Skip to main content
Log in

Texture image segmentation using Vonn mixtures-based hidden Markov tree model and relative phase

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Texture segmentation is a frequently occurring and challenging problem in many computer vision and pattern recognition applications. The importance of phase information for texture analysis has been earlier established for many image processing. Undecimated dual tree complex wavelet transform (UDTCWT) is a new image decomposition. It not only provides exact translational invariance and rich directional selectivity, but also offers perfect consistent relative phase relationships across scales. In this paper, we propose a novel texture image segmentation framework using Vonn mixtures-based hidden Markov trees (HMT) and UDTCWT domain relative phase. Firstly, we analyze the robustness and marginal distribution of UDTCWT relative phases, and various strong dependencies between UDTCWT relative phases. Then, we propose a new HMT statistical model in UDTCWT domain, namely Vonn mixtures-based HMT, by describing the UDTCWT relative phases statistical distribution with Vonn mixtures (VM), which can capture both the subband marginal distributions and the strong dependencies across scales of the UDTCWT relative phases. Finally, we develop a texture image segmentation framework using the Vonn mixtures-based HMT model of UDTCWT domain relative phases, in which expectation–maximization (EM) parameter estimation, Bayesian multiscale raw segmentation, and context based multiscale fusion are used. Comparing to the state-of-the-art techniques, the proposed method can not only produce high-quality segmentation results in a more efficient way, but also keep a lot of boundary details in the segmentation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Choi H, Baraniuk RG (2001) Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Trans Image Process 10(9):1309–1321

    Article  MathSciNet  Google Scholar 

  2. Dharmagunawardhana C, Mahmoodi S, Bennett M, Niranjan M (2014) Gaussian Markov random field based improved texture descriptor for image segmentation. Image Vis Comput 32:884–895

    Article  Google Scholar 

  3. Dong FF, Peng JL (2014) Brain MR image segmentation based on local Gaussian mixture model and nonlocal spatial regularization. J Vis Commun Image Represent 25:827–839

    Article  Google Scholar 

  4. Feng N, Geng X, Qin L (2020) Study on MRI medical image segmentation technology based on CNN-CRF model. IEEE Access 8:60505–60514

    Article  Google Scholar 

  5. Gao G, Wen C, Wang H (2017) Fast and robust image segmentation with active contours and Student’s-t mixture model. Pattern Recogn 63:71–86

    Article  Google Scholar 

  6. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377

    Article  Google Scholar 

  7. Haindl M, Mikes S (2006) Unsupervised texture segmentation using multispectral modeling approach. IEEE International Conference on Pattern Recognition (ICPR), Hong Kong, China, 2: 203–206

  8. Hill PR, Anantrasirichai N, Achim A, AlMualla ME, Bull DR (2015) Undecimated dual-tree complex wavelet transforms. Signal Process Image Commun 35:61–70

    Article  Google Scholar 

  9. Karadag OO, Yarman Vural FT. The Image segmentation by fusion of low level and domain specific information via Markov Random Fields. Pattern Recogn Lett, 2014, 46: 75–82.

  10. Kiechle M, Storath M, Weinmann A, Kleinsteuber M (2018) Model-based learning of local image features for unsupervised texture segmentation. IEEE Trans Image Process 27(4):1994–2007

    Article  MathSciNet  Google Scholar 

  11. Kingsbury N (2001) Complex wavelets for shift invariant analysis and filtering of signals. J Appl Comput Harmon Anal 10(3):234–253

    Article  MathSciNet  Google Scholar 

  12. Kurnianingsih H, Khalid SA, Lukito EN, Widyawan (2019) Segmentation and classification of cervical cells using deep learning. IEEE Access 7:116925–116941

    Article  Google Scholar 

  13. Lasmar NE, Berthoumieu Y (2014) Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans Image Process 23(5):2246–2261

    Article  MathSciNet  Google Scholar 

  14. Liang C, Paul B, Kensaku M, Kazunari M (2018) DRINet for medical image segmentation. IEEE Trans Med Imaging 37(11):2453–2462

    Article  Google Scholar 

  15. Liu R, Jiang D, Zhang L, Zhang Z (2020) Deep depthwise separable convolutional network for change detection in optical aerial images. IEEE J Select Topics Appl Earth Observ Remote Sens 13:1109–1118

    Article  Google Scholar 

  16. Pereyra M, Dobigeon N, Batatia H, Tourneret JY (2012) Segmentation of skin lesions in 2D and 3D ultrasound images using a spatially coherent generalized Rayleigh mixture model. IEEE Trans Med Imaging 31(8):1509–1520

    Article  Google Scholar 

  17. Pyun KP, Lim J, Won CS (2007) Image segmentation using hidden Markov gauss mixture models. IEEE Trans Image Process 16(7):1902–1911

    Article  MathSciNet  Google Scholar 

  18. Qiao Y, Zhao G (2016) Texture segmentation using Laplace distribution-based wavelet-domain hidden Markov tree models. Entropy 18(11):384

    Article  Google Scholar 

  19. Riad R, Jennane R, Brahim A, Janvier T (2018) Texture analysis using complex wavelet decomposition for knee osteoarthritis detection: data from the osteoarthritis initiative. Comput Electr Eng 68:181–191

    Article  Google Scholar 

  20. Song Y, Zhang S, He B, Sha Q, Shen Y, Yan T, Nian R, Lendasse A (2018) Gaussian derivative models and ensemble extreme learning machine for texture image classification. Neurocomputing 277:53–64

    Article  Google Scholar 

  21. Thanh MN, Jonathan WQM (2013) Fast and robust spatially constrained Gaussian mixture model for image segmentation. IEEE Trans Circuits Syst Video Technol 23(4):621–634

    Article  Google Scholar 

  22. Toufique AS, Ahmed JA, Ahmed AS (2019) Impact of image enhancement technique on CNN model for retinal blood vessels segmentation. IEEE Access 7:158183–158197

    Article  Google Scholar 

  23. Vo A, Oraintara S, Nguyen N (2011) Vonn distribution of relative phase for statistical image modeling in complex wavelet domain. Signal Process 91(1):114–125

    Article  Google Scholar 

  24. Wang XY, Sun WW, Wu ZF, Yang HY, Wang QY (2015) Color image segmentation using PDTDFB domain hidden Markov tree model. Appl Soft Comput 29:138–152

    Article  Google Scholar 

  25. Wang C, Muhammad J, Wang Y, He Z, Sun Z (2020) Towards complete and accurate iris segmentation using deep multi-task attention network for non-nooperative iris recognition. IEEE Trans Inform Forensics Secur 15:2944–2959

    Article  Google Scholar 

  26. Xian M, Zhang Y, Cheng HD, Xu F, Zhang B, Ding J (2018) Automatic breast ultrasound image segmentation: a survey. Pattern Recogn 79:340–355

    Article  Google Scholar 

  27. Yuan J, Wang D, Cheriyadat AM (2015) Factorization-based texture segmentation. IEEE Trans Image Process 24(11):3488–3497

    Article  MathSciNet  Google Scholar 

  28. Zhang Y, He Z, Zhang Y (2011) Global optimization of wavelet-domain hidden Markov tree for image segmentation. Pattern Recogn 44(12):2811–2818

    Article  Google Scholar 

  29. Zhang H, Wu Q, Nguyen TM (2013) Image segmentation by a new weighted Student’s t-mixture model. IET Image Process 7(3):240–251

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the National Natural Science Foundation of China (Nos. 61472171 & 61701212), Key Scientific Research Project of Liaoning Provincial Education Department (LZ2019001), Natural Science Foundation of Liaoning Province (2019-ZD-0468).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan-pan Niu or Xiang-yang Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Pp., Wang, L., Shen, X. et al. Texture image segmentation using Vonn mixtures-based hidden Markov tree model and relative phase. Multimed Tools Appl 79, 29799–29824 (2020). https://doi.org/10.1007/s11042-020-09491-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09491-4

Keywords

Navigation