Skip to main content
Log in

Extreme learning machine with coefficient weighting and trained local receptive fields for image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Local receptive fields based extreme learning machine (ELM-LRF) is widely used to solve image classification problems. However, the performance of ELM-LRF is limited by the single generation method of local receptive fields and the simple network structure. In order to solve these problems and make full use of image information to improve classification accuracy, extreme learning machine with coefficient weighting and trained local receptive fields (ELM-WLRF) is proposed based on ELM-LRF. The structure is mainly composed of convolution blocks, weighting blocks, dimensionality reduction and classification layers. In the convolution block, the principle of the ELM and the method of grouping calculation are used to train the local receptive fields of the two convolutional layers. The trained local receptive fields are used to extract identifiable feature information in the image more stably and adequately. In the weighting block, the principles of ELM and ELM autoencoder (ELM-AE) are used to train channel and spatial weighting coefficients to improve the recognizability of features. In the dimensionality reduction and classification layers, the approximate empirical kernel map (EKM) is used to train the connection weight matrix between each layer to further improve the network training speed and classification accuracy. To demonstrate the effectiveness of the proposed method, ELM-WLRF is tested on the MNIST, NORB and CIFAR-10 databases. The experimental results show that ELM-WLRF achieves superior classification accuracy, i.e. 99.27%, 98.03% and 60.14% respectively, and requires shorter training time compared with other state-of-the-art ELM-LRF-based algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen J, Wu Z, Zhang J, Li F, Li W, Wu Z (2018) Cross-covariance regularized autoencoders for nonredundant sparse feature representation. Neurocomputing 316:49–58. https://doi.org/10.1016/j.neucom.2018.07.050

    Article  Google Scholar 

  2. Dai H, Cao J, Wang T, Deng M, Yang Z (2019) Multilayer one-class extreme learning machine. Neural Netw 115:11–22. https://doi.org/10.1016/j.neunet.2019.03.004

    Article  Google Scholar 

  3. Deng WY, Ong YS, Zheng QH (2016) A fast reduced kernel extreme learning machine. Neural Netw 76:29–38

    Article  Google Scholar 

  4. Ding S, Guo L, Hou Y (2017) Extreme learning machine with kernel model based on deep learning. Neural Comput & Applic 28(8):1975–1984. https://doi.org/10.1007/s00521-015-2170-y

    Article  Google Scholar 

  5. dos Santos MM, da Silva Filho AG, dos Santos WP (2019) Deep convolutional extreme learning machines: filters combination and error model validation. Neurocomputing 329:359–369. https://doi.org/10.1016/j.neucom.2018.10.063

    Article  Google Scholar 

  6. Han HG, Wang LD, Qiao JF (2014) Hierarchical extreme learning machine for feedforward neural network. Neurocomputing 128:128–135. https://doi.org/10.1016/j.neucom.2013.01.057

    Article  Google Scholar 

  7. He B, Song Y, Zhu Y, Sha Q, Shen Y, Yan T, Nian R, Lendasse A (2018) Local receptive fields based extreme learning machine with hybrid filter kernels for image classification. Multidim Syst Signal Process 1-21. https://doi.org/10.1007/s11045-018-0598-9

  8. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507. https://doi.org/10.1126/science.1127647

    Article  MathSciNet  MATH  Google Scholar 

  9. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu J, Shen L, Sun G (2019) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 1–1. https://doi.org/10.1109/cvpr.2018.00745.

  11. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. Neural Netw 2:985–990. https://doi.org/10.1109/ijcnn.2004.1380068

    Article  Google Scholar 

  12. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  13. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513–529

    Article  Google Scholar 

  14. Huang GB, Bai Z, Kasun LLC, Vong CM (2015) Local receptive fields based extreme learning machine. IEEE Comput Intell Mag 10(2):18–29. https://doi.org/10.1109/mci.2015.2405316

    Article  Google Scholar 

  15. Huang J, Yu ZL, Cai Z, Gu Z, Cai Z, Gao W, Yu S, Du Q (2017) Extreme learning machine with multi-scale local receptive fields for texture classification. Multidim Syst Sign Process 28(3):995–1011. https://doi.org/10.1007/s11045-016-0414-3

    Article  Google Scholar 

  16. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. 2017 IEEE conference on computer vision and pattern recognition (CVPR), Honolulu, pp 4700–4708. https://doi.org/10.1109/cvpr.2017.243

  17. Iosifidis A, Tefas A, Pitas I (2016) Graph embedded extreme learning machine. IEEE Trans Cybern 46(1):311–324. https://doi.org/10.1109/TCYB.2015.2401973

    Article  Google Scholar 

  18. Jia Y, Kwong S, Wang R (2018) Applying exponential family distribution to generalized extreme learning machine. IEEE Trans Syst Man Cybern Syst pp 1–11. https://doi.org/10.1109/tsmc.2017.2788005

  19. Jia X, Li X, Jin Y, Miao J (2019) Region-enhanced multi-layer extreme learning machine. Cogn Comput 11(1):101–109. https://doi.org/10.1007/s12559-018-9596-3

    Article  Google Scholar 

  20. Kasun LLC, Zhou H, Huang GB, Vong CM (2013) Representational learning with extreme learning machine for big data. IEEE Intell Syst 28(6):31–34

    Google Scholar 

  21. Khellal A, Ma H, Fei Q (2018) Convolutional neural network based on extreme learning machine for maritime ships recognition in infrared images. Sensors 18(5):1490. https://doi.org/10.3390/s18051490

    Article  Google Scholar 

  22. Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Tech Rep Univ Tor 1:7

    Google Scholar 

  23. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, Red Hook, NY, USA. pp 1097–1105.

  24. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324.

  25. LeCun Y, Huang FJ, Bottou L (2004) Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, pp 97-104. https://doi.org/10.1109/cvpr.2004.1315150

  26. Li G, Niu P, Duan X, Zhang X (2014) Fast learning network: a novel artificial neural network with a fast learning speed. Neural Comput & Applic 24(7–8):1683–1695

    Article  Google Scholar 

  27. Liu H, Li F, Xu X, Sun F (2018) Multi-modal local receptive field extreme learning machine for object recognition. Neurocomputing 277:4–11. https://doi.org/10.1016/j.neucom.2017.04.077

    Article  Google Scholar 

  28. Liu Y, Liu Z, Lei Z (2019) Hierarchical pooling based extreme learning machine for image classification. In: Chinese intelligent systems conference. Springer: Singapore, pp 1–9. https://doi.org/10.1007/978-981-32-9698-5_1.

  29. Nayak DR, Das D, Dash R, Majhi S, Majhi B (2020) Deep extreme learning machine with leaky rectified linear unit for multiclass classification of pathological brain images. Multimed Tools Appl 79:15381–15396. https://doi.org/10.1007/s11042-019-7233-0

    Article  Google Scholar 

  30. Pan YT, He FZ, Yu HP (2020) Learning social representations with deep autoencoder for recommender system. World Wide Web 23:1–21. https://doi.org/10.1007/s11280-020-00793-z

    Article  Google Scholar 

  31. Pang S, Yang X (2016) Deep convolutional extreme learning machine and its application in handwritten digit classification. Comput Intell Neurosci 1–10. https://doi.org/10.1155/2016/3049632

  32. Song G, Dai Q, Han X, Guo L (2020) Two novel ELM-based stacking deep models focused on image recognition. Appl Intell pp 1-22. https://doi.org/10.1007/s10489-019-01584-4

  33. Tang J, Deng C, Huang GB (2015) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821. https://doi.org/10.1109/tnnls.2015.2424995

    Article  MathSciNet  Google Scholar 

  34. Vong CM, Chen C, Wong PK (2018) Empirical kernel map-based multilayer extreme learning machines for representation learning. Neurocomputing 310:265–276. https://doi.org/10.1016/j.neucom.2018.05.032

    Article  Google Scholar 

  35. Wang Y, Xie Z, Xu K, Dou Y, Lei Y (2016) An efficient and effective convolutional auto-encoder extreme learning machine network for 3d feature learning. Neurocomputing 174:988–998. https://doi.org/10.1016/j.neucom.2015.10.035

    Article  Google Scholar 

  36. Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. 2017 IEEE conference on computer vision and pattern recognition, Honolulu, pp 3156–3164. https://doi.org/10.1109/cvpr.2017.683

  37. Woo S, Park J, Lee JY, So Kweon I (2018) Cbam: convolutional block attention module. In: proceedings of the European conference on computer vision (ECCV), pp 3-19. https://doi.org/10.1007/978-3-030-01234-2_1

  38. Wu YQ, He FZ, Zhang DJ, Li XX (2018) Service-oriented feature-based data exchange for cloud-based design and manufacturing. IEEE Trans Serv Comput 11(2):341–353. https://doi.org/10.1109/TSC.2015.2501981

    Article  Google Scholar 

  39. Yan D, Chu Y, Zhang H, Liu D (2018) Information discriminative extreme learning machine. Soft Comput 22(2):677–689. https://doi.org/10.1007/s00500-016-2372-y

    Article  Google Scholar 

  40. Yin Y , Li H (2018) RGB-D object recognition based on the joint deep random kernel convolution and ELM. J Ambient Intell Humanized Comput, pp 1-10. https://doi.org/10.1007/s12652-018-1067-x

  41. Yoo Y, Oh SY (2016) Fast training of convolutional neural network classifiers through extreme learning machines. 2016 International joint conference on neural networks (IJCNN), Vancouver, pp 1702–1708. https://doi.org/10.1109/ijcnn.2016.7727403.

  42. Yu YL, Sun ZZ, Zhu WX, Gu JS (2018) A homotopy iterative hard thresholding algorithm with extreme learning machine for scene recognition. IEEE Access 6:30424–30436. https://doi.org/10.1109/ACCESS.2018.2845298

    Article  Google Scholar 

  43. Yu HP, He FZ, Pan YT (2020) A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimed Tools Appl 79(9):5743–5765. https://doi.org/10.1007/s11042-019-08493-1

    Article  Google Scholar 

  44. Zhang B, Ma Z, Liu Y, Yuan H, Sun L (2018) Ensemble based reactivated regularization extreme learning machine for classification. Neurocomputing. 275:255–266. https://doi.org/10.1016/j.neucom.2017.07.018

    Article  Google Scholar 

  45. Zhang J, He FZ, Chen YL (2020) A new haze removal approach for sky/river alike scenes based on external and internal clues. Multimed Tools Appl 79(3):2085–2107. https://doi.org/10.1007/s11042-019-08399-y

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 51641609), Natural Science Foundation of Hebei Province of China (No. F2019203320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqian Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Li, Y., Zhang, Y. et al. Extreme learning machine with coefficient weighting and trained local receptive fields for image classification. Multimed Tools Appl 79, 26389–26410 (2020). https://doi.org/10.1007/s11042-020-09295-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09295-6

Keywords

Navigation