Skip to main content

Advertisement

Log in

Morph_SPCNN model and its application in breast density segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Breast density is known as a significant indicator of breast cancer risk prediction and greatly reduces the digital mammograms sensitivity. In this work, based on the simple pulse coupled neural network (SPCNN), a novel Morph_SPCNN model is proposed for dealing with the limitations of over-segmentation that commonly existed in density segmentation of mammograms. To evaluate the proposed model, the segmentation result is employed as a feature map of the breast density classification system. In addtion, the texture features of mammogram calculated based on the gray level co-occurrence matrix (GLCM) and the statistical features (mean, skewness, kurtosis) are extracted and input to the support vector machine (SVM) for breast density classification. Finally, the performance of SVM classifier is evaluated based on the ten-fold cross-validation. Our method is verified both on the MIAS dataset, DDSM database and hybrid dataset (MIAS database and Gansu Provincial Academy of Medical Sciences (GPAMS) database), respectively achieving 87.80%, 94.89% and 95.37% accuracy for breast density classification. The experimental results indicate that our proposed method has greatly improved the performance of breast density segmentation and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. AC Society (2019) Cancer facts and figures 2019 https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html

  2. AC of Radiology, D’Orsi CJ et al (2013) ACR BI-RADS atlas: breast imaging reporting and data system; mammography, ultrasound, magnetic resonance imaging, follow-up and outcome monitoring, data dictionary, ACR American College of Radiology

  3. Anguita D, Ridella S, Rivieccio F (2005) K-fold generalization capability assessment for support vector classifiers. In: Neural networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE international joint conference on. https://doi.org/10.1109/IJCNN.2005.1555964

  4. Angulo J (2016) Generalised morphological image diffusion. Nonlinear Anal Theory Methods Appl 134:1–30. https://doi.org/10.1016/j.na.2015.12.015

    MathSciNet  MATH  Google Scholar 

  5. B.C. U.K. (2019) Key facts about breast cancer http://www.breastcanceruk.org.uk/

  6. Blot L, Zwiggelaar R (2001) Background texture extraction for the classification of mammographic parenchymal patterns. In: MIUA, pp 145–148

  7. Bosch A, Munoz X, Oliver A, Marti J (2006) Modeling and classifying breast tissue density in mammograms. 2:1552–1558. https://doi.org/10.1109/CVPR.2006.188

  8. Bowyer K, Kopans D, Kegelmeyer W, Moore R, Sallam M, Chang K, Woods K (1996) The digital database for screening mammography. In: Third international workshop on digital mammography, vol 58, p 27

  9. Chang C-C, Lin C-J (2011) Libsvm: A library for support vector machines. ACM Trans Intell Syst Technol. https://doi.org/10.1145/1961189.1961199

  10. Chen Z, Denton ERE, Zwiggelaar R (2011) Local feature based mammographic tissue pattern modelling and breast density classification. 1:351–355. https://doi.org/10.1109/BMEI.2011.6098279

  11. Chen Y, Park S, Ma Y, Ala R (2011) A new automatic parameter setting method of a simplified pcnn for image segmentation. IEEE Trans Neural Netw 22(6):880–892. https://doi.org/10.1109/TNN.2011.2128880

    Google Scholar 

  12. Chen Y, Tao J, Liu L, Xiong J, Xia R, Xie J, Zhang Q, Yang K (2020) Research of improving semantic image segmentation based on a feature fusion model. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02066-z

  13. Chen Y, Wang J, Chen X, Zhu M, Yang K, Wang Z, Xia R (2019) Single-image super-resolution algorithm based on structural self-similarity and deformation block features. IEEE Access 7:58791–58801. https://doi.org/10.1109/ACCESS.2019.2911892

    Google Scholar 

  14. Chen Y, Wang J, Liu S, Chen X, Xiong J, Xie J, Yang K (2019) Multiscale fast correlation filtering tracking algorithm based on a feature fusion model. Concurr Comput Pract Exp e5533. https://doi.org/10.1002/cpe.5533

  15. Chen Y, Xiong J, Xu W, Zuo J (2019) A novel online incremental and decremental learning algorithm based on variable support vector machine. Clust Comput 22(3):7435–7445. https://doi.org/10.1007/s10586-018-1772-4

    Google Scholar 

  16. Chen Y, Xu W, Zuo J, Yang K (2019) The fire recognition algorithm using dynamic feature fusion and iv-svm classifier. Clust Comput 22 (3):7665–7675. https://doi.org/10.1007/s10586-018-2368-8

    Google Scholar 

  17. Chen Y, Tao J, Zhang Q, Yang K, Chen X, Xiong J, Xia R, Xie J Saliency detection via the improved hierarchical principal component analysis method. Wirel Commun Mob Comput (Online) 2020. https://doi.org/10.1155/2020/8822777

  18. Cortes C, Vapnik V (1995) Support-vector networks, vol 20. https://doi.org/10.1023/A:1022627411411

  19. Deng J, Ma Y, Deng-ao L, Zhao J, Liu Y, Zhang H (2020) Classification of breast density categories based on se-attention neural networks. Comput Methods Programs Biomed 105489. https://doi.org/10.1016/j.cmpb.2020.105489

  20. Deng XY, Yi-De MA (2012) Pcnn model automatic parameters determination and its modified model. Acta Electronica Sinica 5(5):955–964. https://doi.org/10.3969/j.issn.0372-2112.2012.05.015

    Google Scholar 

  21. Eckhorn R, Reitboeck H, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Comput 2(3):293–307. https://doi.org/10.1162/neco.1990.2.3.293

    Google Scholar 

  22. Ekblad U, Kinser JM, Atmer J, Zetterlund N (2004) The intersecting cortical model in image processing. Nucl Instrum Methods Phys Res B 525(1):392–396. https://doi.org/10.1016/j.nima.2004.03.102

    Google Scholar 

  23. Elshinawy MY, Badawy AHA, Abdelmageed WW, Chouikha MF (2011) Effect of breast density in selecting features for normal mammogram detection. In: IEEE International symposium on biomedical imaging: from nano to macro. https://doi.org/10.1109/ISBI.2011.5872374

  24. Eng A, Gallant Z, Shepherd J, Mccormack V, Li J, Dowsett M, et al. (2014) Digital mammographic density and breast cancer risk:a case-control study of six alternative density assessment methods. Breast Cancer Res 16:439. https://doi.org/10.1186/s13058-014-0439-1

    Google Scholar 

  25. Gong X, Yang Z, Wang D, Qi Y, Ma Y (2019) Breast density analysis based on glandular tissue segmentation and mixed feature extraction. Multimed Tools Appl 78(5):31185–31214. https://doi.org/10.1007/s11042-019-07917-2

    Google Scholar 

  26. Gu X (2008) Feature extraction using unit-linking pulse coupled neural network and its applications. Neural Process Lett 27(1):25–41. https://doi.org/10.1007/s11063-007-9057-6

    Google Scholar 

  27. Hage IS, Hamade RF (2013) Segmentation of histology slides of cortical bone using pulse coupled neural networks optimized by particle-swarm optimization. Comput Med Imaging Graph 37(7-8). https://doi.org/10.1016/j.compmedimag.2013.08.003

  28. Hamidinekoo A, Denton E, Rampun A, Honnor K, Zwiggelaar R (2018) Deep learning in mammography and breast histology, an overview and future trends. Med Image Anal 35:303–312. https://doi.org/10.1016/j.media.2018.03.006

    Google Scholar 

  29. Hassanien AE, Kim TH (2012) Breast cancer mri diagnosis approach using support vector machine and pulse coupled neural networks. J Appl Log 10(4):277–284. https://doi.org/10.1016/j.jal.2012.07.003

    MathSciNet  Google Scholar 

  30. He W, Denton ERE, Stafford K, Zwiggelaar R (2011) Mammographic image segmentation and risk classification based on mammographic parenchymal patterns and geometric moments. Biomed Signal Process Control 6(3):321–329. https://doi.org/10.1016/j.bspc.2011.03.008

    Google Scholar 

  31. Holzinger A (2016) Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform 3(2):119–131

    Google Scholar 

  32. Holzinger A, Carrington AM, Muller H (2020) Measuring the quality of explanations: The system causability scale (scs): comparing human and machine explanations. Künstliche Intelligenz 1–6

  33. Holzinger A, Kieseberg P, Weippl E, Tjoa AM (2018) Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable ai. https://doi.org/10.1007/978-3-319-99740-7_1

  34. Holzinger A, Langs G, Denk H, Zatloukal K, Muller H (2019) Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov 9(4). https://doi.org/10.1002/widm.1312

  35. Hsu C, Lin C (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425. https://doi.org/10.1109/72.991427

    Google Scholar 

  36. Jia T, Zhang H, Bai YK (2015) Benign and malignant lung nodule classification based on deep learning feature. J Med Imaging Health Inform 5(8):1936–1940. https://doi.org/10.1166/jmihi.2015.1673

    Google Scholar 

  37. Johnson JL, Ritter D (1993) Observation of periodic waves in a pulse-coupled neuralnetwork. Opt Lett 18(15):1253–5. https://doi.org/10.1364/OL.18.001253

    Google Scholar 

  38. Kinser JM (1996) Simplified pulse-coupled neural network. Proc SPIE 2760:563–567. https://doi.org/10.1117/12.235951

    Google Scholar 

  39. Kumar I, Bhadauria HS, Virmani J (2015) Wavelet packet texture descriptors based four-class birads breast tissue density classification. Procedia Comput Sci 70:76–84. https://doi.org/10.1016/j.procs.2015.10.042

    Google Scholar 

  40. Kumar I, Bhadauria HS, Virmani J, Thakur S (2017) A classification framework for prediction of breast density using an ensemble of neural network classifiers. Biocybern Biomed Eng 37(1):217–228. https://doi.org/10.1016/j.bbe.2017.01.001

    Google Scholar 

  41. Kuntimad G, Ranganath HS (1999) Perfect image segmentation using pulse coupled neural networks. IEEE Trans Neural Netw 10(3):591–598. https://doi.org/10.1109/72.761716

    Google Scholar 

  42. Lian J, Li K (2020) A review of breast density implications and breast cancer screening. Clin Breast Cancer 12:30–38. https://doi.org/10.1016/j.clbc.2020.03.004

    Google Scholar 

  43. Lian J, Yang Z, Sun W, Guo Y, Zheng L, Li J, et al. (2019) An image segmentation method of a modified spcnn based on human visual system in medical images. Neurocomputing 333:292–306. https://doi.org/10.1016/j.neucom.2018.12.007

    Google Scholar 

  44. Liao Z, Zhang R, He S, Zeng D, Wang J, Kim H-J (2019) Deep learning-based data storage for low latency in data center networks. IEEE Access 7:26411–26417. https://doi.org/10.1109/ACCESS.2019.2901742

    Google Scholar 

  45. Lu X, Wang W, Ma C, Shen J, Shao L, Porikli F (2019) See more, know more: Unsupervised video object segmentation with co-attention siamese networks. In: 2019 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 3618–3627. https://doi.org/10.1109/CVPR.2019.00374

  46. Lu X, Wang W, Shen J, Tai Y, Crandall DJ, Hoi SCH (2020) Learning video object segmentation from unlabeled videos. Comput Vis Pattern Recognit

  47. Ma Y-D, Dai R-L, Li L (2002) Automated image segmentation using pulse coupled neural networks and image’s entropy. China Inst Commun 23 (1):46–51

    Google Scholar 

  48. Ma Y, Dai R, Li L, Wei L (2002) Image segmentation of embryonic plant cell using pulse-coupled neural networks. Chin Sci Bull 47:169–173. https://doi.org/10.1360/02tb9040

    Google Scholar 

  49. Machida Y, Tozaki M, andss Tamiko Yoshida AS (2015) Breast density: the trend in breast cancer screening. Breast Cancer 22(3):253–261. https://doi.org/10.1007/s12282-015-0602-2

    Google Scholar 

  50. Malkov S, Shepherd JA, Scott CG, Tamimi RM, Ma L, et al. (2016) Mammographic texture and risk of breast cancer by tumor type and estrogen receptor status. Breast Cancer Res 18(1):122. https://doi.org/10.1186/s13058-016-0778-1

    Google Scholar 

  51. Manduca A, Carston MJ, Heine JJ, Scott CG, Pankratz VS, Brandt KR, et al. (2009) Texture features from mammographic images and risk of breast cancer, Cancer Epidemiology. Biomarkers and Prevention 18(3):837–845. https://doi.org/10.1158/1055-9965.EPI-08-0631

    Google Scholar 

  52. Masci J, Angulo J, Schmidhuber J (2013) A learning framework for morphological operators using counter–harmonic mean. 7883:329–340. https://doi.org/10.1007/978-3-642-38294-9_28

  53. McCormack AV (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15 (6):1159–1169. https://doi.org/10.1158/1055-9965.EPI-06-0034

    Google Scholar 

  54. Mellouli D, Hamdani TM, Sanchez-Medina JJ, Ayed MB, Alimi AM (2019) Morphological convolutional neural network architecture for digit recognition. IEEE Trans Neural Netw Learn Syst 1–10. https://doi.org/10.1109/TNNLS.2018.2890334

  55. Moon WK, Chang JF, Lo CM, Chang JM, Lee SH, Shin SU, et al. (2018) Quantitative breast density analysis using tomosynthesis and comparison with mri and digital mammography. Comput Methods Programs Biomed 154:99–107. https://doi.org/10.1016/j.cmpb.2017.11.008

    Google Scholar 

  56. Muhimmah I (2006)

  57. Muštra M, Grgić M, Delač K (2010) Feature selection for automatic breast density classification. In: International symposium elmar

  58. Oliver A, Freixenet J, Marti R, Pont J, Perez E, Denton ERE, Zwiggelaar R (2008) A novel breast tissue density classification methodology 12(1):55–65. https://doi.org/10.1109/TITB.2007.903514

  59. Oliver A, Freixenet J, Martí R, Pont J, Pérez E, Denton ERE, Zwiggelaar R (2008) A novel breast tissue density classification methodology. IEEE Trans Inf Technol Biomed 12(1):55–65. https://doi.org/10.1109/TITB.2007.903514

    Google Scholar 

  60. Oliver A, Freixenet J, Zwiggelaar R (2005). https://doi.org/10.1109/ICIP.2005.1530291

  61. Oliver A, Tortajada M, Lladó X, Freixenet J, Ganau S, Tortajada L, et al. (2015) Breast density analysis using an automatic density segmentation algorithm. J Digit Imaging 28:604–612. https://doi.org/10.1007/s10278-015-9777-5

    Google Scholar 

  62. Otsu N (2007) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern B Cybern 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    MathSciNet  Google Scholar 

  63. Parthalain NM, Jensen R, Shen Q, Zwiggelaar R (2010) Fuzzy-rough approaches for mammographic risk analysis. 14(2):225–244. https://doi.org/10.3233/IDA-2010-0418

  64. Petroudi S, Constantinou I, Tziakouri C, Pattichis MS, Pattichis CS (2013) Investigation of am-fm methods for mammographic breast density classification. 1–4. https://doi.org/10.1109/BIBE.2013.6701633

  65. Petroudi S, Kadir T, Brady M (2003). https://doi.org/10.1109/IEMBS.2003.1279885

  66. Rampun A, Morrow P, Scotney B, Winder J (2017) Breast density classification using multiresolution local quinary patterns in mammograms. In: Conference on medical image understanding and analysis. https://doi.org/10.1007/978-3-319-60964-5_32

  67. Rampun A, Scotney BW, Morrow PJ, Wang H (2019) Breast density classification using local septenary patterns: a multi-resolution and multi-topology approach. In: 2019 IEEE 32nd international symposium on computer-based medical systems (CBMS). https://doi.org/10.1109/CBMS.2019.00133

  68. Ranganath HS, Kuntimad G (1996) Iterative segmentation using pulse-coupled neural networks. Proc SPIE Int Soc Opt En 2760:543–554. https://doi.org/10.1117/12.235943

    Google Scholar 

  69. Remes V, Haindl M (2015) Classification of breast density in x-ray mammography. In: International workshop on computational intelligence for multimedia understanding. https://doi.org/10.1109/IWCIM.2015.7347085

  70. Ribli D, Horváth A, Unger Z, Pollner P, Csabai I (2017) Detecting and classifying lesions in mammograms with deep learning. Sci Rep 8(1):1–7. https://doi.org/10.1038/s41598-018-22437-z

    Google Scholar 

  71. Shen D, Wu G, Suk H (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19(1):221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

    Google Scholar 

  72. Strand F, Humphreys K, Cheddad A, Tornberg S, Azavedo E, Shepherd JA, Hall P, Czene K (2016) Novel mammographic image features differentiate between interval and screen-detected breast cancer: a case-case study. Breast Cancer Res 18(1):100. https://doi.org/10.1186/s13058-016-0761-x

    Google Scholar 

  73. Suckling J (1994) The mammographic image analysis society digital mammogram database. Digit Mammo 375–386

  74. Surajudeen A, Reyer Z (2017) Breast density segmentation based on fusion of super pixels and watershed transform. Int J Comput Appl 161(12):1–7. https://doi.org/10.5120/ijca2017913208

    Google Scholar 

  75. Tzikopoulos S, Mavroforakis M, Georgiou HV, Dimitropoulos N, Theodoridis S (2011) A fully automated scheme for mammographic segmentation and classification based on breast density and asymmetry. Comput Methods Prog Biomed 102(1):47–63. https://doi.org/10.1016/j.cmpb.2010.11.016

    Google Scholar 

  76. Virmani J, Dey N, Kumar V et al (2016) Pca-pnn and pca-svm based cad systems for breast density classification, Springer. https://doi.org/10.1007/978-3-319-21212-8_7

  77. Wang Y, Jiao J (2011) Detection of regions of interest from breast tumorul trasound images using improved pcnn. Opt.Precis.Eng 19(6). https://doi.org/10.3788/ope.20111906.1398

  78. Wang J, Kato F, Yamashita H, Baba M, Cui Y, Li R, et al. (2017) Automatic estimation of volumetric breast density using artificial neural network-based calibration of full-field digital mammography: feasibility on japanese women with and without breast cancer. J Digit Imaging 30(2):215–227. https://doi.org/10.1007/s10278-016-9922-9

    Google Scholar 

  79. Williams CKI (2003) Learning with kernels: Support vector machines, regularization, optimization, and beyond. J Am Stat Assoc 98(462):489–489. https://doi.org/10.1198/jasa.2003.s269

    Google Scholar 

  80. Wolfe JN (1976) Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37:2486–2492. https://doi.org/10.1002/1097-0142(197605)37:53.0.CO;2-8

    Google Scholar 

  81. Yang Z, Lian J, Li S, Guo Y, Qi Y, Ma Y (2018) Heterogeneous spcnn and its application in image segmentation. Neurocomputing 285 (3):196–203. https://doi.org/10.1016/j.neucom.2018.01.044

    Google Scholar 

  82. Zhan K, Shi J, Wang H, Xie Y, Li Q (2017) Computational mechanisms of pulse-coupled neural networks: a comprehensive review. Arch Comput Methods Eng 24(3):573–588. https://doi.org/10.1007/s11831-016-9182-3

    MathSciNet  MATH  Google Scholar 

  83. Zhan K, Zhang H, Ma Y (2009) New spiking cortical model for invariant texture retrieval and image processing. IEEE Trans Neussral Netw 20 (12):1980–1986. https://doi.org/10.1109/TNN.2009.2030585

    Google Scholar 

Download references

Acknowledgement

This work is jointly supported by the Natural Science Foundation of Gansu Province (No.18JR3RA288) and the Fundamental Research Funds for the Central Universities of China (No.lzujbky-2017-it72 and No.lzujbky-2018-it61).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yide Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Yang, Z., Lei, J. et al. Morph_SPCNN model and its application in breast density segmentation. Multimed Tools Appl 80, 2821–2845 (2021). https://doi.org/10.1007/s11042-020-09796-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09796-4

Keywords

Navigation