Skip to main content
Log in

Texture image retrieval using hybrid directional Extrema pattern

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new descriptor Hybrid Directional Extrema Pattern (HDEP) for the retrieval of texture images by integrating the concept of Weight Difference Directional Local Extrema Pattern (WD_DLEP) and Directional Local Extrema Pattern (DLEP) is proposed. The texture patterns are computed for four principle directions i.e., 0°, 45°, 90°, 135°. The proposed approach considers the difference between central pixel and corresponding neighboring pixels in the specified directions. This difference is used as weight in next stage. This weight is compared with a user-defined threshold to determine the value of strong bits in a feature vector. Experimental evaluation on three benchmark datasets (Brodatz, VisTex and Describable Textures Dataset) illustrates the better performance of proposed system with the other state-of-the-art techniques on two basic parameters i.e., average retrieval rate and time. The proposed approach is evaluated against various state-of-the-art texture image-retrieval systems based on local binary pattern, directional local extrema pattern, local tetra pattern, block-based local binary pattern, center-symmetric local binary pattern and wavelet. Significant improvement has been achieved in image retrieval performance due to assignment of weight in the pattern generation process. Further, the proposed approach is capable of differentiating different texture patterns more efficiently because it uses magnitude of pixel differences to determine the value of current pixel rather than the sign of pixel differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bober M (2001) MPEG-7 visual shape descriptors. IEEE Trans Circuits Syst Video Technol 11(6):716–719

    Article  Google Scholar 

  2. Brodatz P (1996) Textures: a photographic album for artists and designers. Dover, New York

    Google Scholar 

  3. Camalan S, Niazi MKK, Moberly AC, Teknos T, Essig G, Elmaraghy C, Gurcan MN (2020) OtoMatch: content-based eardrum image retrieval using deep learning. Plos One 15(5). https://doi.org/10.1371/journal.pone.0232776

  4. Chang SK, Hsu A (1992) Image information systems, where do we go from here? IEEE Trans Knowl Data Eng 4(5):431–442

    Article  Google Scholar 

  5. Chu K, Liu G-H (2020) Image retrieval based on a multi-integration features model. Math Probl Eng 2020:1–10. https://doi.org/10.1155/2020/1461459

    Article  Google Scholar 

  6. Deselaers T, Weyan T D Keyers (2005) FIRE in ImageCLEF 2005: Combining Content Based Image Retrieval with Textual Information Retrieval, Working Notes of CLEF Workshop, Austria

  7. Dinakaran B, Annapurna J, Kumar ACh (2010) Interactive Image Retrieval Using Text and Image Content. Cybernetics Inf Technol 10(3)

  8. Do MN, Vetterli M (2002) Wavelet-based texture retrieval using generalized Gaussian density and Kullback-leibler distance. IEEE Trans Image Process 11(2):146–158

    Article  MathSciNet  Google Scholar 

  9. Feng D, Siu WC, Zhang HJ (2003) Fundamentals of content-based image retrieval, in multimedia information retrieval and management—technological fundamentals and applications. Springer, New York, pp 1–26

    Google Scholar 

  10. Flickner M, Sawhney H, Niblack W (1995) Query by image and video content: the QBIC system. IEEE Computer 28(9):23–32

    Article  Google Scholar 

  11. Gao L, Li X, Song J, Shen HT (2020) Hierarchical LSTMs with adaptive attention for visual captioning. IEEE Trans Pattern Anal Mach Intell 42(5):1112–1131

    Google Scholar 

  12. Gemert JC (2003) Retrieving images as text Master’s thesis, University van Amsterdam

  13. Han J, Ma K (2002) Fuzzy color histogram and its use in color image retrieval. IEEE Trans Image Process 11(8):944–952

    Article  Google Scholar 

  14. Heikkil M, Pietikainen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42:425–436

    Article  Google Scholar 

  15. Huang J, Kuamr S, Mitra M (1997) Image indexing using colour correlogram. In Proc CVPR:762–765

  16. Kingsbury NG (1999) Image processing with complex wavelet. Philos Trans R Soc Lond, Ser A, Contain Pap Math Phys Character 357:2543–2560

    Article  Google Scholar 

  17. Kokare M, Biswas PK, Chatterji BN (2005) Texture image retrieval using new rotated complex wavelet filter. IEEE Trans Syst Man Cybernetics 35(6):1168–1178

  18. Krommweh J (2010) Tetrolet transform: a new adaptive Haar wavelet algorithm for sparse image representation. J Vis Commun Image Represent 21(4):364–374

    Article  Google Scholar 

  19. Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18:837–842

    Article  Google Scholar 

  20. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  21. Mokhtarian F, Mackworth AK (1992) A theory of multiscale, curvature-based shape representation for planar curves. IEEE Trans Pattern Anal Mach Intell 14:789–805

    Article  Google Scholar 

  22. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local Extrema patterns: a new descriptor for content based image retrieval. Int J Multimed Inf Retrieval 1:191–203

    Article  Google Scholar 

  23. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  Google Scholar 

  24. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 291:51–59

    Article  Google Scholar 

  25. Pi MH, Tong CS, Choy SK, Zhang H (2006) A fast and effective model for wavelet subband histograms and its application in texture image retrieval. IEEE Trans Image Process 15(10):3078–3088

    Article  Google Scholar 

  26. Qayyum A, Anwar SM, Awais M, Majid M (2017) Medical image retrieval using deep convolutional neural network. Neurocomputing 266:8–20

    Article  Google Scholar 

  27. Raghuwanshi G, Tyagi V (2016) Texture image retrieval using adaptive Tetrolet transforms. Digital Signal Process 48:50–57

    Article  MathSciNet  Google Scholar 

  28. Raghuwanshi G, Tyagi V (2018) Texture image retrieval based on block level directional local extrema patterns using tetrolet transform. Advances in Computing and Data Sciences. ICACDS 2018. Communications in Computer and Information Science, vol 905. Springer, Singapore. https://doi.org/10.1007/978-981-13-1810-8_45

  29. Reddy AH, Chandra NS (2015) Local oppugnant color space extrema patterns for content based natural and texture image retrieval. Int J Electroni Commun (AEÜ) 2014 69(1):290–298

    Article  Google Scholar 

  30. Rui Y, Huang TS (1999) Image retrieval: current techniques, promising directions, and open issues. J Vis Commun Image Represent 10:39–62

    Article  Google Scholar 

  31. Shyu CR, Brodley CE, Kak AC, Kosaka A, Aisen A, Broderick L (1998) Local versus global features for content based image retrieval. IEEE Workshop on Content-Based Access of Image and Video Libraries, pp 30–34

  32. Singh M, Gupta PK, Tyagi V, Flusser J, Oren T, Kashyap R (2019) Advances in computing and data sciences, ICACDS

  33. Smeulders W, Arnold M, Marcel W, Santini S, Gupta A, Jain R (2000) Content-Based Image Retrieval at the End of the Early Years. IEEE Trans Pattern Anal Mach Intell 22:1349–1380

    Article  Google Scholar 

  34. Song J, Zhang H, Li X, Gao L, Wang M, Hong R (2018) Self-supervised video hashing with hierarchical binary auto-encoder. IEEE Trans Image Process 7(27):3210–3221

    Article  MathSciNet  Google Scholar 

  35. Song J, He T, Gao L, Xu X, Hanjalic A, Shen HT (2020) Unified binary generative adversarial network for image retrieval and compression. Int J Comput Vis 128:2243–2264. https://doi.org/10.1007/s11263-020-01305-2

    Article  MathSciNet  Google Scholar 

  36. Takala V, Ahonen T, Pietikainen M (2005) Block-based techniques for image retrieval using local binary patterns. SCIA, LNCS 3450:882–891

    Google Scholar 

  37. Tyagi V (2017) “Content-based image retrieval: ideas, influences, and current trends”, Springer: Singapore. https://doi.org/10.1007/978-981-10-6759-4

  38. Tyagi V (2018) “Understanding digital image processing”, CRC Press. https://doi.org/10.1201/9781315123905

  39. Vassilieva NS (2009) Content-based image retrieval techniques. Program Comput Softw 35(3):158–180

    Article  MathSciNet  Google Scholar 

  40. Wei Z, Liu G-H (2020) Image retrieval using the intensity variation descriptor. Math Probl Eng 20:1–12

    Google Scholar 

  41. Wei Z, Liu G-H (2020) Image Retrieval Using the Intensity Variation Descriptor. Mathematical Prob Eng. https://doi.org/10.1155/2020/6283987

  42. Yao C-H, Chen S-Y (2003) Retrieval of translated, rotated and scaled color textures. Pattern Recogn 36:913–929

    Article  Google Scholar 

  43. Yuan B-H, Liu G-H (2020) Image retrieval based on gradient-structures histogram. Neural Comput & Applic 32:11717–11727

    Article  Google Scholar 

  44. Zand M, Doraisamy S, Halin AA, Mustaffa MR (2015) Texture classification and discrimination for region-based image retrieval. J Vis Commun Image R 26:305–316

    Article  Google Scholar 

  45. Zhang D, Islam MM, Lu G, Sumana IJ (2012) Rotation invariant curvelet features for region based image retrieval. Int J Comput Vis 98(2):187–201

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Tyagi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghuwanshi, G., Tyagi, V. Texture image retrieval using hybrid directional Extrema pattern. Multimed Tools Appl 80, 2295–2317 (2021). https://doi.org/10.1007/s11042-020-09618-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09618-7

Keywords

Navigation