Skip to main content
Log in

Ratio sum formula for dimensionality reduction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

High-dimensional data analysis often suffers the so-called curse of dimensionality. Therefore, dimensionality reduction is usually carried out on the high-dimensional data before the actual analysis, which is a common and efficient way to eliminate this effect. And the popular trace ratio criterion is an extension of the original linear discriminant analysis (LDA) problem, which involves a search of a transformation matrix W to embed high-dimensional space into a low-dimensional space to achieve dimensionality reduction. However, the trace ratio criterion tends to obtain projection direction with very small variance, which the subset after the projection is diffcult to present the most representative information of the data with maximum efficiency. In this paper, we target on this problem and propose the ratio sum formula for dimensionality reduction. Firstly, we analyze the impact of this trend. Then in order to solve this problem, we propose a new ratio sum formula as well as the solution. In the end, we perform experiments on the Yale-B, ORL, and COIL-20 data sets. The theoretical studies and actual numerical analysis confirm the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ang JC, Mirzal A, Haron H, Hamed HNA (2015) Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE/ACM Trans Comput Biol Bioinf 13(5):971–989

    Article  Google Scholar 

  2. Badjio FE, Poulet F (2005) Dimension reduction for visual data mining. In: Proceedings of international symposium on applied stochastic models and data analysis, pp 266–275

  3. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  4. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  5. Cai D, He X, Han J (2007) Spectral regression: a unified subspace learning framework for content-based image retrieval. In: Proceedings of the 15th ACM international conference on multimedia, pp 403–412

  6. Cai D, He X, Han J, Huang TS (2010) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560

    Google Scholar 

  7. Danubianu M, Pentiuc SG, Danubianu DM (2012) Data dimensionality reduction for data mining: a combined filter-wrapper framework. International Journal Of Computers Communications and Control 7(5):824–831

    Article  Google Scholar 

  8. Das S (2001) Filters, wrappers and a boosting-based hybrid for feature selection. In: ICML, pp 74–81

  9. Du L, Zhou P, Shi L (2015) Robust multiple kernel k-means using l21-norm. In: Proceedings of 24th international joint conference on artificial intelligence, pp 3476–3482

  10. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  11. Gao Q, Ma J, Zhang H, Gao X, Liu Y (2013) Stable orthogonal local discriminant embedding for linear dimensionality reduction. IEEE Trans Image Processing 22(7):2521–2531

    Article  Google Scholar 

  12. Garces E, Agarwala A, Gutierrez D, Hertzmann A (2014) A similarity measure for illustration style. ACM Trans Graph (TOG) 33(4):93

    Article  Google Scholar 

  13. Guo YF, Li SJ, Yang JY, Shu TT, Wu LD (2003) A generalized Foley Sammon transform based on generalized fisher discriminant criterion and its application to face recognition. Pattern Recogn Lett 24(1-3):147–158

    Article  Google Scholar 

  14. He X, Yan S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using laplacianfaces. IEEE Trans attern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  15. Huang Y, Xu D, Nie F (2012) Semi-supervised dimension reduction using trace ratio criterion. IEEE Trans Neural Netw Learn Syst 23(3):519–526

    Article  Google Scholar 

  16. Jia Y, Nie F, Zhang C (2009) Trace ratio problem revisited. IEEE Trans Neural Networks 20(4):729–735

    Article  Google Scholar 

  17. Liu W, Wang C, Wang B (2014) Application of improved locally linear embedding algorithm in dimensionality reduction of cancer gene expression data. J Biomed Eng 31(1):85–90

    Google Scholar 

  18. Liu X, Huang L, Deng C, Lang B, Tao D (2016) Query-adaptive hash code ranking for large-scale multi-view visual search. IEEE Trans Image Processing 25(10):4514–4524

    Article  MathSciNet  Google Scholar 

  19. Liu Y, Nie F, Wu J, Chen L (2013) Efficient semi-supervised feature selection with noise insensitive trace ratio criterion. Neurocomputing 105:12–18

    Article  Google Scholar 

  20. Maaten LVD, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(11):2579–2605

    MATH  Google Scholar 

  21. Nie F, Huang H, Cai X, Ding CH (2010) Efficient and robust feature selection via joint ł2,1-norms minimization. In: Proceedings of neural information processing systems, pp 1813–1821

  22. Qu Y, Yue G, Shang C, Yang L, Zwiggelaar R, Shen Q (2019) Multi-criterion mammographic risk analysis supported with multi-label fuzzy-rough feature selection. Artif Intell Med 100(101722):1–14

    Google Scholar 

  23. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  24. Saad Y, Mehrmann V (1995) Numerical methods for large eigenvalue problems. Jahresbericht der Deutschen Mathematiker Vereinigung 97(3):62–62

    Google Scholar 

  25. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  26. Wang H, Yan S, Xu D, Tang X, Huang T (2007) Trace ratio vs. ratio trace for dimensionality reduction. In: Proceedings of 2007 IEEE conference on computer vision and pattern recognition, pp 1–8

  27. Wang R, Nie F, Hong R, Chang X, Yang X, Yu W (2017) Fast and orthogonal locality preserving projections for dimensionality reduction. IEEE Trans Image Processing 26(10):5019–5030

    Article  MathSciNet  Google Scholar 

  28. Wang R, Nie F, Wang Z, Hu H, Li X (2019) Parameter-free weighted multi-view projected clustering with structured graph learning. IEEE Trans Knowledge Data Eng 32(10):2014–2025

    Article  Google Scholar 

  29. Wang R, Nie F, Wang Z, He F, Li X (2019) Scalable graph-based clustering with nonnegative relaxation for large hyperspectral image. IEEE Trans Geosci Remote Sensin 57(99):7352–7364

    Article  Google Scholar 

  30. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  31. Xu M, Chen H, Varshney PK (2013) Dimensionality reduction for registration of high-dimensional data sets. IEEE Trans Image Processing 22(8):3041–3049

    Article  MathSciNet  Google Scholar 

  32. Yang X, Liu G, Yu Q, Wang R (2018) Stable and orthogonal local embedding using trace ratio criterion for dimensionality reduction. Multimed Tools Appl 77(3):3071–3081

    Article  Google Scholar 

  33. Yang Y, Deng C, Gao S, Liu W, Tao D, Gao X (2016) Discriminative multi-instance multitask learning for 3d action recognition. IEEE Trans Multimedia 19(3):519–529

    Article  Google Scholar 

  34. Yu M, Zhang S, Zhao L, Kuang G (2017) Deep supervised t-SNE for SAR target recognition. In: 2017 2nd international conference on frontiers of sensors technologies (ICFST), pp 265–269

  35. Zhang L, Zhang Q, Zhang L, Tao D, Huang X, Du B (2015) Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recogn 48(10):3102–3112

    Article  Google Scholar 

  36. Zhang L, Zhang Q, Du B, Huang X, Tang YY, Tao D (2016) Simultaneous spectral-spatial feature selection and extraction for hyperspectral images. IEEE Trans Cybern 48(1):16–28

    Article  Google Scholar 

  37. Zhang P, Qiao H, Zhang B (2011) An improved local tangent space alignment method for manifold learning. Pattern Recogn Lett 32(2):181–189

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and anonymous reviews for providing useful suggestion to improve the quality of the paper. This work was partially supported by National R&D Program of China 2018YFB1802100, Department of Science and Technology at Guangdong Province with Grant no. 2018B030338001, 2018B010107003, 2018B010115002 and 2015B010127015, and National Nature Science Foundation of China(No. 61974035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoJun Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, K., Yang, X., Xu, Y. et al. Ratio sum formula for dimensionality reduction. Multimed Tools Appl 80, 4367–4382 (2021). https://doi.org/10.1007/s11042-020-09782-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09782-w

Keywords

Navigation