenges of shape point set matching in a long-distance imaging scene stem from the optical turbulence effects, which lead to shape object deformation, rotation, shifted object positions, and cluttered outliers. To address this problem, we propose an effective energy cost model with figural continuity constraint. We first construct an Oriented Shape Context (OSC) descriptor using attributes of shape edges’ length and direction, which represent rotation invariance, by adding the oriented model (prototype) edges point set. Then, inspired by the figural continuity prior between the model and target point set, we transform the continuity constraint into a matching energy cost model. Lastly, we develop a simple 2-tree graph to minimize the matching cost function using the Dynamic Program (DP) optimization algorithm. The extensive experiments on both synthetic and real data validate that the proposed method can effectively detect the desired shapes in the complex and highly turbulence-cluttered scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Agrawal H, Joseph R (1990) Dynamic program slicing. ACM SIGPLAN Not 25(6):246–256

    Article  Google Scholar 

  2. Bai X, Latecki LJ (2008) Path similarity skeleton graph matching. IEEE Trans Pattern Anal Mach Intell 30(7):1282–1292

    Article  Google Scholar 

  3. Bai S, Bai X, Tian Q, Latecki LJ (2019) Regularized diffusion process on bidirectional context for object retrieval. IEEE Trans Pattern Anal Mach Intell 41(5):1213–1226

    Article  Google Scholar 

  4. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24:509–522

    Article  Google Scholar 

  5. Egozi A, Keller Y, Guterman H (2010) Improving shape retrieval by spectral matching and meta similarity. IEEE Trans Image Processing 19:1319–1327

    Article  MathSciNet  Google Scholar 

  6. Goyette N, Jodoin PM, Porikli F, Konrad J, Ishwar P (2012) changedetection.net: a new change detection benchmark dataset, pp 1–8. http://jacarini.dinf.usherbrooke.ca/dataset2014/#

  7. Guo JJ, Zhong BJ (2014) U-chord curvature: a computational method of discrete curvature. Pattern Recognit Artif Intell 27:683–691

    Google Scholar 

  8. Latecki LJ, Lakämper R (2000) Shape similarity measure based on correspondence of visual parts. IEEE Trans Pattern Anal Mach Intell 22:1185–1190

    Article  Google Scholar 

  9. Li H, Kim E, Huang X, He L (2010) Object matching with a locally affine-invariant constraint. In: IEEE Conf. Computer Vision and Pattern Recognition

  10. Lian W, Zhang L, Zhang D (2012) Rotation-invariant nonrigid point set matching in cluttered scenes. IEEE Trans Image Process 21:2786–2797

    Article  MathSciNet  Google Scholar 

  11. Lian W, Zhang L, Yang MH (2017) An efficient globally optimal algorithm for asymmetric point matching. IEEE Trans Pattern Anal Mach Intell 39:1281–1293

    Article  Google Scholar 

  12. Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29:286–299

    Article  Google Scholar 

  13. Lowe DG (1999) Object recognition from local scale-invariant features. IEEE Computer Society, ICCV

  14. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  15. Lu X, Wang W, Ma C, Shen J, Shao L, Porikli F (2019) See more, know more: unsupervised video object segmentation with co-attention Siamese networks. CVPR. https://doi.org/10.1109/CVPR.2019.00374

  16. Lu X, Ni B, Ma C, Yang X (2019) Learning transform-aware attentive network for object tracking. Neurocomputing 349(15):133–144

    Article  Google Scholar 

  17. Scott C, Nowak RD (2006) Robust contour matching via the orderpreserving assignment problem. IEEE Trans Image Processing 15:1831–1838

    Article  MathSciNet  Google Scholar 

  18. Sebastian TB, Klein PN, Kimia BB (2004) Recognition of shapes by editing their shock graphs. IEEE Computer Society

  19. Sharvit D, Chan J, Hüseyin T, Kimia BB (1998) Symmetry-based indexing of image databases. J Vis Commun Image Represent 9(4):366–380

    Article  Google Scholar 

  20. Shen W, Jiang Y, Gao W, Zeng D, Wang X (2016) Shape recognition by bag of skeleton-associated contour parts. Pattern Recogn Lett 83(P3):321–329

    Article  Google Scholar 

  21. Thayananthan A, Stenger B, Torr PHS, Cipolla R (2003) Shape context and chamfer matching in cluttered scenes. Proc IEEE Conf Comput Vis Pattern Recognit I:127–133

    Google Scholar 

  22. Torki M, Elgammal A (2010) One-shot multi-set non-rigid feature-spatial matching. IEEE Conf. Computer Vision and Pattern Recognition

  23. Xu XG, Yang P, Liu Y, Xian H, Xu B (2018) Geometric distortion correction of long-range imaging containing moving objects. J Opt 21:10

    Google Scholar 

  24. Xu XG, Yang P, Xian H, Liu Y (2019) Robust moving objects detection in long-distance imaging through turbulent medium. Infrared Phys Technol. https://doi.org/10.1088/2040-8986/aaf191

  25. Yu T, Yan J, Wang Y, Liu W, Li B (2018) Generalizing graph matching beyond quadratic assignment model. 32nd Conference on Neural Information Processing Systems (NeurIPS). http://papers.nips.cc/author/wei-liu-7251

  26. Zheng Y, Doermann D (2006) Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Trans Pattern Anal Mach Intell 28:643–649

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (NSFC) (Grant No.60978049); Sciences Innovation Found, Chinese Academy of Sciences (Grant No. CXJJ-16 M208).We particularly thank Dr. Goyette and Dr. Nil for the Dataset and the constructive suggestions of reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinggui Xu.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Yang, P., Xian, H. et al. Shape point set matching based on oriented shape context in turbulence-cluttered scene. Multimed Tools Appl 79, 25817–25834 (2020). https://doi.org/10.1007/s11042-020-09215-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09215-8

Keywords

Navigation