Skip to main content
Log in

Efficient computation of high-order Meixner moments for large-size signals and images analysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present an in-depth study on the computational aspects of high-order discrete orthogonal Meixner polynomials (MPs) and Meixner moments (MMs). This study highlights two major problems related to the computation of MPs. The first problem is the overflow and the underflow of MPs values (“Nan” and “infinity”). To overcome this problem, we propose two new recursive Algorithms for MPs computation with respect to the polynomial order n and with respect to the variable x. These Algorithms are independent of all functions that are the origin the numerical overflow and underflow problem. The second problem is the propagation of rounding errors that lead to the loss of the orthogonality property of high-order MPs. To fix this problem, we implement MPs based on the following orthogonalization methods: modified Gram-Schmidt process (MGS), Householder method, and Givens rotation method. The proposed Algorithms for the stable computation of MPs are efficiently applied for the reconstruction and localization of the region of interest (ROI) of large-sized 1D signals and 2D/3D images. We also propose a new fast method for the reconstruction of large-size 1D signal. This method involves the conversion of 1D signal into 2D matrix, then the reconstruction is performed in the 2D domain, and a 2D to 1D conversion is performed to recover the reconstructed 1D signal. The results of the performed simulations and comparisons clearly justify the efficiency of the proposed Algorithms for the stable analysis of large-size signals and 2D/3D images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Asli BHS, Flusser J (2014) Fast computation of Krawtchouk moments. Inf Sci 288:73–86. https://doi.org/10.1016/j.ins.2014.07.046

    Article  MATH  Google Scholar 

  2. Benouini R, Batioua I, Zenkouar K, Mrabti F, Fadili HE (2019) New set of generalized legendre moment invariants for pattern recognition. Pattern Recogn Lett 123:39–46. https://doi.org/10.1016/j.patrec.2019.03.001

    Article  Google Scholar 

  3. Benouini R, Batioua I, Zenkouar K, Zahi A, Fadili HE, Qjidaa H (2019) Fast and accurate computation of Racah moment invariants for image classification. Pattern Recogn 91:100–110. https://doi.org/10.1016/j.patcog.2019.02.014

    Article  Google Scholar 

  4. Camacho-Bello C, Rivera-Lopez JS (2018) Some computational aspects of Tchebichef moments for higher orders. Pattern Recogn Lett 112:332–339. https://doi.org/10.1016/j.patrec.2018.08.020

    Article  Google Scholar 

  5. Daoui A, Yamni M, Karmouni H, El Ogri O, Sayyouri M, Qjidaa H (2020) Fast and stable bio-signals reconstruction using krawtchouk moments, In Embedded Systems and Artificial Intelligence, Springer, p. 369–377

  6. Daoui A, Yamni M, El ogri O, Karmouni H, Sayyouri M, Qjidaa H (2020) Stable computation of higher order charlier moments for signal and image reconstruction. Inf Sci. https://doi.org/10.1016/j.ins.2020.02.019

  7. Daoui A, Yamni M, Ogri OE, Karmouni H, Sayyouri M, Qjidaa H (2020) New algorithm for large-sized 2D and 3D image reconstruction using higher-order hahn moments. Circuits Syst Signal Process. https://doi.org/10.1007/s00034-020-01384-z

  8. Deng A-W, Wei C-H, Gwo C-Y (2016) Stable, fast computation of high-order Zernike moments using a recursive method. Pattern Recogn 56:16–25

    Article  Google Scholar 

  9. Ernawan F, Kabir N, Zamli KZ (2017) An efficient image compression technique using Tchebichef bit allocation. Optik 148:106–119. https://doi.org/10.1016/j.ijleo.2017.08.007

    Article  Google Scholar 

  10. Fang R, Godil A, Li X, Wagan A (2008) A New Shape Benchmark for 3D Object Retrieval », in Advances in Visual Computing, vol. 5358, G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino, F. Porikli, J. Peters, J. Klosowski, L. Arns, Y. K. Chun, T.-M. Rhyne, et L. Monroe, Éd. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 381–392

  11. Ford W (2014) Numerical Linear Algebra with Applications: Using MATLAB. London, UK. Academic Press Inc, San Diego

    Google Scholar 

  12. Hmimid A, Sayyouri M, Qjidaa H (2014) Image classification using a new set of separable two-dimensional discrete orthogonal invariant moments. J Electron Imaging 23(1):013026. https://doi.org/10.1117/1.JEI.23.1.013026

    Article  MATH  Google Scholar 

  13. Hmimid A, Sayyouri M, Qjidaa H (2015) Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recogn 48(2):509–521. https://doi.org/10.1016/j.patcog.2014.08.020

  14. Hmimid A, Sayyouri M, Qjidaa H (2018) Image classification using separable invariant moments of Charlier-Meixner and support vector machine. Multimed Tools Appl 77(18):23607–23631. https://doi.org/10.1007/s11042-018-5623-3

    Article  Google Scholar 

  15. Hosny KM, Khedr YM, Khedr WI, Mohamed ER (2018) Robust image hashing using exact Gaussian–Hermite moments. IET Image Process 12(12):2178–2185

    Article  Google Scholar 

  16. Hosny KM, Khalid AM, Mohamed ER (2018) Efficient compression of bio-signals by using Tchebichef moments and Artificial Bee Colony. Biocybern Biomed Eng 38(2):385–398. https://doi.org/10.1016/j.bbe.2018.02.006

    Article  Google Scholar 

  17. Jahid T, Hmimid A, Karmouni H, Sayyouri M, Qjidaa H, Rezzouk A (2018) Image analysis by Meixner moments and a digital filter. Multimed Tools Appl 77(15):19811–19831

  18. Jahid T, Karmouni H, Sayyouri M, Hmimid A, Qjidaa H (2019) Fast algorithm of 3D discrete image orthogonal moments computation based on 3D cuboid. J Math Imaging Vis 61(4):534–554

  19. Karakasis EG, Papakostas GA, Koulouriotis DE, Tourassis VD (2013) Generalized dual Hahn moment invariants. Pattern Recogn 46(7):1998–2014. https://doi.org/10.1016/j.patcog.2013.01.008

    Article  MATH  Google Scholar 

  20. Karmouni H, Hmimid A, Jahid T, Sayyouri M, Qjidaa H, Rezzouk A (2018) Fast and stable computation of the charlier moments and their inverses using digital filters and image block representation. Circ Syst Signal Process 37(9):4015–4033. https://doi.org/10.1007/s00034-018-0755-2

  21. Karmouni H, Jahid T, Hmimid A, Sayyouri M, Qjidaa H (2019) Fast computation of inverse Meixner moments transform using Clenshaw’s formula. Multimed Tools Appl 78(22):31245–31265. https://doi.org/10.1007/s11042-019-07961-y

  22. Liao X, Yu Y, Li B, Li Z, Qin Z (2019) A new payload partition strategy in color image steganography. IEEE Trans Circuits Syst Video Technol 30(3):685–696

    Article  Google Scholar 

  23. Liao X, Li K, Zhu X, Liu KR (2020) Robust Detection of Image Operator Chain with Two-stream Convolutional Neural Network. IEEE Journal of Selected Topics in Signal Processing 14(5)955–968. https://doi.org/10.1109/JSTSP.2020.3002391

  24. Liu X, Han G, Wu J, Shao Z, Coatrieux G, Shu H (2017) Fractional krawtchouk transform with an application to image watermarking. IEEE Trans Signal Process 65(7):1894–1908. https://doi.org/10.1109/TSP.2017.2652383

  25. Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 20(3):45–50

  26. Mukundan R, Ong SH, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364

    Article  MathSciNet  Google Scholar 

  27. Peng C, Cao D, Wu Y, Yang Q (2019) Robot visual guide with Fourier-Mellin based visual tracking. Front Optoelectron 12(4):413–421

  28. Radiopaedia.org, (n.d.) the wiki-based collaborative Radiology resource. https://radiopaedia.org/. Accessed 23 June 2020

  29. Rahman SMM, Howlader T, Hatzinakos D (2016) On the selection of 2D Krawtchouk moments for face recognition. Pattern Recogn 54:83–93. https://doi.org/10.1016/j.patcog.2016.01.003

    Article  Google Scholar 

  30. Sayyouri M, Hmimid A, Qjidaa H (2013) Improving the performance of image classification by Hahn moment invariants. JOSA A 30(11):2381–2394. https://doi.org/10.1364/JOSAA.30.002381

    Article  MATH  Google Scholar 

  31. Sayyouri M, Hmimid A, Qjidaa H (2014) Image classification using separable discrete moments of charlier-tchebichef. Image and Signal Processing, Cham, p. 441–449, https://doi.org/10.1007/978-3-319-07998-1_51

  32. Sayyouri M, Hmimid A, Qjidaa H (2015) A fast computation of novel set of meixner invariant moments for image analysis. Circuits Syst Signal Process 34(3):875–900. https://doi.org/10.1007/s00034-014-9881-7

  33. Sayyouri M, Hmimid A, Qjidaa H (2016) Image analysis using separable discrete moments of Charlier-Hahn. Multimed Tools Appl 75(1):547–571

  34. Singh C, Walia E, Pooja, Upneja R (2012) Analysis of algorithms for fast computation of pseudo Zernike moments and their numerical stability. Digit Signal Process 22(6):1031–1043. https://doi.org/10.1016/j.dsp.2012.06.009

    Article  MathSciNet  Google Scholar 

  35. Stewart GW (1998) Matrix Algorithms: Volume 1, Basic Decompositions, 1st edn. SIAM: Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  36. L. N. Trefethen, D. Bau III (1997) Numerical Linear Algebra, New. Philadelphia: Society for Industrial and Applied Mathematics

  37. Xia T, Zhu H, Shu H, Haigron P, Luo L (2007) Image description with generalized pseudo-Zernike moments. JOSA A 24(1):50–59

    Article  Google Scholar 

  38. Xiao B, Lu G, Zhang Y, Li W, Wang G (2016) Lossless image compression based on integer Discrete Tchebichef Transform. Neurocomputing 214:587–593. https://doi.org/10.1016/j.neucom.2016.06.050

    Article  Google Scholar 

  39. Yamni M, Daoui A, Karmouni H, Sayyouri M, Qjidaa H (2019) Influence of Krawtchouk and Charlier moment’s parameters on image reconstruction and classification. Procedia Comput Sci 148:418–427

    Article  Google Scholar 

  40. Yamni M et al (2020) Fractional Charlier moments for image reconstruction and image watermarking. Signal Process 171:107509. https://doi.org/10.1016/j.sigpro.2020.107509

    Article  Google Scholar 

  41. Yap P-T, Paramesran R, Ong S-H (2007) Image analysis using Hahn moments. IEEE Trans Pattern Anal Mach Intell 29(11):2057–2062

    Article  Google Scholar 

  42. Zhang G, Luo Z, Fu B, Li B, Liao J, Fan X, Xi Z (2010) A symmetry and bi-recursive algorithm of accurately computing Krawtchouk moments. Pattern Recogn Lett 31(7):548–554

    Article  Google Scholar 

  43. Zhu H, Shu H, Zhou J, Luo L, Coatrieux JL (2007) Image analysis by discrete orthogonal dual Hahn moments. Pattern Recogn Lett 28(13):1688–1704. https://doi.org/10.1016/j.patrec.2007.04.013

    Article  Google Scholar 

  44. Zhu H, Shu H, Liang J, Luo L, Coatrieux J-L (2007) Image analysis by discrete orthogonal Racah moments. Signal Process 87(4):687–708. https://doi.org/10.1016/j.sigpro.2006.07.007

    Article  MATH  Google Scholar 

  45. Zhu H, Liu M, Shu H, Zhang H, Luo L (2010) General form for obtaining discrete orthogonal moments. IET Image Process 4(5):335–352. https://doi.org/10.1049/iet-ipr.2009.0195

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achraf Daoui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoui, A., Sayyouri, M. & Qjidaa, H. Efficient computation of high-order Meixner moments for large-size signals and images analysis. Multimed Tools Appl 80, 1641–1670 (2021). https://doi.org/10.1007/s11042-020-09739-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09739-z

Keywords

Navigation