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Abstract—Image recognition is an important topic in computer
vision and image processing, and has been mainly addressed
by supervised deep learning methods, which need a large set
of labeled images to achieve promising performance. However,
in most cases, labeled data are expensive or even impossible to
obtain, while unlabeled data are readily available from numerous
free on-line resources and have been exploited to improve the
performance of deep neural networks. To better exploit the
power of unlabeled data for image recognition, in this paper,
we propose a semi-supervised and generative approach, namely
the semi-supervised self-growing generative adversarial network
(SGGAN). Label inference is a key step for the success of semi-
supervised learning approaches. There are two main problems in
label inference: how to measure the confidence of the unlabeled
data and how to generalize the classifier. We address these two
problems via the generative framework and a novel convolution-
block-transformation technique, respectively. To stabilize and
speed up the training process of SGGAN, we employ the metric
Maximum Mean Discrepancy as the feature matching objec-
tive function and achieve larger gain than the standard semi-
supervised GANs (SSGANs), narrowing the gap to the supervised
methods. Experiments on several benchmark datasets show the
effectiveness of the proposed SGGAN on image recognition and
facial attribute recognition tasks. By using the training data
with only 4% labeled facial attributes, the SGGAN approach
can achieve comparable accuracy with leading supervised deep
learning methods with all labeled facial attributes.

Index Terms—Semi-supervised learning, generative adversarial
network, self-growing technique, image recognition, face attribute
recognition

I. INTRODUCTION

In the past decade, we have witnessed the increasing
interests in the image recognition problem solved by the
deep learning approaches [29], [53l], [21]. This interest is
expanding quickly to many different fields ever since the
advent of deep convolution neural networks [29]], [53l], [17],
[21], resulting in many effective approaches in many different
computer vision fields [38]], [7], [L1S], [35[], [39]. However,
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despite these exciting progresses, most existing approaches
are supervised learning based and largely limited by resorting
to huge amounts of data with labels. Labeling these data
will incur expensive costs on human labor. To alleviate the
dependence of supervised learning approaches on the labeled
data, many semi-supervised learning approaches [9], [23],
[L16], [L1O], [?] have been developed to exploit the power of
the numerous unlabeled data available in free on-line resources
for the image recognition problem. On the other hand, with
the successes of Deep Convolutional Generative Adversarial
Networks (DCGAN) [47] on general pattern recognition tasks,
Generative Adversarial Networks (GANs) have been widely
applied into unsupervised learning problems [352].

It is well known that the GANS can hardly be trained deeply
enough when compared to the other concurrently networks
such as ResNet [21]]. This is because that the generator of the
GANSs are usually very shallow and can often drift to “model
collapse” (a parameter setting where it always emits the same
point), restricting the GANs to grow up to achieve promising
performance on large scale datasets such as ImageNet [12].
In this paper, we propose a novel a self-growing GAN (SG-
GAN) for large scale image recognition tasks. The proposed
SGGAN is a united semi-supervised GAN containing three
self-growing groups. Each group contains a generator and a
discriminator, which are trained at the same time and compete
against each other to reach the Nash equilibrium of the game
theory through an adversarial objective [17]. The generator is
trained to defeat the discriminator by creating virtually realistic
images (maximize the loss), and the discriminator is trained to
distinguish the images generated by the generator (minimize
the loss). Through this min-max game, the loss of generator
will become increased while the loss of the discriminator will
becomes decreased. Finally, the two losses will become closer
to each other, and reach an equilibrium in the end.

In semi-supervised learning (SSL) framework, label infer-
ring is a major challenging to its success. Given an amount
of labeled data and a larger amount of unlabeled data, the
SSL framework can infer the latent label information of
the unlabeled data from the labeled data by considering the
structures and distributions of all these data as a whole. In
order to guarantee the success of the semi-supervised learning
approach, label inference of the unlabeled data is the most
significant problem to address. For the labels assigned to the
unlabeled data, the false positive rate of the label inference
process is more important than the true negative rate for
the recognition performance, since false positive labels would
add noise into the training data and thus make the training



unstable. Therefore, the confidence of the latent labeled data
(i.e., unlabeled data with latent labels) should be accurate
enough. Moreover, the semi-supervised classifiers may not
improve if they perform well on the same types of data.
Therefore, the two main obstacles in label inference are:
how to measure the confidence of the unlabeled data, and
how to generalize the semi-supervised learning classifier. In
this paper, we propose to address the first problem through
threshold setting techniques [6], in which only the unlabeled
data with recognition probability larger than a pre-set threshold
will be assigned with a latent label. We solve the second
problem by proposing a novel technique named convolution-
block-transformation (CBT) proposed by us. In our proposed
network, the depth is designed to be deep in order to generalize
the classifier since deeper model enables the network to learn
more information from the unlabeled data than the shallower
one. It is difficult to directly train a deep network in our
case, so we propose a simple yet effective convolution block
transformation (CBT) technique to transfer weights from a
shallower network to a deep one by shortcut and an adaptive
scaling layer following the shallower convolution block. We
evaluate our method on CIFAR10, SVHN and face attribute
recognition dataset, which is more challenging due to complex
face variations.

In summary, the major contributions of this paper are
summarized as follows:

o We propose an semi-supervised self-growing generative
adversarial network (SGGAN) for image recognition
problem. We handle the semi-supervised learning prob-
lem via label inference to improve the performance of
the training network.

o We introduce the minimum mean discrepancy (MMD)
as the objective of the feature matching stage to replace
the traditional ¢; distance objective. The employed MMD
can help to stabilize the training of the proposed SGGAN
model, and thus avoid the model collapse pitfall of
traditional GANS.

e We propose a novel convolution block transformation
(CBT) technique to harmonize the self-growing process
of the proposed SGGAN model to address the general-
ization of its classifier. We prove it is easier to train a
model growing from a shallow network to a deep one,
and thus achieving better performance.

o« We conduct extensive experiments on image and face
attribute recognition problems to systematically evaluate
our proposed SGGAN model. We demonstrate that MMD
and CBT can separately and simultaneously stabilize the
training of the proposed SGGAN. When compared with
supervised methods, SGGAN can achieves competitive
or even higher accuracies on various benchmark datasets
when compared with state-of-the-art GAN based ap-
proaches such as the Improved GAN [52f] and supervised
learning networks such as VGG-16 [53] and ResNet-
50 [21].

The rest of this paper is organized as follows: In Section [I}
we briefly reviews related work on semi-supervised learning,
generative adversarial networks, the optimization of GAN

and face attribute recognition. In Section we introduces
the architecture of our proposed semi-supervised self-growing
generative adversarial network and how to train our SG-
GAN. Experiments and detailed analysis are introduced in
Section Finally, we conclude this paper in Section [V}

II. RELATED WORK
A. Semi-Supervised Learning

Semi-supervised algorithm [6] falls between unsupervised
learning (e.g., clustering) and supervised learning (e.g., classi-
fication or regression) on providing the data labels [75]], [73],
1671, (661, (631, (651, [611, (631, (621, [64], [11, [36], (701, (691,
[72], [Z1]], [22], [S9]. Semi-supervised learning [78] contains
multiple types of training strategy, such as self-training [49]]
and co-training [77]. Recently, Zhuang et al. [[79] considered
the label information in the graph learning stage. Specifically,
they enforce to be zero the weight of edges between every
two labeled samples from different classes. To make use
of the unlabeled data, one simple and effective way is to
predict the labels of the unlabeled data by employing the
model trained on existing labeled data. Indeed, the premise
behind semi-supervised learning is that the learned statistics
in the labeled examples contain information which is useful
to predict the unknown labels. Self-training [49] is one of
the earliest semi-supervised learning strategy using unlabeled
data to improve the training of recognition systems. The high
confidence that the model predicts against a sample indicates
the high probability of correct prediction.

B. Generative Adversarial Networks

The training objective of GANSs is to find a Nash equilibrium
between the discriminative and generator networks by a min-
max game. Denote by the generative network in GAN by G
and the discriminative network in GAN by D. The purpose
of the G network is to generate virtually realistic images and
the purpose of the D network is to distinguish between the
virtually generated and realistic unlabeled images through the
min-max optimization problem. As described in the original
paper [L7], the purpose of the generative modeling is to find a
probabilistic model () that matches the true data distribution
P. The training of GAN can be interpreted as minimizing the
Jensen-Shannon divergence under some ideal conditions. The
Jensen-Shannon divergence is not measured by the K-L diver-
gence between P and @, i.e., KL[P| Q] or KL[Q]|P], but is
between the two extreme cases K L[P||Q] and K L[Q||P]. And
this property of the Jensen-Shannon divergence can push the
generator to generate better samples than other methods [17].
Actually, Nash equilibrium is difficult to achieve and the
assumptions behind GANs maybe too strong to perfectly
match the cases in real-world applications. In the work of DC-
GAN [47], there are several techniques proposed to stabilize
the training of the GAN:S, i.e., using leaky-ReLLUs and batch
normalization for the training of the discriminator network,
and convolution with stride 2 instead of max-pooling layers
for the training of the generator network. These techniques
work very well and have become a standard setup in recent
GAN based approaches. Recently, Wasserstein distance [2]]
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Figure 1: The architecture of our semi-supervised self-growing generative adversarial network (SGGAN). SGGAN starts
from the basic baby generator and discriminator, in which the junior and senior generator/discriminator are self-grown from
the baby counterparts via our proposed CBT technique.

is introduced with theoretically proved effectiveness as the
objective of the generative model to stabilize the training
process of GAN. The main advantage of Wasserstein distance
based GAN frameworks is that this distance can guarantee
great stability for training the generative model, which is not
limited to the DCGAN approach.

Existing GAN based approaches can be categorized into two
types from the perspective of their motivations. The first type
is the divergence minimization based approaches [47], which
mainly focus on designing an effective generator network to
produce virtually realistic images, and treat the discriminator
network as an auxiliary model. And the second type is the
contrast function based approaches [352], which attempt to
enhance the discriminating power of the discriminator by
simulating a large amount of fake samples. Our work can be
categorized into the second type of approaches.

C. GAN based semi-supervised learning

Donahue et al. [13] introduced an adversarial formulation
with a third component, which they call the “encoder”. While
the generator maps a simple latent distribution to data space,
the encoder attempts to encode real data to some latent space.
They show that this encoder is capable of learning to invert
the generator, and can be used as a feature for a supervised
training. On the autoregressive side, Dai et al. [11] explored
the idea of first pretraining a sequence model to perform a task
on unlabeled text data. These pretrained weights are then used
to train supervised models for text classification. Their results
show improved learning stability and model generalization.

Radford et al. [46] trained an mLSTM RNN on Amazon
reviews to learn a language model and then used its internal
cell state from the last time step as features for the subsequent
supervised task of sentiment analysis of Amazon reviews.
This enabled the authors to match the state-of-the-art in their
sentiment analysis dataset with significantly less labeled data
and to surpass it with the fully-supervised learning. Recently,
Salimans, et al. [52] proposed a way to utilize GANs for a
classification task with k& classes. Specifically, they propose
an extension to the vanilla GAN where the labeled dataset is
augmented with samples from the generator. The discriminator
is also modified to predict (k + 1)th classes: the original k
classes and a new class for fake (generated) data. In a sense
this helps the discriminative model by augmenting a smaller
labeled dataset with larger unlabeled set of real examples and
generated samples.

D. Face Attribute Recognition

Face attribute recognition in the wild is a challenging
problem due to complex face variations such as varying
lightings, scales, and occlusions, etc. Traditionally, previous
attribute recognition approaches [4], [S], [31] focus on ex-
tracting effective hand-crafted low-level features, e.g., edges,
HSV, and gradients, etc, from the detected faces. Then the
extracted features are fed into a standard classifier, such as
SVM [55] and random forest [37]. For instance, the authors
of FaceTracer [30] split the whole face region into multiple
sub-regions, extracted multiple types of features for each
region, and train a SVM classifier on the concatenated features.



Table I: Architecture of Discriminators.

Table II: Architecture of Generators.

Baby D

Junior D

Senior D

Baby G

Junior G

Senior G

Input (32x32x3)

Input (128X 128 x3)

Input (512x512%3)

Sample 100 number from Uniform Distribution

Conv3-64S1
Conv3-64S1
Conv3-64S2

Conv3-64S1
Conv3-64S1
Conv3-64S52

Conv3-64S1
Conv3-64S1
Conv3-64S2

FC-512*%4%4

Reshape-(4,4,512)

Conv3-128S2x 2
Conv3-128S1x2
Conv3-128S1x1

Conv3-12852x2
Conv3-128S1x2
Conv3-128S1x 1

Conv3-128S2x2
Conv3-128S1x2
Conv3-128S1x1

Deconv5-256S2
Deconv5-128S2
Deconv5-128S2

Deconv5-256S2
Deconv5-128S2
Deconv5-128S2
Deconv5-128S1

Deconv5-256S2
Deconv5-128S2
Deconv5-128S2
Deconv5-128S1

Conv3-192S1x2
Conv3-192S1x2
Conv3-192S2x 1

Conv3-192S1x2
Conv3-192S1x2
Conv3-19282x 1

Deconv5-128S2
Deconv5-128S2
Deconv5-128S1

Deconv5-128S2
Deconv5-128S2
Deconv5-128S1

Conv3-256S1x2
Conv3-256S1x2
Conv3-256S2x 2

Deconv5-64S52
Deconv5-64S2
Deconv5-32S1

Deconv5-6452
Deconv5-64S52
Deconv5-32S1

Deconv5-32S52

Dropout(0.5)

Global Average Pooling
FC

softmax

Recently, deep learning (especially CNN based) methods [29]]
have achieved great success in face attribute recognition due to
their ability to learn discriminative features from huge amount
of labeled data. The authors in [40] applied two CNNs (ANet
and LNet) to the face attribute recognition task, on which the
LNet is trained to locate the entire face region and the ANet
is trained to extract high-level face representation. Finally, the
extracted features are fed into a SVM classifier to produce
the final recognition results. In [50], the authors proposed a
mixed objective to optimize 40 face attributes together in a
single CNN with 138 million network parameters. However,
these supervised deep learning methods are limited by largely
depending on huge amount of labeled training data, which is
very costly in real-world applications. This motivates us to
utilize the large amount of freely available unlabeled data for
the face attribute recognition in a semi-supervised manner.

III. SEMI-SUPERVISED SELF-GROWING GENERATIVE
ADVERSARIAL NETWORK

In this section, we first reveal the mechanism of the pro-
posed semi-supervised self-growing generative adversarial net-
work (SGGAN) by presenting its architecture in details. Then
the convolution block transformation strategy for network self-
growing is illustrated. Finally, we introduce the MMD as an
effective metric to stabilize the training of our model.

A. Architecture of SGGAN

The flowchart of the proposed SGGAN is illustrated in
Figure [l Our SGGAN network includes a group of GANS,
in which the junior generator or discriminator grows from
corresponding baby counterpart, and the senior generator or
discriminator grows from corresponding junior counterpart.
The detailed description of the structures of three generators
and three discriminators are listed in Table [ and [ re-
spectively. The convolutional layer parameters are denoted as
(convolution type)(kernel size)-(number of channels)-S(stride).
The activation functions we employed for the generator and

Deconv5-32S52

Output(32x32x3)  Output(128x128x3)  Output(512x512x3)

Tanh Activation

discriminator are ReLU and Leaky-ReLU, respectively. Batch
normalization is used after each convolution layer. The self
growing process will be discussed in the next subsection. In
the whole network, the fundamental component is named as
the GAN cell, which is composed of a generator network and
a discriminator network.

In the GAN cell, the discriminator is deeper and sometimes
has more filters per layer than the corresponding generator.
The reason is that it is important for the discriminator to
be able to correctly estimate the ratio between the true data
density and generated data density, but it may also be an
artifact of the “mode collapse” since the generator tends not
to use its full capacity with current training methods [[18]. We
introduce each component of the proposed SGGAN model as
follows.
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Figure 2: The detailed architecture of Baby Generator.

1) Generator: The generator takes as input a random vector
z (drawn from a Gaussian distribution). After reshaping z into
a 4-dimensional shape, it is fed to the generator that starts
with a series of upsampling layers. Each upsampling layer
represents a transposed convolution operation with a stride of
2. The transposed convolution work by swapping the forward
and backward passes of a convolution. The upsampling layers
go from deep and narrow layers to wider and shallower ones.
The stride of a transposed convolution operation defines the
upsampling factor of the output layer. With the stride of 2, the
size of output features will be twice that of the input layer.



After each transposed convolution operation, the reshaped z
becomes wider and shallower. All transposed convolutions use
a 5 x 5 kernel with depths reducing from 512 to 3, which
indicating a RGB color image. The output of the final layer
is a H x W x 3 tensor, squashed between values of —1
and 1 through the Hyperbolic Tangent (tanh) function. The
shape of the final output is defined by the size of the training
image. Specifically, if we train the generator on the SVHN
dataset [45]], it will produce an image of size 32 x 32 x 3.
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Figure 3: The detailed architecture of Baby Discriminator.

2) Discriminator: The baby discriminator has 9 CNN lay-
ers with Batch Normalization [25]], followed by Leaky-ReLU
activation function. It is the same with the deep neural net-
works used for image recognition [57]], object detection [58]],
and image segmentation [44]], etc. The difference is that the
Leaky-ReLU [60] is used in our discriminator instead of
the regular ReLU [20]. The reason we employ Leaky-ReLU
instead of the regular ReLU is that, the regular ReLU function
will truncate the negative values to 0, which will block the
gradients to flow through the generative networks. Instead of
forcing the negative part to be 0, the Leaky-ReLU allows
a small negative value to pass through the activation layer.
Theoretically, Leaky-ReLLU represents an attempt to solve the
dying ReLU problem [42]. This situation occurs when the
neurons do not move in a state in which ReLU units always
output Os for all inputs. For these scenarios, the gradients do
not flow back through the network. This problem is especially
important for GAN since the only way the generator learns is
by receiving the gradients from the discriminator.

Our baby discriminator takes into a 32 x 32 x 3 image tensor
as input. Being opposite to the generator, the discriminator
contains a series of convolutions with a stride of 2. Each
layer reduces the spatial dimensions of feature vector by
reducing its size by half, along with doubling the number
of learned filters. Given the training data from k classes,
the discriminator will output (k + 1) neurons to represent
these k classes, where the (k + 1)th class demonstrates the
generated images. We employ the softmax activation function
as the output of the final layer to generate the confidence for
samples from each class. When the discriminator captures the
difference between the generated image and realistic image,
it will send a signal to the generator counterpart. This signal
is the gradient that flows backward from the discriminator to
the generator. Once receiving this signal, the generator is able
to adjust its parameters accordingly to generate latent data

whose distribution is closer to the true data distribution than
the previous generated ones. In the final stage, the generator
will produce data as good as that the discriminator hardly
distinguishes them apart.

3) Label inference by discriminator: The latent labels of
our unlabeled images are firstly created via the baby discrim-
inator, and then updated by the junior discriminator. The self-
training approaches usually needs a threshold value to infer
the latent labels. The threshold value of the confidence is
determined on the validation dataset of CelebA dataset [40];
we set the threshold value as 0.98 in our experiments. In this
way, we can utilize more unlabeled images, and hence train
deeper neural networks for better recognition performance.

B. Self-Growing Network

In this section, we propose a convolution block transforma-
tion (CBT) technique to transform an existing network into a
deeper one. Our idea is motivated by the Net2Net model [§]].
In Net2Net, Chen et al. proposed to initialize a bigger model
using the weights of a smaller model. However, they only
initialize the weights of one layer in each cycle, and this
operation has difficulties with the batch normalization (BN)
layer. This is because that the BN layer requires running
forward inference on the training data to calculate the mean
and variance of activation function, which are then used to set
the output scale and bias of the BN layer to disentangle the
normalization of the statistics of this layer.

In Figure 4, we show the flowchart of the proposed CBT
technique. With the help of CBT, to train a deeper model, we
initialize a newly added convolution block (instead of a single
layer) with Gaussian noise to break symmetry and add identity
shortcut to preserve the potential ability of shallow model. As
one can see in Figure[d] the weights of the shallow network are
transferred to a consistent block of the deeper network. Some
new convolution layers are added to the top of the shallow
network. The output values of the newly added convolution
block are scaled by an adaptive scaling layer. The adaptive
layer is defined by the function w(t) = 1 — e™t, where ¢
denotes the number of total iterations in one epoch divided
by current iteration number. The adaptive scaled output is
added with that of the shallow layer. Finally, the added results
are fed into a global average pooling (GAP) layer (for more
details about GAP, please refer to the Section [II-E). Here,
we call the up-described operator as the convolution block
transformation (CBT). Along with the training, the function
w(t) for the adaptive layer will gradually approach to 1 and
the newly added convolution block will becomes a part of the
original shallow net.

C. Feature Matching

Generative Adversarial Networks (GANSs) are difficult to
train since the generator is easy to collapse [18] (we call
it the “model collapse” phenomenon). In [52f, in order to
avoid mode collapse, Salimans et al. proposed the feature
matching technique to improve the stability in training the
GANs by employing a new objective for the generator. Instead
of maximizing the output of the discriminator as the regular
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Figure 4: Convolution Block Transformation (CBT) transfers weights of shallow network to the deeper one.

GAN training does, the feature matching requires the generator
to create latent data that matches the statistics of the realistic
data in the feature level of the discriminator network. Conse-
quently, the generator updates its parameters by matching the
expectation of the features on the next of the final layer of the
discriminator network, which is the output of Global Average
Pooling (GAP) layer in our case. This is a natural choice of
statistics for the generator to match. Let f(x) denote activa-
tions after GAP layer of the discriminator, the feature matching
objective for the generator is proposed by [52]] and defined
by an ¢y distance as ||Ercpyn,. f(7) — E.cp, () f(G(2))]]1-
In practice, we found that the above mentioned ¢; distance
produces similar results with /5 distance. The authors in [14])
proved that the maximum mean discrepancy (MMD) using
Gaussian kernels could match all moment’s mean, including
the /1 and /5 distances between the generated features and
unlabeled images. Therefore, in this work we employ the
MMD metric as the feature matching objective to measure
the distance between the features of generated images and
unlabeled images. Then, we require generator to match the all
levels statistics features of realistic data:

MMD(]:v pdataapz) = Sup(EINPdam [f(ZL')
feFr

—E.,. [f(G(2))]),
where F is a set of functions. When F is in a reproducing
kernel Hilbert space (RKHS), the function approaching the
supremum can be derived analytically and is called the witness
function

(@) = Eonpuoa IK(2, G(2))] = Eonp. [K(2,G(2))],  (2)

where K is the kernel of the RKHS. Here, we assume K is
measurable and bounded. Then we substitute (2) into (I)) and
yield:
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This expression only involves expectations of the kernel IC,
which can be approximated by:

1 m
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The MMD metric also depends on the choice of the kernel.
We choose the inner product kernel for simplicity.

Algorithm 1 Training of SGGAN.

1: for e =1,...,epoches do

2 fort =1,...,batches do

3: Generate images by using generator G.

4 Feed generated, unlabeled, and labeled images into

discriminator D to obtain Lossg.

5: Compute 8Lossd and update Wy with W, fixed.

6: Feed unlabeled and generated images into D to
compute Lossg.

7 Compute 8 gt through D and update W, with
Wy fixed.

end for

9: Inference unlabeled images and create latent-labeled
dataset by using discriminator D,

10: end for

11: Initialize a deeper model by using CBT preservation
technique.

D. Learning Objective

A key challenging in semi-supervised GANs is how to
construct the loss function. For the losses, we find that the
cross-entropy with Adam is a good choice for the optimizer.
In [532], Salimans et al. introduce an effective strategy to
construct the discriminator loss function Loss,. They regard
the labeled and unlabeled data as one of k& classes and then
classify the latently generated data into the (k + 1)-th class.
In this way, Lossy can be defined as follows:

Clog(e )
og Zl 1691+1

— log( ZZI e )
Yispemit1

where — > label; x log(z;), —log(m), and

— log(%) are the losses related to generated, labeled,
and unlabeied images, respectively. Here, m is the batch size,
and z;, g;, u; represent the output (before softmax activation)
of the labeled, generated, and unlabeled images, respectively.
During the training of the generator, a simple feature matching
method is introduced to measure the dissimilarity between
two distributions of realistic and latently generated data as

Lossqg =

- Zlabeli x log(z;)
=t (5)



described in [52]. Motivated by the effectiveness of the max-
imum mean discrepancy (MMD) [19], [[14]], in the proposed
SGGAN we utilize MMD metric instead of the ¢; to measure
the dissimilarity between latently generated data and the
realistic data.

E. Training

A complete cycle of training the proposed SGGAN contains
three iterative steps: 1) train the generator G and discriminator
D on the labeled and unlabeled pool. Here, we employ the
MMD metric for the updating of the weights of generator G|
2) apply the discriminator D to predict the unlabeled pool, and
then assign the most confident samples of all the k& classes
to the labeled pool; 3) self-grow the discriminator D and
generator G to be deeper and more powerful. The overall
procedures of training the proposed SGGAN is summarized
in Algorithm [T}

1) Pre-Training: The purpose of pre-training is to train
the initial baby GAN cell. Inspired by the feature matching
techniques introduced in the Improved GAN [52], the pro-
cess of pre-training could solve the problems in training the
discriminator. After this stage, we have a baby discriminator
which achieves an accuracy of over 80% on the testing set
of the CelebA dataset [40]. To this end, we can make use of
the trained baby discriminator to infer the latent labels from
the unlabeled images. We use Adam with initializing learning
rate of 0.01 to train both the generator G and the discriminator
D. The weights of baby generator and baby discriminator are
initialized by using Xaviers method [56]. In all experiments,
the pixel values of the images are normalized to [—1,1].

2) Label Inference: As we mentioned in Section [} inferring
the latent labels of the unlabeled images is the most signif-
icant step in training semi-supervised learning models. One
typical way to obtain the latent labels of unlabeled data is to
hypothesize that the labels predicted by the initial classifier is
credible. Under this circumstance, the label inference problem
is tackled. However, there are two issues in this approach. The
first one is that the initial classifier can be inaccurate towards
unlabeled data, and leading wrong absorption of inaccurate
data and thus assimilating noise into the training data. The
second one is that as the initial classifier does well on the same
class of data, adding this type of unlabeled data as latently
labeled samples may make the classifier only memorize this
specific type of data and cannot be generalized to other data
types. How to solve these two issues is crucial to the success
of a semi-supervised self-growing network.

For the first issue, we can largely weaken its impact by only
selecting the images in the unlabeled pool which have larger
recognition probability than a pre-set threshold value o, which
can be determined by performing recognition experiments on
the validation set of benchmark datasets (please refer to the
experimental section for more details) through grid search
strategy. In this work, we set & = 0.98. For the second
issue, we initialize the junior network from the trained baby
counterpart by introducing the proposed CBT preservation
technique, and generalize the representational power of the
classifier, accordingly. Comparing to the than the shallower

network, a deeper network can potentially learn additional
useful information from the latent labeled data. The improving
performance of the Alexnet [29] to the VGG [53]], and finally
to the ResNet [21]], all demonstrates the great successes in
the ILSVRC [51]] challenge on the Imagenet Dataset [12].
For example, VGG [53] uses 3 x 3 convolution to achieve
deeper architecture and ResNet [21] treats convolution added
with shortcut as a basic unit and repeats that unit until the
depth limit of the network is reached. Going deeper can really
improve the capacity of network considerably. As the model
grows up stronger (deeper), the network can learn useful
information not only on labeled images, but also on the latently
labeled images.

IV. EXPERIMENTS

In this section, we first evaluate the proposed semi-
supervised self-growing GAN (SGGAN) approach and justify
the effectiveness of each component in the SGGAN approach.
Then we compare SGGAN with other state-of-the-art semi-
supervised GAN based approaches on image recognition prob-
lem on two widely employed datasets. To demonstrate the
broad applicability of the proposed SGGAN approach, we
also compare it with the leading supervised deep learning
approaches on two commonly used datasets for face attribute
recognition.

A. Dataset Description
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Figure 5: Samples from the CIFAR-10 dataset [28]].

Image Recognition Datasets. In this section, we compare
the proposed SGGAN approach with state-of-the-art semi-
supervised GAN based methods by using the widely used
CIFAR-10 dataset [28] and the Street View House Numbers
(SVHN) dataset [45].

The CIFARIO dataset [28] is introduced by A. Krizhevsky
and G. Hinton in 2009, and has been a benchmark dataset for
image classification problem ever since. This dataset contains
60,000 color images of size 32 x 32 in 10 classes (i.e.,
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck). Some samples of this dataset are shown in Figure [3
Each class includes 6, 000 images, of which 5,000 images are
used for training and 1,000 images are used for testing. It
is a widely used dataset for evaluating both supervised and
semi-supervised learning methods on the image recognition
problem. We follow the same experimental setting as the
previous work such as [52]], in which only 100, 200, 400 and



800 samples along with their labels for each class are randomly
selected as the training data for semi-supervised learning.

The SVHN dataset [45] is a real-world image dataset for
digit recognition problem. It is similar in flavor to the MNIST
dataset [33]], but serves with a harder and real-world problem
in the wild. This dataset contains over 600,000 color digit
images coming from the house numbers in Google Street
View images. Some samples are listed in Figure [6| Among
these images, there are 73,257 images in the training set,
26,032 images in the testing set. Following the experimental
settings as described in [32], in which only 50, 100 and 200
samples along with their labels for each class are selected as
the training data for semi-supervised learning.

Figure 6: Samples from the SVHN dataset [43].

Facial Attribute Recognition Datasets. We also compare the
proposed SGGAN approach with the leading supervised deep
learning methods on facial attribute recognition problem with
the CelebFaces Attributes Dataset (CelebA) dataset [40] and
the Labeled Faces in the Wild-a (LFW-a) dataset [24].

The CelebA dataset [40] is a large-scale face attributes
dataset, which contains 202, 599 face images of 10,177 iden-
tities in the wild, each of which includes 5 landmark locations
and 40 binary attributes annotations. Among the 202, 599 face
images in total, 19,962 images are used as the testing set
and the others are used as the training and validation set,
respectively. In this article, we randomly select a small set
of images as the training set and the others as the testing set.
The LFWA dataset [24] has 13,233 images of 5, 749 identities.
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Figure 7: Samples from CelebA dataset [40].

Following the experimental settings as the previous work [40],

we employ 6,263 images of 2, 749 peoples as the training set
and the other 6,880 images of 3,000 peoples as the testing
set. When we train the SGGAN model, the labeled images are
randomly selected from the training set, and the final results
on testing error are averaged by 10 independent runnings. For
the CelebA dataset [40], the prediction threshold « is choose
on the validation set.

In all these datasets (except the LFWA dataset [24]]), we
train the model on the training set and select the model
trained with the lowest recognition error on the validation
set, and report the testing error with the selected training
model accordingly. For the LFWA dataset [24]], we follow the
experimental settings as described in [40].
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Figure 8: Samples from LFWA dataset [24].

B. Ablation Study

In this section, we justify the influence of different compo-
nents in our proposed SGGAN approach on the performance
of recognition errors. The aspects we investigate here include
the network self-growing route, the objective function of the
feature matching, the generated samples, and the comparison
with transfer learning approaches, etc. All these study is
evaluated on the training set of the CelebA dataset [40].
Network Self-Growing Route. In our SGGAN model, the
model is designed to “grow up” from a small one to a big
one. However, how to decide the route for our SGGAN model
to achieve better performance (i.e., lower recognition error) is
still a big problem. The routes for the model to “grow up” can
be very different. For example, the model can be directly grow
from a baby model to a junior model, or from a baby model
to a senior model, or from a baby model to a junior model
and finally to a senior model, etc. To th is end, we design a
series of experiment to validate the most suitable “grow up”
route for the proposed SGGAN model.

We compare the proposed SGGAN model with different
routes of “grow up” on the CelebA dataset [40]. The com-
parison is performed by using the “gender” attribute of 800
labeled images. The experimental routes are summarized in the
first three rows of the Table while symbol “,/” indicates
that the corresponding baby/junior/senior model is employed
as a part of the whole training model and “—” indicates that the
we skip the corresponding model. The order in models with
three models is to train the whole model from baby one, junior



one, to the senior one. From the last row of the Table one
can see that the SGGAN model with the route of “grow up”
along all the three models can achieve higher accuracy than
with the other routes. Besides, the SGGAN model “grow up”
with two models can achieve better performance than the SG-
GAN model with only one baby/junior/senior model. Similar
findings can be found in the experiments on other attributes of
the CelebA dataset [40] as well as on other datasets such as
LFWA [24]]. These results demonstrate that the network self-
growing strategy can effectively improve the image recognition
accuracy over the one with fixed single model. Specifically,
using all these three models can significantly improve the
recognition accuracy of the SGGAN model with only single
individual baby/junior/senior network.

Table III: The accuracy (%) of the proposed SGGAN
network with different self-growing routes by using the
“gender” attribute in the CelebA dataset [40].

Baby A Y

Junior — Vv - V4 - V4 vV

Senior - - 4 - v VA VA
Accuracy 802 85.1 84.6 867 885 89.1 89.6

Objective of Feature Matching. The work of Wasserstein
GAN [3]] discusses different distances between distributions
adopted by existing generative adversarial algorithms, and
show many of them are discontinuous, such as Jensen-Shannon
divergence [[17] and Total Variation [76], except for Wasser-
stein distance. The discontinuity makes the gradient descent
infeasible for training. Consequently, [34] show Wasserstein
GAN [3] is a special case of the MMD, and hence MMD also
has the advantages of being continuous and differentiable. We
adopt the powerful MMD metric to our work to stabilize the
training of generator.

We compare the different objective of the feature matching

step, i.e., the Maximum Mean Discrepancy (MMD) and the
¢, distance as we have mentioned in Section Since the
model collapse is a fundamental problem in the training of
GAN, we use MMD to stabilize the GAN. The results are
shown in Figure [9] from which one can see that the generator
trained with the MMD objective can achieve lower training
loss than that trained with ¢; distance after several epochs.
This demonstrates that MMD is more suitable than the ¢;
distance to be the loss objective function during the training
of the generator in GAN.
Convolution Block Transformation (CBT). Figure [I0] shows
that the recognition accuracy (%) of the SGGAN model trained
with the CBT technique are consistently higher than the model
trained without CBT in different epochs. This demonstrate
that CBT is more effective than its counterpart that simply
copies the weights in the shallow model and initializes the
newly added convolution-block layers randomly. This is due
to the reason that the simple “training without CBT” strategy
will wreck the weights in the shallow layers of the network.
And evidence our proposed CBT technique will make the
transfer of weights smoothly and hence preserve the function
of shallower model at the beginning of training.
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Figure 9: The loss function of the SGGAN model trained
with MMD v.s. with [; distance as the objective of feature
matching.
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Figure 10: The loss function of the SGGAN model trained
with the CBT v.s. without CBT during training.

Comparisons with Fine-tuned VGG and ResNet Networks.
In order to show the advantages of our algorithm on label
effectiveness, we compare our SGGAN model with the state-
of-the-art networks such as the VGG-16 network [53] and
the ResNet network [21] in the deep learning field. For the
two networks, we load the model provided by corresponding
authors pre-trained on the ImageNet dataset [12] (which con-
tains 1000 classes with 1.2 million images), and then carefully
fine-tune these networks on the training set of the CelebA
dataset [40]. The fine-tuning procedure can usually help the
original networks yield better performance than training those
networks on small dataset directly. The proposed SGGAN
model, the pre-trained VGG-16 and Resnet-50 networks are
all fine-tuned with different numbers (i.e., 800, 1600, 3200,
4800, 6400, 7200) of labeled images in the CelebA dataset [40]
with “gender” attribute in the comparison experiments. We
fine-tune the VGG-16 and ResNet-50 networks in a standard
manner as described in corresponding paper. When the training
set is of small scale, it is hard to train a very deep network
from scratch. And the most frequently employed technique
in literature is to fine-tune the off-the-shell networks, such
as the famous VGG network [53]]. We compare the proposed
SGGAN approach with the fine-tuned VGG-16 and ResNet-50



networks with different numbers of labeled training images.

The results on accuracy (%) are listed in Table from
which one can see that when the numbers of labeled training
images are 800, 1,600, 3,200, and 4,800, the proposed
SGGAN approach can achieve higher recognition accuracies
than the fine-tuned VGG-16 and ResNet-50 networks on the
CelebA dataset with the “gender” attribute. Similar results
can be found when we perform experiments on the other
attributes of the CelebA dataset or the other datasets. When the
numbers of the training samples increase to 6,400 and 7, 200,
the proposed SGGAN approach obtains slightly inferior (but
still comparable) performance to the VGG-16 and ResNet-50
networks. All these results demonstrate the competing ability
of the proposed SGGAN approach as a whole system over
the leading VGG and ResNet networks on image recognition
tasks such as face attribute recognition.

Table IV: Comparison with the VGG-16 and ResNet-50
networks fine-tuned with different numbers of labeled images
from the CelebA dataset [40]] with the “gender” attribute.

# of Labeled Image 800 1600 3200 4800 6400 7200
VGG16 [533] 893 924 948 959 976 98.1
resnet50 [21] 886 919 946 9.2 978 983

SGGAN 89.6 943 955 964 968 97.1

C. Comparison with state-of-the-art semi-supervised learning
approaches on image recognition

1) Problem Description: Image recognition problem is the
task of assigning one label to an input image from a fixed
set of categories. It is a fundamental problem in computer
vision community. Image recognition has a large variety of
practical applications, and is related to many other computer
vision tasks such as object detection and segmentation.

2) Comparison Methods: We compare the proposed SG-
GAN approach with other competing semi-supervised learn-
ing approaches such as the Ladder Network [48], which
proposed to train the ladder network simultaneously mini-
mize the sum of supervised and unsupervised cost functions
by back-propagation, avoiding the need for layer-wise pre-
training. And some leading GANs based approaches such as
CatGAN [54], which is based on an objective function that
trades-off mutual information between unlabeled examples and
their predicted categorical class distribution, against robustness
of the classifier to an adversarial generative model. And the
Improved GAN [52], which propose a technique called feature
matching to address the instability of GANs by specifying a
new objective for the generator to prevents it from overtraining
on the current discriminator. Instead of directly maximizing
the output of the discriminator, the new objective ¢; requires
the generator to generate data that matches the statistics of
the real data. We compare these competing methods on the
CIFAR10 dataset and the SVHN dataset [45]].

3) Results and Discussions: The experimental results are
shown in Table [V] and Table [VIl It can be observed from
Table [V] that we achieve competitive results with the state-
of-the-art on the two datasets. As the CIFAR10 dataset [28]],

the SVHN dataset [43] is used for validating semi-supervised
learning methods. Table |VI| shows the testing error for SVHN
experiment. One can see that the more labeled samples we use,
the better the recognition performance the proposed SGGAN
model will be.

Table V: Comparison test error with other semi-supervised
learning methods on CIFAR10 dataset. The results are
averaged by 10 runs. N/A is not available, which is not

report in their papers.

1000 2000 4000 8000

Ladder network [48] N/A N/A 20.4 N/A
CatGAN [54] N/A N/A 19.58 N/A
Improved GANs [52] 21.83  19.61 18.63 17.72
SGGAN 20.04 1843 15.65 16.51

Table VI: Comparison test error with other semi-supervised
learning methods on SVHN dataset. All experiments are
averaged by 10 runs.

500 1000 2000

DGN [26] 36.02 N/A N/A

Virtual Adversarial [43] 24.63 N/A N/A
Auxiliary Deep Generative Model [41]  22.86 N/A N/A
Skip Deep Generative Model [41] 16.61 N/A N/A
Improved GANSs [52] 18.44 8.11 6.16
SGGAN 17.31  6.53 5.13

D. Comparisons with supervised learning approaches on face
attribute recognition

1) Problem Description: Face attributes recognition is to
get descriptive attributes on faces (gender, sex, the presence
of sunglasses etc). Kumar et al. [32] first introduced them as
mid-level features for face verification [31]] and since then have
attracted much attention. The recognition of face attributes has
an important role in computer vision applications due to their
detailed description of human faces. The applications of it
include suspect identification [27], face verification [32] and
face retrieval [31]. Predicting face attributes in the wild in
challenging due to complex face variations. In facial attribute
recognition field, labeled data are either expensive or unavail-
able to obtain. Consequently, the large number of unlabeled
face images available on the Internet have attracted increasing
interests of researchers to tackle facial attribute recognition
problem by semi-supervised learning (SSL) [6] methods.

2) Comparisons methods: The proposed method is com-
pared with four competitive fully-supervised approaches in-
cluding FaceTracer [30], PANDA-w [74], LNet+ANet(w/o0)
and LNet+ANet [74] on the two datasets mentioned above.
Compared with the fully-supervised learning methods, our
self-growing approach only uses 7200 labeled images. The
LFWA dataset is a standard benchmark for face attribute
classification. However, the number of training and validation
data of LFWA data set is small, which made it not suitable to
our algorithm. So we report two patterns of result on LFWA
dataset. The first one uses all the training/validation data in
the LFWA dataset and the other uses the data of CelebA as



Table VII: Comparison with supervised learning methods.
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Face Tracer 85 | 76 | 78 | 76 | 89 | 88 | 64 | 74 | 70 | 80 | 81 60 | 80 | 86 | 88 | 98 | 93 | 90 | 85 84
PANDA-w 82 | 73 | 77 | 71 92 | 89 | 6l 70 | 74 | 81 77 169 | 76 | 82 | 85 | 94 | 86 | 88 | 84 | 80
CelebA | LNet+ANet(w/0) 88 | 74 | 77 | 73 | 95 | 92 | 66 | 75 | 84 | 91 80 | 78 | 85 | 86 | 88 | 96 | 92 | 93 | 85 | 84
LNet+ANet 91 | 79 | 81 | 79 | 98 | 95 | 68 | 78 | 88 | 95 | 84 | 80 | 90 | 91 | 92 | 99 | 95 | 97 | 90 | 87
Virtual GAN 84 | 73 | 75 | 71 | 92 | 90 | 62 | 74 | 80 | 90 | 77 | 76 | 82 | 85 | 89 | 92 | 88 | 91 85 | 80
Auxiliary GAN 85 | 73 | 75 | 74 | 93 | 91 | 63 | 75 | 83 | 91 80 | 77 | 83 | 84 | 90 | 93 | 91 | 90 | 86 | 83
Cat GAN 87 | 72 | 76 | 72 | 93 | 92 | 62 | 77 | 81 | 91 | 78 | 75 | 85 | 8 | 90 | 93 | 89 | 91 | 84 | 83
Skip GAN 88 | 75 | 77 | 75| 96 | 92 | 64 | 78 | 84 | 92 | 81 78 | 86 | 87 | 91 96 | 92 | 93 | 87 | 84 | 95
Improved GAN 87 | 76 | 78 | 76 | 95 | 91 | 65 | 79 | 85 | 91 82 | 79 | 87 | 88 | 91 | 95 | 90 | 92 | 88 | 86 | 93
SGGAN 9 | 77 | 79 | 77 | 98 | 94 | 66 | 80 | 86 | 94 | 83 | 80 | 88 | 89 | 93 | 98 | 94 | 95 | 89 | 86 | 97
FaceTracer 70 | 67 | 71 | 65 | 77 | 72 | 68 | 73 | 76 | 88 | 73 | 62 | 67 | 67 | 70 | 90 | 69 | 78 | 88 | 77
PANDA-w 64 | 63 | 70 | 63 | 82 | 79 | 64 | 71 | 78 | 87 | 70 | 65 | 63 | 65 | 64 | 84 | 65 | 77 | 86 | 75 | 86
LFWA LNets+ANet(w/o) | 81 78 | 80 | 79 | 83 | 84 | 72 | 76 | 86 | 94 | 70 | 73 | 79 | 70 | 74 | 92 | 75 | 81 91 83 | 91
LNets+ANet 84 | 82 | 83 | 83 | 8 | 88 | 75 | 81 | 90 | 97 | 74 | 77 | 82 | 73 | 78 | 95 | 78 | 84 | 95 | 88 | 94
Virtual GAN 80 | 79 | 77 | 81 82 | 81 | 71 | 77 | 84 | 91 | 73 | 74 | 78 | 70 | 74 | 89 | 76 | 80 | 89 | 84 | 88
Auxiliary GAN 81 80 | 78 | 82 | 83 | 82 | 72 | 78 | 85 | 92 | 74 | 75 | 79 | 71 | 75 | 90 | 77 | 81 | 90 | 85 | &9
Cat GAN 80 | 81 79 | 81 82 | 83 | 73 | 79 | 86 | 91 75 176 | 80 | 73 | 76 | 89 | 79 | 82 | 89 | 83 | 87
Skip GAN 82 | 83 | 81 83 | 8 | 83 | 73 | 81 88 | 93 | 75 | 78 | 82 | 72 | 78 | 91 | 90 | 82 | 93 | 80 | 90
Improved GAN 83 82 | 80 | 84 | 85 84 | 74 | 80 | 87 | 94 | 76 | 77 81 73077 | 92 | 79 | 83 | 92 | 87 | 91
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Face Tracer 87 | 91 82 | 90 | 64 | 83 | 68 | 76 | 84 | 94 | 89 | 63 | 73 | 73 | 89 | 89 | 68 | 86 | 80 | 81
PANDA-w 82 | 83 | 79 | 87 | 62 | 84 | 65 | 82 | 81 | 90 | 89 | 67 | 76 | 72 | 91 | 88 | 67 | 88 | 77 | 719
CelebA | LNet+ANet(w/0) 86 | 91 | 77 | 92 | 63 | 87 | 70 | 85 | 87 | 91 | 88 | 69 | 75 | 78 | 96 | 90 | 68 | 8 | 83 | 83
LNet+ANet 92 | 95 | 81 |95 |66 | 91 | 72 | 89 [ 90 | 96 | 92 | 73 | 80 | 82 | 99 | 93 | 71 | 93 | 87 | 87
Virtual GAN 86 | 88 | 77 | 88 | 59 | 85 | 68 | 82 | 83 | 89 | 85 | 69 | 73 | 74 | 93 | 87 | 68 | 86 | 82 | 81
Auxiliary GAN 87 | 89 | 78 | 89 | 60 | 86 | 69 | 83 | 84 | 90 | 86 | 70 | 74 | 75 | 94 | 88 | 69 | 87 | 83 | 82
Cat GAN 88 | 88 | 77 | 88 | 61 87 | 68 | 82 | 85 | 91 | 87 | 71 | 75 | 74 | 93 | 87 | 68 | 76 | 84 | 83
Skip GAN 89 | 91 80 | 91 62 | 88 | 71 85 | 86 | 92 | 88 | 72 | 76 | 77 | 96 | 90 | 71 89 | 85 | &4
Improved GAN 90 | 90 | 81 | 90 | 63 | 89 | 72 | 84 | 87 | 91 | 87 | 73 | 77 | 76 | 95 | 91 | 72 | 88 | 84 | 85
SGGAN 91 | 93 | 82 | 93 | 64 | 90 | 73 | 87 | 88 | 94 | 90 | 74 | 78 | 79 | 98 | 92 | 73 | 91 | 87 | 86
FaceTracer 77 1 83 | 73 | 69 | 66 | 70 | 74 | 63 | 70 | 71 78 | 67 | 62 | 88 | 75 87 | 81 71 80 | 74
PANDA-w 74 | 77 | 68 | 63 | 64 | 64 | 68 | 61 | 64 | 68 | 77 | 68 | 63 | 85 | 78 | 83 | 79 | 70 | 76 | 71
LFWA LNets+ANet(w/o) | 78 | 87 | 77 | 75 | 71 81 | 76 | 81 | 72 | 72 | 88 | 71 | 73 | 90 | 84 | 92 | 83 | 76 | 82 | 79
LNets+ANet 82 | 92 | 81 79 | 74 | 84 | 80 | 85 | 78 | 77 | 91 | 76 | 76 | 94 | 88 | 95 | 88 | 79 | 86 | 84
Auxiliary GAN 78 | 86 | 78 | 77 | 71 T8 | 76 | 82 | 75 | 76 | 85 | 75 | 74 | 88 | 84 | 91 85 | 76 | 78 | 80
Auxiliary GAN 79 | 87 |79 | 78 | 72 |79 | 77 | 83 | 76 | 77 | 86 | 76 | 75 | 89 | 85 | 92 | 86 | 77 | 79 | 81
Cat GAN 80 | 88 | 78 | 77 | 73 | 78 | 78 | 82 | 77 | 78 | 85 | 75 | 76 | 88 | 8 | 91 | 87 | 78 | 78 | 81
Skip GAN 81 89 | 81 80 | 74 | 81 79 | 8 | 78 | 79 | 88 | 78 | 77 | 91 87 | 94 | 88 | 79 | 81 83
Improved GAN 82 | 88 | 82 | 81 | 73 | 80 | 80 | 84 | 79 | 80 | 87 | 77 | 78 | 90 | 88 | 93 | 89 | 80 | 82 | 83
SGGAN 83 | 91 | 83 | 8 | 76 | 83 | 81 | 87 | 8 | 81 | 90 | 80 | 79 | 93 | 89 | 96 | 90 | 81 | 83 | 85

the unlabeled data pool. Our algorithm runs ten times, and we
report the average result.

3) Results and Discussions: The comparison results on
CelebA and LFWA datasets are shown in Table from
which one can see that the proposed SGGAN approach achieve
comparable performance on the recognition accuracy when
compared with the state-of-the-art supervised learning based
deep learning methods. For example, the proposed SGGAN
trained with the MMD objective and the CBT technique (i.e.,
SGGAN-MMD-CBT) achieves an accuracy of 86.22%, which
is only slightly inferior to the LNet+ANet methods, but still
superior to all the other methods. Note that the proposed
SGGAN-MMD-CBT approach achieves such promising per-

formance with only 4% labeled training images.

E. Results on the LFWA dataset using external unlabeled data

The LFWA dataset is a standard benchmark for face attribute
recognition. However, the number of training images in LFWA
dataset is small (6,263 images), which made it not well
suitable for our algorithm. In order to achieve semi-supervised
learning on LFWA dataset. We use all training images in
CelebA dataset as the unlabeled pool for our algorithm to
train a SGGAN on LFWA dataset. During training, the labels
of CelebA dataset was not used. Table show the results,
in the first row of the table, the “LFWA (Outer data)” shows
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Figure 11: The generated samples of the baby, junior, and senior generators of the proposed SGGAN approach.

the result of SGGAN using CelebA as the unlabeled pool
and “LFWA” is the result of SGGAN only use the images in
LFWA. From the table one can see a large number of unlabeled
images will improve around 6% points for LFWA dataset.
Which also demonstrate the effectiveness of our algorithm for
the semi-supervised image recognition tasks.

Table VIII: Recognition accuracy (%) of SGGAN with
different component settings on the LFWA dataset [24] by
using unlabeled data.

Methods LFWA (Outer data) LFWA
Baseline: Feature Matching 81.29 78.56
SGGAN-MMD 83.41 78.53
SGGAN-CBT 84.27 78.57
SGGAN-MMD-CBT 85.32 78.81

F. Generated Samples

Feature matching is proved to help the GANs work much
better if the goal is to obtain a strong classifier using the
approach to semi-supervised learning [52]. It works well for
semi-supervised learning approaches. However, the samples
generated by the generator during semi-supervised learning
using feature matching do not look visually appealing. The
reason appears to be that the human visual system is strongly
attuned to image statistics that can help infer what class of ob-
ject an image represents, while it is presumably less sensitive
to local statistics that are less important for interpretation of
the image. This is supported by the high correlation between
the quality reported by human annotators and the Inception
score developed in the work [52]].

We show the generated samples in Figure [T} from which
one can see that the junior generator can produce samples
with better image quality than those generated by the baby
one, and the senior generator can further enhance the per-
formance of the image quality of the produced samples than
those generated by the junior one. This demonstrate that the
proposed SGGAN network with “grow up” strategy can indeed
make better generation during the training process, and hence
implicitly help improve the performance of the GAN model
on the recognition tasks.

V. CONCLUSION

In this paper, we propose a simple yet effective semi-
supervised self-growing generative adversarial network (SG-
GAN) for image recognition. We propose a convolution-block-
transformation (CBT) preservation technique to promote the
network self-growing and obtain deeper network. Meanwhile,
we leverage a maximum mean discrepancy (MMD) metric to
stabilize and improve the training of SGGAN. The exper-
iments on CIFARI0 and SVHN dataset demonstrate effec-
tiveness our methods. Extensive experiments on the CelebA
and LFWA demonstrate the generalization of our method.
With only around 4% labeled training data, our SGGAN
can achieve comparable performance with the fully-supervised
convolutional neural network.
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