Skip to main content
Log in

Progressive path tracing with bilateral-filtering-based denoising

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Path tracing can generate realistic images based on virtual 3D scene models, but the images are prone to be noisy. To solve this problem, we developed a novel denoising algorithm framework. Firstly, according to the relative mean square error of the noisy pixels, we introduced a progressive adaptive sampling strategy to optimize the distribution of samples. Next, to enhance the quality of the final reconstructed images, we designed an improved bilateral filtering algorithm with use of the gradient feature to obtain the noise-free images. Experimental results demonstrate that our framework outperforms the state-of-the-art path tracing denoising methods in terms of the visual quality, numerical error , and time cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bako S, Vogels T, Mcwilliams B, Meyer M, Novak J, Harvill A, Sen P, Derose T, Rousselle F (2017) Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Transactions on Graphics(TOG) 36(4):14. Article 97

    Google Scholar 

  2. Bako S, Meyer M, Derose T, Sen P (2019) Offline deep importance sampling for Monte Carlo path tracing. Computer Graphics Forum 38(7):527–542

    Article  Google Scholar 

  3. Bauszat P, Eisemann M, Eisemann E, Magnor M (2015) General and Robust Error Estimation and Reconstruction for Monte Carlo Rendering. Computer Graphics Forum 34(2):597–608

    Article  Google Scholar 

  4. Bitterli B, Rousselle F, Moon B, Iglesiasguitian JA, Adler D, Mitchell K, Jarosz W, Novak J (2016) Nonlinearly weighted first-order regression for denoising Monte Carlo renderings. Computer Graphics Forum 35(4):107–117

    Article  Google Scholar 

  5. Bolin MR, Meyer GW (1998) A perceptually based adaptive sampling algorithm. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques (SIGGRAPH ’98). Association for Computing Machinery, p 299–309

  6. Chaitanya CRA, Kaplanyan AS, Schied C, Salvi M, Lefohn A, Nowrouzezahrai D, Aila T (2017) Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics(TOG) 36(4):12. Article 98

    Google Scholar 

  7. Cook RL, Porter TK, Carpenter L (1988) Distributed ray tracing. In: Proceedings of the 11th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’84). Association for Computing Machinery, p 137–145

  8. Dammertz H, Sewtz D, Hanika J, Lensch HP (2010) Edge-avoiding À-Trous wavelet transform for fast global illumination filtering. In: Proceedings of the Conference on High Performance Graphics (HPG ’10). Eurographics Association, p 67–75

  9. Egan K, Tseng Y, Holzschuch N, Durand F, Ramamoorthi R (2009) Frequency analysis and sheared reconstruction for rendering motion blur. In: ACM SIGGRAPH 2009 papers (SIGGRAPH ’09). Association for Computing Machinery, Article 93, pp 13

  10. Fascione L, Hanika J, Fajardo M, Christensen P, Burley B, Brian G (2017) Path tracing in production - Part 1: Production Renderers. In: ACM SIGGRAPH 2017 Courses (SIGGRAPH ’17). Association for Computing Machinery, Article 13, pp 1–39

  11. Hachisuka T, Jarosz W, Weistroffer RP, Dale K, Humphreys G, Zwicker M, Jensen HW (2008) Multidimensional adaptive sampling and reconstruction for ray tracing. In: ACM SIGGRAPH 2008 papers (SIGGRAPH ’08). Association for Computing Machinery, Article 33, pp 10

  12. Han S, Lee K (2017) Implementation of random parameter filtering using OpenMP. In: 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT), p 1–4

  13. Howard RM (2019) Dual Taylor series, spline based function and integral approximation and applications. Mathematical & Computational Applications 24(2):35

    Article  MathSciNet  Google Scholar 

  14. Kalantari NK, Sen P (2013) Removing the Noise in Monte Carlo Rendering with General Image Denoising Algorithms. Computer Graphics Forum 32 (2):93–102

    Article  Google Scholar 

  15. Kalantari NK, Bako S, Sen P (2015) A machine learning approach for filtering Monte Carlo noise. ACM Transactions on Graphics(TOG) 34 (4):12. Article 122

    Google Scholar 

  16. Keller A, Fascione L, Fajardo M, Georgiev I, Christensen P, Hanika J, Eisenacher C, Nichols G (2015) The path tracing revolution in the movie industry. In: ACM SIGGRAPH 2015 Courses (SIGGRAPH ’15). Association for Computing Machinery, Article 24, pp 1–7

  17. Lee ME, Render RA, Uselton SP (1985) Statistically optimized sampling for distributed ray tracing. In: Proceedings of the 12th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’85). Association for Computing Machinery, p 61–68

  18. Li T, Wu Y, Chuang Y (2012) SURE-based optimization for adaptive sampling and reconstruction. ACM Transactions on Graphics(TOG) 31 (6):9. Article 194

    Google Scholar 

  19. Liu Y, Zheng C, Zheng Q, Yuan H (2018) Removing Monte Carlo noise using a Sobel operator and a guided image filter. The Visual Computer 34(4):589–601

    Article  Google Scholar 

  20. Mitchell DP (1987) Generating antialiased images at low sampling densities. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’87). Association for Computing Machinery, p 65–72

  21. Mitchell DP (1991) Spectrally optimal sampling for distribution ray tracing. In: Proceedings of the 18th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’91). Association for Computing Machinery, p 157–164

  22. Moon B, Carr N A, Yoon S (2014) Adaptive rendering based on weighted local regression. In: ACM SIGGRAPH 2014 Talks (SIGGRAPH ’14). Association for Computing Machinery, Article 67, pp 14

  23. Moon B, Mcdonagh S, Mitchell K, Gross M (2016) Adaptive polynomial rendering. ACM Transactions on Graphics(TOG) 35(4):10. Article 40

    Google Scholar 

  24. Overbeck RS, Donner C, Ramamoorthi R (2009) Adaptive wavelet rendering. In: ACM SIGGRAPH Asia 2009 papers (SIGGRAPH Asia ’09). Association for Computing Machinery, Article 140, pp 12

  25. Pharr M, Humphreys G (2016) Physically based rendering: From theory to implementation 3rd, 1–1167. Morgan Kaufmann:USA

  26. Paris S, Durand F (2009) A fast approximation of the bilateral filter using a signal processing approach. Int J Comput Vis 81(1):24–52

    Article  Google Scholar 

  27. Rousselle F, Knaus C, Zwicker M (2011) Adaptive sampling and reconstruction using greedy error minimization. In Proceedings of the 2011 SIGGRAPH Asia Conference (SA ’11). Association for Computing Machinery, Article 159, pp 12

  28. Rousselle F, Knaus C, Zwicker M (2012) Adaptive rendering with non-local means filtering. ACM Transactions on Graphics(TOG) 31(6):11. Article 195

    Google Scholar 

  29. Rousselle F, Manzi M, Zwicker M (2013) Robust denoising using feature and color information. Computer Graphics Forum 32(7):121–130

    Article  Google Scholar 

  30. Santos JD, Sen P, Oliverira MM (2018) A framework for developing and benchmarking sampling and denoising algorithms for Monte Carlo rendering. The Visual Computer 34(6):765–778

    Article  Google Scholar 

  31. Schied C, Kaplanyan A, Wyman C, Patney A, Chaitanya CRA, Burgess J, Liu S, Dachsbacher C, Lefohn A, Salvi M (2017) Spatiotemporal variance-guided filtering: real-time reconstruction for path-traced global illumination. In: Proceedings of High Performance Graphics (HPG ’17), Association for Computing Machinery, Article 2, pp 1–12

  32. Schied C, Peters C, Dachsbacher C (2018) Gradient estimation for real-time adaptive temporal filtering. In: Proceedings of the ACM on Computer Graphics and Interactive Techniques, Article 24 pp 16

  33. Sen P, Darabi S (2012) On filtering the noise from the random parameters in Monte Carlo rendering. ACM Transactions on Graphics(TOG) Article 18:15

  34. Sen P, Zwicker M, Rousselle F, Yoon S, Kalantari NK (2015) Denoising your Monte Carlo renders: recent advances in image-space adaptive sampling and reconstruction. In: ACM SIGGRAPH 2015 Courses (SIGGRAPH ’15). Association for Computing Machinery, Article 11 pp 255

  35. Soler C, Subr K, Durand F, Holzschuch N, Sillion FX (2009) Fourier depth of field. ACM Transactions on Graphics(TOG) 28(2):12. Article 18

    Google Scholar 

  36. Vogels T, Rousselle F, Mcwilliams B, Rothlin G, Harvill A, Adler D, Meyer M, Novak J (2018) Denoising with Kernel prediction and asymmetric loss functions. ACM Transactions on Graphics(TOG) 37(4):15. Article 124

    Google Scholar 

  37. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4):600–612

    Article  Google Scholar 

  38. Zwicker M, Jarosz W, Lehinen J, Moon B, Ramamoorthi R, Rousselle F, Sen P, Soler C, Yoon S (2015) Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Computer Graphics Forum 34 (2):667–681

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported partially by the National Natural Science Foundation of China under Grant U19A2063, partially by the Jilin Provincial Science & Technology Development Program of China under Grants 20170101005JC, 20180519012JH and 20190302113GX, partially by the 13th Five-year Science & Technology Research Program of Jilin Provincial Department of Education under Grant JJKH20200792KJ, and partially by Jilin provincial industrial innovation funds under Grant 2016C091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyi Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Q., Chen, C. & Li, Z. Progressive path tracing with bilateral-filtering-based denoising. Multimed Tools Appl 80, 1529–1544 (2021). https://doi.org/10.1007/s11042-020-09650-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09650-7

Keywords

Navigation