Skip to main content
Log in

Parallel thinning and skeletonization algorithm based on cellular automaton

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a parallel image thinning algorithm and a skeletonization algorithm based on cellular automaton (CA). Cellular automaton is a parallel computation model and a non-linear dynamical system. In this paper, each image pixel is identified as a cell of CA and the change of cell depends on the current state of itself and the state of its neighbors. In a binary image, this paper assumes that the objects (white pixel) are preys which are surrounded by many ants (every black pixels). The movement of ants is controlled by cellular automation. The ants gnaw preys until the preys (objects) become skeleton. The proposed parallel skeletonization algorithm can produce a traditional skeleton with a thin line located in the center of object, and the proposed thinning algorithm can produce a new kind of skeleton which is named as the ants-gnawing skeleton. The computation of ants-gnawing skeleton is faster than the traditional skeleton while it contains more the structural features of image. Benefiting from the properties of cellular automation, the proposed thinning algorithm does not change the basic geometry structure of image, and it is invariant for image rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aslan C, Erdem A, Erdem E, Tari S (2008) Disconnected skeleton: shape at its absolute scale. IEEE Trans Pattern Anal Mach Intell 30(12):2188–2203

    Google Scholar 

  2. Aurenhammer F (1991) Voronoi diagramsa survey of a fundamental geometric data structure. Acm Computing Surveys 23(3):345–405

    Google Scholar 

  3. Bai X, Latecki LJ, Liu WY (2007) Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans Pattern Anal Mach Intell 29 (3):449–62

    Google Scholar 

  4. Bidlo M (2016) On routine evolution of complex cellular automata. IEEE Trans Evol Comput 20(5):742–757

    Google Scholar 

  5. Blum H, Nagel RN (1978) Shape description using weighted symmetric axis features. Pattern Recogn 10(3):167–180

    MATH  Google Scholar 

  6. Bouaynaya N, Charif-Chefchaouni M, Schonfeld D (2006) Spatially variant morphological restoration and skeleton representation. IEEE Trans Image Process 15(11):3579–3591

    Google Scholar 

  7. Brandt JW, Algazi VR (1992) Continuous skeleton computation by voronoi diagram<î. Cvgip Image Understanding 55(3):329–338

    MATH  Google Scholar 

  8. By O (2010) Hierarchic voronoi skeletons. Pattern Recogn 28 (3):343–359

    Google Scholar 

  9. Chang HH, Yan H (1996) Skeletonization of binary digital patterns using a fast euclidean distance transformation. Opt Eng 35(3):1003–1008

    Google Scholar 

  10. Chen P, Lin CL, Chern IL (2013) A perfect match condition for point-set matching problems using the optimal mass transport approach. Siam J Imaging Sci 6(2):730–764

    MathSciNet  MATH  Google Scholar 

  11. Choi WP, Lam KM, Siu WC (2003) Extraction of the euclidean skeleton based on a connectivity criterion. Pattern Recogn 36(3):721–729

    MATH  Google Scholar 

  12. Delgadofriedrichs O, Robins V, Sheppard A (2015) Skeletonization and partitioning of digital images using discrete morse theory. IEEE Trans Pattern Anal Mach Intell 37(3):654–666

    Google Scholar 

  13. Du H, Ma L, Li G, Wang S (2020) Low-rank graph preserving discriminative dictionary learning for image recognition. Knowl-Based Syst 187:104823

    Google Scholar 

  14. Fang Z, Xiao Z, Lei G, Wu J, Xu Z, Wang D, Xi J (2015) Skeleton extraction based on anisotropic partial differential equation. Optik - Int J Light Elect Opt 126(23):3692–3697

    Google Scholar 

  15. Gonzalez RC, Woods RE, Eddins SL (2007) Digital image processing using MATLAB Pearson/Prentice Hall

  16. Jin D, Iyer KS, Cheng C, Hoffman EA, Saha PK (2015) A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths. Pattern Recogn Lett 76:32–40

    Google Scholar 

  17. Kaur I, Mentrelli A, Bosseur F, Filippi JB, Pagnini G (2016) Turbulence and fire-spotting effects into wild-land fire simulators. Commun Nonlinear Sci Numer Simul 39:300–320

    MathSciNet  MATH  Google Scholar 

  18. Lam L, Lee SW, Suen CY (1992) Thinning methodologies. IEEE Trans Pattern Anal Mach Intell 14(9):869–885

    Google Scholar 

  19. Latecki LJ, Lakamper R (1999) Convexity rule for shape decomposition based on discrete contour evolution. Comput Vision Image Understand 73(3):441–454

    Google Scholar 

  20. Leymarie F, Levine M (1992) Simulating the grassfire transform using an active contour model. IEEE Trans Pattern Anal Mach Intell 14(1):56–75

    Google Scholar 

  21. Nayak DR, Patra PK, Mahapatra A (2014) A survey on two dimensional cellular automata and its application in image processing. Comput Sci 66 (1):78–87

    Google Scholar 

  22. Pei L, Liu X, Min T, Xin L (2017) An extended target tracker based on structural appearance and improved distribution fields for different scenarios. Optik - Int J Light Elect Opt 143:26–34

    Google Scholar 

  23. Rosin PL (2006) Training cellular automata for image processing. IEEE Trans Image Process 15(7):2076–2087

    Google Scholar 

  24. Saha PK, Borgefors G, Baja GSD (2015) A survey on skeletonization algorithms and their applications. Pattern Recogn Lett 76:3–12

    Google Scholar 

  25. Shamir A, Shaham A (2006) Skeleton based solid representation with topology preservation. Graph Model 68(3):307–321

    MATH  Google Scholar 

  26. Shen W, Wang Y, Bai X, Wang H, Latecki LJ (2013) Shape clustering: common structure discovery. Pattern Recogn 46(2):539–550

    MATH  Google Scholar 

  27. Suarez AJF, Hubert E (2018) Scaffolding skeletons using spherical voronoi diagrams: feasibility, regularity and symmetry. Comput Aided Des 62:45–50

    MathSciNet  MATH  Google Scholar 

  28. Tabedzki M, Saeed K, Szczepanski A (2016) A modified k3m thinning algorithm. Int J Appl Math Comput Sci 26(2):439–450

    MathSciNet  MATH  Google Scholar 

  29. Tang C, Lu W, Cai Y, Han L, Wang G (2008) Nearly preprocessing-free method for skeletonization of gray-scale electronic speckle pattern interferometry fringe patterns via partial differential equations. Opt Lett 33(2):183–185

    Google Scholar 

  30. Tari ZS, Shah J, Pien H et al (1997) Extraction of shape skeletons from grayscale images[J]. Comput Vis Image Underst 66(2):133–146

    Google Scholar 

  31. Vasilevskiy A, Siddiqi K (2002) Flux maximizing geometric flows. IEEE Trans Pattern Anal Mach Intell 24(12):1565–1578

    MATH  Google Scholar 

  32. Wang S, Wu J, Wei M, Ma X (2012) Robust curve skeleton extraction for vascular structures. Graph Model 74(4):109–120

    Google Scholar 

  33. Wei R, Li X, Wang QH (2017) Double color image encryption scheme based on off-axis holography and maximum length cellular automata. Optik - Int J Light Elect Opt 145:407–417

    Google Scholar 

  34. Wei S, Xiang B, Yang XW, Latecki LJ (2013) Skeleton pruning as trade-off between skeleton simplicity and reconstruction error. Sci China Inform Sci 56(4):1–14

    Google Scholar 

  35. Wieser E, Seidl M, Zeppelzauer M (2017) A study on skeletonization of complex petroglyph shapes. Multimed Tools Appl 76(6):8285–8303

    Google Scholar 

  36. Wink O, Niessen WJ, Viergever MA (2004) Multiscale vessel tracking. IEEE Trans Med Imaging 23(1):130–133

    Google Scholar 

  37. Wong WT, Shih FY, Su TF (2006) Thinning algorithms based on quadtree and octree representations. Inf Sci 176(10):1379–1394

    MathSciNet  MATH  Google Scholar 

  38. Xie W, Thompson RP, Perucchio R (2003) A topology-preserving parallel 3d thinning algorithm for extracting the curve skeleton. Pattern Recogn 36 (7):1529–1544

    MATH  Google Scholar 

  39. Yasseen Z, Verroust-Blondet A, Nasri A (2016) Shape matching by part alignment using extended chordal axis transform. Pattern Recogn 57 (2):115–135

    Google Scholar 

  40. Youssef R, Sevestre-Ghalila S, Ricordeau A, Benazza A (2016) Self noise and contrast controlled thinning of gray images. Pattern Recogn 57:97–114

    Google Scholar 

  41. Zhang TY, Suen CY (1984) Fast parallel algorithm for thinning digital patterns. Commun ACM 3(3):236–239

    Google Scholar 

  42. Zhu X, Jing XY, Ma F, Cheng L, Ren Y (2019) Simultaneous visual-appearance-level and spatial-temporal-level dictionary learning for video-based person re-identification. Neural Comput Appl 31(11):7303–7315

    Google Scholar 

Download references

Acknowledgment

This research was supported by the National Key Technology Research and Development Program of China (Grant No. 2015BAK01B06) and the Natural Science Foundation of Henan Province (Grant No. 162300410032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaopan Chen or Xinhong Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Chen, X. & Zhang, X. Parallel thinning and skeletonization algorithm based on cellular automaton. Multimed Tools Appl 79, 33215–33232 (2020). https://doi.org/10.1007/s11042-020-09660-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09660-5

Keywords

Navigation