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Abstract Vehicle re-identification (reID) often requires recognize a target ve-
hicle in large datasets captured from multi-cameras. It plays an important role
in the automatic analysis of the increasing urban surveillance videos, which
has become a hot topic in recent years. However, the appearance of vehi-
cle images is easily affected by the environment that various illuminations,
different backgrounds and viewpoints, which leads to the large bias between
different cameras. To address this problem, this paper proposes a cross-camera
adaptation framework (CCA), which smooths the bias by exploiting the com-
mon space between cameras for all samples. CCA first transfers images from
multi-cameras into one camera to reduce the impact of the illumination and
resolution, which generates the samples with the similar distribution. Then, to
eliminate the influence of background and focus on the valuable parts, we pro-
pose an attention alignment network (AANet) to learn powerful features for
vehicle reID. Specially, in AANet, the spatial transfer network with attention
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module is introduced to locate a series of the most discriminative regions with
high-attention weights and suppress the background. Moreover, comprehensive
experimental results have demonstrated that our proposed CCA can achieve
excellent performances on benchmark datasets VehicleID and VeRi-776.

Keywords Cross-Camera · Attention Alignment · Vehicle Re-identification

1 Introduction

The research related to vehicles has attracted wide attention and made some
progress in the field of computer vision, such as vehicle detection [11,4], track-
ing [27,5] and classification [10,23]. Different from the tasks above, the pur-
pose of vehicle reID is to accurately match the target vehicle captured from
multiple non-overlapping cameras, which is of great significance to intelligent
transportation. Meanwhile, the large amount of video or images could be pro-
cessed automatically carried out by vehicle reID to exploit the meaningful
information, which plays an important role in modern smart surveillance sys-
tems.

With the recent development of deep learning, lots of excellent deep learning-
based methods [12,8,49,6] are proposed for the vehicle reID task. However,
there still exist many limitations for the application in the real-world. Differ-
ent with the person reID [36,38,33,13,34] and fine-grained classification [30,
42,35,29,37] that could extract rich features from the images with various
poses and colors, the vehicles are generally rigid structure with solid colors
and appearance is easily affected by various illuminations, viewpoints. Most
existing works only focus on learning the discriminative features while neglect-
ing the influence of different cameras. Actually, images captured from different
cameras often have obviously different styles. Usually, cameras differ from each
other regarding resolution, illumination, background, etc. As Fig. 1 shows, for
each row, the images with the same identity have different appearances in
different camera views. This could lead to serve cross-camera bias and affect
the vehicle reID task. Some vehicle reID researches also noticed the challenges,
thus preferred to make use of spatial-temporal information and plate license to
achieve promising results. However, the spatial-temporal information is usu-
ally not annotated in some datasets. Besides that, the high-resolution images
of in front or rear viewpoints are required for license plate recognition, which
is not impractical in the real-world scenes.

In order to solve these problems, some methods consider learning the global
features from multi-view images, such as VAMI [48] and DHMV [46]. VAMI
adopts cross-view generative adversarial network to transform the features
into a global multi-view feature representation. DHMV aims to learn transfor-
mations across different viewpoints for inferring the multi-view representation
from one input vehicle image. There are also some methods that exploit the
constraint among cross-cameras by proposing the cross-view losses. For in-
stance, MVR loss [16] introduced several latent groups to represent multiple
views and ranked them by calculating the intra and inter loss. However, these
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Fig. 1: Example images from 1,2,12,13,14,15,17 cameras of VeRi-776. The im-
ages with a same identity have different appearances in different camera views.

methods only consider the influence of various viewpoints to solve the problem
between different cameras and neglect the background and other factors.

The above issues prompt us to focus on the changes of images caused by
different cameras. To solve aforementioned problems, this paper proposes a
cross-camera adaptation network (CCA) to smooth the bias between different
cameras and learn powerful features. In our paper, the single camera is regard
as an independent domain. CCA aims at transforming the multi-domains into
one common domain that has the similar background, illumination and reso-
lution. Different with existing methods, CCA firstly generates vehicle images
by StarGAN, which transfers the same vehicle images from other cameras into
one camera and doesn’t augment the quantity of original datasets. Besides, it
could be observed in the Fig. 1, the images captured from different always have
different backgrounds, which may interfere with the training of vehicle reID
model. Hence, to eliminate the impact of background, the attention alignment
network (AANet) is proposed to locate discriminative features. Specially, the
STN with attention module is employed to select a series of regions from vehi-
cle images for training a powerful reID model. The main contributions of our
work can be summarized as follows

– A cross-camera adaptation framework is proposed for better smoothing the
bias between different cameras, which reduces the influence of illumination,
background and resolution for vehicle reID task by transferring images into
a common space and learning a powerful discriminative feature.

– The attention alignment network is proposed to obtain a series of local
regions for vehicle reID, which focus on locating the meaningful parts
while suppressing background. Moreover, Extensive experiments demon-



strate that our proposed method achieves competitive performance on chal-
lenging benchmark datasets.

The rest of this paper is organized as follows. In Section 2, we review
and discuss the related works. Section 3 illustrates the proposed method in
detail. Experimental results and comparisons on two vehicle reID datasets are
discussed in Section 4, followed by conclusions in Section 5.

2 Related Works

In this section, existing vehicle reID works are reviewed. With the prosper-
ity of deep learning, vehicle reID has achieved some progress in recent years.
Broadly speaking, these approaches could be categorized into three classes,
i.e., representation learning, similarity learning and spatio-temporal correla-
tion learning.

A series of methods attempt to identify vehicles based on the visual ap-
pearance. In [43], 3D bounding boxes of vehicles were detected and then were
processed by the color histograms and histograms of oriented gradients for ve-
hicle reID. In [44], a ROIs-based vehicle reID method was proposed to detect
the ROIs’ as discriminative identifiers. And then encode the structure informa-
tion of a vehicle for reID task. DHMVI [46] utilized the LSTM bi-directional
loop to learn transformations across different viewpoints of vehicles, which
could infer all viewpoints’ information from the only one input view. RAM
[21] was proposed for vehicle reID task with several branches including region
and attribute branches to extract distinct features from several overlapped
local regions. MRM [25] introduced a multi-region model to extract features
from a series of local regions for learning powerful features for vehicle reID task.
EALN [22] was introduced to improve the capability of the reID model by au-
tomatically generating hard negative samples in the specified embedding space
to train the reID model. VAMI [48] tried to better optimize the reID model
by transforming single-view feature into a global multi-view feature represen-
tation through generative adversarial network. CV-GAN [47] was conducted
to generate the various viewpoints vehicle images by generative adversarial
network for training an adaptive reID model.

Apart from the visual appearance, a series of metric losses for deep feature
embedding to achieve higher performance. In [18], coupled cluster loss was
proposed to push those negative ones far away and pull the positive images
closer, which could minimize maximize inter-class distance and intra-class dis-
tance to train the vehicle reID model. GST loss [1] was proposed to deal with
intra-class variance in learning representation. Besides that, it introduced the
mean-valued triplet loss to alleviate the negative impact of improper triplet
sampling during training stage. MGR [7] was presented to further enhanced
the discriminative ability of reID model by enhancing the discrimination that
not only between different vehicles but also different vehicle models.

Besides, spatio-temporal information is an important cue for vehicle reID
task. Hence, some approaches exploit spatial and temporal information for



vehicle images to improve vehicle reID performance. PROVID [20] employed
visual features, spatial-temporal relations and the information of license plates
with a progressive strategy to learn similarity scores between vehicle im-
ages. OIFE [31] refined the retrieval results of vehicles by utilizing the log-
normal distribution to model the spatio-temporal constrains in camera net-
works. Siamese-Cnn+Path-LSTM [26] model was proposed to incorporate
complex spatio-temoral information for regularizing the reID results.

3 Cross-camera Adaptation Framework

The overall structure of the proposed framework is depicted in Fig.2. The
Cross-camera Adaptation Framework (CCA) is composed of the camera trans-
fer adversarial network and the attention alignment network. Firstly, the sam-
ples from different cameras are transferred into one domain by the camera
transfer adversarial network. Then the images with similar distribution could
be obtained, which are fed into the proposed attention alignment feature learn-
ing network for training the reID task. Specially, the attention alignment net-
work is a dual-branches network that focus on different meaningful parts of
vehicle images for improving the discriminate ability of reID model.
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Fig. 2: Cross-camera Adaptation Framework. The proposed framework is com-
posed of the camera transfer adversarial network and attention alignment net-
work. In the camera transfer adversarial network, the samples in different
cameras are transferred into the common space, which means the generated
samples have the similar distribution. Subsequently, the transferred samples
are employed to train the reID model with the attention alignment network.

In this section, we introduce our method from two aspects: 1) an camera
transfer adversarial network is introduced in section 3.2, which learns transfer
mappings for different cameras; 2) an attention alignment feature learning
network AANet is illustrated in section 3.3, which optimizes the reID model
utilizing the generated images from the camera transfer adversarial network.



3.1 Camera Transfer Adversarial Network

The same vehicles always have different appearances in different camera views
and the bias is shown in Fig.1. In this paper, to smooth the bias between
different cameras, we want to transfer images in different cameras into one
camera, which means that all images have the similar distribution. To achieve
this, StarGAN [3] is utilized as the camera transfer adversarial network. Star-
GAN [3] utilizes generator G and discriminator D to implement the conversion
between multiple cameras, which learns the mapping relations among multiple
cameras using only a single model, as shown in Fig.3.

Cam1

Cam2

Cam3 Cam4

Cam5

Fig. 3: The structure of starGAN. In our paper, the vehicle images from dif-
ferent cameras are transferred into common space by starGAN. Thus, these
images have the similar distribution, which could be regarded as one common
domain.

In StarGAN, in order to generate a more realistic fake sample, an adver-
sarial loss function is employed to obtain the high-quality image, which could
be written as:

Ladv = Ex [logDsrc(x)] + Ex,c [log(1−Dsrc(G(x, c)))] (1)

where G generates an image G(x, c) to fake D. D tries to distinguish the real
image from the generated image. The target of StarGAN is to translate x to
an output images y that is classified as the target domain c. For this goal, a
domain classifier is added on the D, which could be defined as:

Lr
dom(x, c∗) = Ex,c∗ [− logDdom(c∗|x)] (2)

Lf
dom(x, c) = Ex,c [− logDdom(c|x)] (3)



where Ddom(c∗|x) is the probability distribution over the camera labels of a
given real image x, and c represents the source camera labels. To guaran-
tee that generated images could preserve the identity information of original
images, StarGAN employs the cycle consistent loss [50], which is defined as:

Lrec(x, c, c
∗) = Ex,c,c∗ [‖x−G(G(x, c), c∗)‖l] (4)

Through StarGAN, one image could be transferred into any other cameras.
Hence, there are N times images than original dataset. N is the number of
cameras. However, in our paper, we aim to transfer images into one common
domain. So we just select images from one camera for training vehicle reID
model. As illustrated in Fig.1, the images with irrelevant background or less
discriminative parts of objects of interest may confuse the reID model, which
would degenerate the model’s performance. To solve this problem, in this pa-
per, AANet is proposed to utilize the style-translated images as training set
to guide the reID model to focus on the discriminative parts, to be detailed in
Section 3.2.

3.2 Attention Alignment Network

Redundancy of background information is another important factor that ob-
structs vehicle reID performance. Based on the transferred images, we propose
the attention alignment network (AANet) to reduce the discrepancy of atten-
tion maps across non-overlapping cameras. The AANet is designed to focus
on the meaningful parts of vehicle images and neglect the background when
training the reID model, which is illustrated in Fig.4.

The AANet is designed as a multi-branch structure, which is composed of
one global branch and two local region branches. For the global branch, it is
utilized to learn the context features with the attention module. Besides that,
for the local regions, in order to obtain key information from the local region,
we divided the output feature map generated by several convolutional layers
with the size of 112× 112× 64 into two non-overlapping local regions, which
could be named as “Upper-Local” and “Lower-Local”, respectively. Then, the
feature maps are fed into two branches to generate different features. So given
an input vehicle image, the local region network could generate a series of
features for vehicle ReID.

Specially, to address the problems of excessive background and extract the
remarkable features, in each branch, an alignment module based on the STN
is employed. The alignment module includes three components, a localization
network to learn the transformation parameters, a grid generator to calculate
the coordinate of the input feature maps by applying the transformation pa-
rameters and bilinear sampler to make up the missing pixels. Meanwhile, as
shown in Fig.4, to focus on the meaningful parts of vehicle images and neglect
the background when training the feature learning model, an attention mod-
ule is introduced to generate discriminative features. In the attention module,
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Fig. 4: The structure of Attention Alignment Network. The network contains
three branches. The global branch is utilized to learn the context features.
Besides that, for each local branch, we focus on learning features of different
regions by the alignment module and attention module. Each of the generated
feature from three branches is trained with an individual classifier with cross-
entropy loss.

after a global average pooling layer, we employ the Softmax layer to re-weight
the feature maps and generate the mask, which could be computed as:

M = Softmax(Conv(GAP (fr))) (5)

where the Conv operator is 1 × 1 convolution. The M is the weight matrix.
After obtaining M , the attended feature map could be calculated by fm =
fa ⊗M . The operator ⊗ is performed in an element-wise product. Then the
attended feature map fm is fed into the subsequent structure.

The structure of global branch is also a two-branch network that is intro-
duced in [45]. In our paper, for one branch, as shown in Fig.5, the ResNet50
[9] is adopted as the base model for vehicle classification, which consists of
residual units that preserve the identity and maintain a deeper structure. Af-
ter convolutional layers from conv1 through conv5, the feature vector f could
be obtained. Similar with the local region branch, the features f is fed into
the attention module to obtain distinct features. Then the output feature is
utilized to train the identification task with the cross-entropy (CE) loss.

At last, for all branches, the obtained features are named as fg, fu and fl,
respectively. During the training phase of each branch in local region features
learning network, Fully Connected (FC) layers are added to identify vehicles
only with a part of feature maps as input. This procedure enforces the network
to extract discriminative details in each part. At last, the prediction identity
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Fig. 5: One branch of global branch Network. The network adopts the
ResNet50 as the base model and employs the attention module for extracting
distinct features.

classification is given by the FC layer with the CE loss that could be described
as:

Lp(θ) = `gid + λ1`
u
id + λ2`

l
id (6)

where θ denotes the parameters in the deep model. `gid, `uid and `lid repre-
sent the identification loss in global local region features extraction module,
respectively. λ1 and λ2 are the weights for corresponding loss.

The CE loss is calculated based on softmax which is formulated as follows:

p = −
m∑
i=1

log
eW

T
yi

xi+byi∑n
j=1 e

WT
j +bj

(7)

where xi is the i-th deep feature that belongs to the yi-th class. For different
datasets, m represents the size of mini-batch and n is the number of class of
training set. d is the dimension of the output feature. b represents the bias
term and Wj denotes the j-th column of the weights [32].

Specially, during the test phase, the final features from AANet could be
described as follows:

f = [fg × α, fu × (1− α), fl × (1− α)] (8)

where α is the weight for features. The size of features from different branches
is 1× 1× 4096 in our paper.

4 Experiments

In this section, we evaluate our proposed method for vehicle ReID using the
Cumulative Match Characteristic (CMC) curve and mean Average Precision



(mAP) [17,39] widely adopted in vehicle ReID. Besides comparing with state-
of-the-art vehicle ReID methods, a series of detailed studies are conducted to
explore the effectiveness of proposed method. All the experiments are con-
ducted on two vehicle ReID datasets: VeRi-776 [20] and VehicleID [18].

4.1 Datasets and Evaluation Metrics

– VeRi-776 [20]. The dataset is a large-scale urban surveillance vehicle dataset
for reID, which contains over 50,000 images of 776 vehicles across 20 cam-
eras. Each vehicle is from 2-18 cameras with various viewpoints, illumina-
tions and occlusions. In this dataset, 37,781 images of 576 vehicles are split
as a train set and 11,579 images of 200 vehicles are employed as a test set.
A subset of 1,678 images in the test set generates the query set.

– VehicleID [18]. It is a widely-used vehicle reID dataset, which contains
26267 vehicles and 221763 images in total. The training set contains 110,178
images of 13,134 vehicles. For the testing data, three subsets which contain
800, 1600, and 2400 vehicles are extracted for vehicle search in different
scales. During testing phase, one image is randomly selected from one class
to obtain a gallery set with 800 images, then the remaining images are all
utilized as probe images. Two other test sets are processed in the same
way.

– Evaluation Metrics. To measure the performance for vehicle reID task, the
CMC and mAP [17] are utilized as evaluation criterions. For each query,
its average precision (AP) is computed from its precision-recall curve. And
mAP is the mean value of average precisions across all queries.

4.2 Implementation Details

For the translation module, the model is trained in the pytorch [24]. We utilize
the Adam optimizer [14] with β1 = 0.5 and β2 = 0.999. The initial learning
rate is 0.0001 for the first 100 epochs and linearly decays to the learning to
0 over the next 100 epochs. The batch size is 16. For the feature learning
network, we implement the proposed vehicle reID model in the Matconvnet
[28] framework. SGD [2] is employed to update the parameters of the network
with with a momentum of µ = 0.0005 during the training procedure on both
VehicleID and VeRi-776. The batch size is set to 16. Besides that, the learning
rate of the first 40 epochs is set to 0.1 while the last 25 is 0.01.

4.3 Comparison with the state-of-the-art methods

4.3.1 Comparison on VeRi-776

The results of the proposed method is compared with state-of-the-art methods
on VeRi-776 dataset in Tables 1 2, which includes: (1) LOMO [15]; (2) DGD



[40]; (3) GoogLeNet [41] (4) FACT+Plate-SNN+STR [19]; (5) NuFACT+Plate-
REC [20]; (6) PROVID [20]; (7) Siamese-Visual [26]; (8) Siamese-Visual+STR
[26]; (9) Siamese-CNN+Path-LSTM [26]; (10) OIFE+ST [31]; (11) VAMI [48];
(12) VAMI+ST [48]. From the Tables 1 2, it should be noted that the pro-
posed method achieves the best performance among the compared with meth-
ods with rank-1 = 91.71%, mAP = 68.05% on VeRi-776, which acquires the
highest mAP and rank-1 among all methods under comparisons. More details
are analyzed as follows.

Firstly, the proposed AGNet obtains much better performance than those
hand-crafted feature representation methods, such as LOMO [15] and DGD
[40], which achieves 58.41 and 50.13 points in mAP improvements, respectively.
This verifies that the features obtained from deep model are more robust
than the hand-crafted feature that are severely affected by the complicated
environment.

Second, compared with those methods that learn multi-view features, the
proposed also show satisfactory performance. For instance, compared with
VAMI, our method has a gain of 17.92 in terms of mAP and 14.68 in terms
of rank-1 accuracy. This is because that our method eliminates background
interference information. It strongly proves that the bias between camera has
a serve influence on the vehicle reID task.

Thirdly, although our proposed method only utilizes visual information, it
also has significant improvements when compared with methods with spatio-
temproal information. such as FACT+Plate-SNN+STR [19], PROVID [20],
Siamese-Visual+STR [26], Siamese-CNN+Path-LSTM [26], OIFE+ST [31]
and VAMI+ST [48], the proposed method has higher mAP, rank-1 and rank-5
than them, which demonstrates that our AGNet could extract more discrimi-
native features without other information besides the vehicle images.

4.3.2 Comparison on VehicleID

There are 9 methods are compared with our proposed method, which are (1)
LOMO [15]; (2) DGD [40]; (3) VGG+T [18]; (4) VGG+CCL [18]; (5) Mixed
DC [18]; (6) FACT [20]; (6) NuFACT [20]; (7) OIFE [31]; (8) VAMI [48]; (9)
TAMR [7]. Table .. illustrates the rank-1, rank-5 and mAP of our method
and other comparison methods on VehicleID. Firstly, it can be observed that
deep learning based methods obviously outperform traditional methods. And
compared with traditional methods LOMO [15] and DGD [40], the proposed
method has 55.75% and 30.71% gains in rank-1 on the test set 800, respectively.
The similar improvements also occur on other test sets. Secondly, Different
VeRi-776, there is no spatio-temporal labels in VehicleID. Hence, there are no
methods that consider the spatio-temporal information. All compared methods
utilize the appearance information only from vehicle images. The proposed
method outperforms all deep learning based methods under comparison on
the test sets with different sizes on VehicleID, which obtains 75.51%, 73.60%,
70.08% in rank-1, respectively. And this also shows that our proposed method
could generate more distinct features for different vehicle reID datasets.



Table 1: Experimental results on VeRi-776. The mAP (%) and cumulative
matching scores (%) at rank 1, 5 are listed.

Method mAP Rank1 Rank5

LOMO [15] 9.64 25.33 46.48

DGD [40] 17.92 50.70 67.52

GoogLeNet [41] 17.81 52.12 66.79

FACT+Plate-SNN+STR [19] 27.77 61.64 78.78

NuFACT+Plate-REC [20] 48.55 76.88 91.42

PROVID [20] 53.42 81.56 95.11

Siamese-Visual [26] 29.48 41.12 60.31

Siamese-Visual+STR [26] 40.26 54.23 74.97

Siamese-CNN+Path-LSTM [26] 58.27 83.49 90.04

OIFE+ST [31] 51.42 68.30 89.70

VAMI [48] 50.13 77.03 90.82

VAMI+ST [48] 61.32 85.92 91.84

CCA 68.05 91.71 96.90

Table 2: Experimental results on VehicleID. The mAP (%) and cumulative
matching scores (%) at Rank 1, 5 are listed.

Method
Test size = 800 Test size = 1600 Test size = 2400

mAP Rank1 Rank5 mAP Rank1 Rank5 mAP Rank1 Rank5

BOW-SIFT [19] - 2.81 4.23 - 3.11 5.22 - 2.11 3.76

LOMO [15] - 19.76 32.14 - 18.95 29.46 - 15.26 25.63

DGD [40] - 44.80 66.28 - 40.25 65.31 - 37.33 57.82

VGG+T [18] - 40.4 61.7 - 35.4 54.6 - 31.9 50.3

VGG+CCL [18] - 43.6 64.2 - 42.8 66.8 - 32.9 53.3

Mixed DC [18] - 49.0 73.5 - 42.8 66.8 - 38.2 61.6

FACT [20] - 49.53 67.96 - 44.63 64.19 - 39.91 60.49

NuFACT [20] - 48.90 69.51 - 43.64 65.34 - 38.63 60.72

OIFE [31] - - - - - - - 67.0 82.9

VAMI [48] - 63.12 83.25 - 52.87 75.12 - 47.34 70.29

TAMR [7] 67.64 66.02 79.71 63.69 62.90 76.80 60.97 59.69 73.87

CCA 78.89 75.51 91.14 76.53 73.60 86.46 73.11 70.08 83.20

4.4 Evaluation of proposed method

To validate the necessity of the proposed method, some ablation experiments
are conducted. The comparison results on VeRi-776 and VehicleID are pre-
sented in Table 3 and Table 4. “Original” means the the training set is origi-
nal samples while “Transfer” is the generated samples. “Rigid” represents the
training network doesn’t employ the STN module and attention module, which
is divided into two parts from resnet50 directly. “Part-n” is the descriptor of



i-th branch. “global” means the descriptor is only composed of the features
from global branch.

Table 3: Performance of features fusion on VeRi-776. The mAP (%) and cu-
mulative matching scores (%) at Rank 1, 5 are listed.

Descriptor mAP Rank1 Rank5

global 56.71 86.55 92.14

original-Rigid-Part1 48.15 81.58 90.04

original-Rigid-Part2 47.51 81.10 90.88

original-Rigid-All 61.19 87.24 93.32

original-AANet-Part1 50.77 83.07 92.01

original-AANet-Part2 50.41 82.24 92.19

original-AANet-All 65.45 89.92 94.39

transfer-AANet-Part1 54.04 86.94 93.74

transfer-AANet-Part2 53.78 86.59 93.98

transfer-AANet-All 68.05 91.71 96.90

Firstly, the difference of “Original-AANet-All” and “Transfer-AANet-All”
is only the source images of training sets. Hence, compared with “Original-
AANet-All”, the “Transfer-AANet-All” has gains of 2.6%, 1.65% in mAP and
rank-1 on VeRi-776, which demonstrates that through the cross-camera trans-
fer network, the bias of different cameras has dropped. Besides that, because
our descriptor is learned by multiple branches in the proposed network, we
design an ablation experiment analyzing the effectiveness of global, part and
fusion feature. “Transfer-AANet-All” is our proposed method that combines all
features for reID task. “Transfer-AANet-Part1” and “Transfer-AANet-Part2”
denote the features are extracted by the upper branch and lower branch,
respectively. As reported in Table 3 and Table 4, it is worth noting that,
for each group, the match rates of all independent features are lower than
the combination features, such as the “global”, “Transfer-AANet-Part1”‘and
, “Transfer-AANet-Part2”. However, the match rate further increases slightly
when adding the part features and global features. For instance, on VeRi-776,
compared with “global”, “Transfer-AANet-All” improves 11.34% in mAP. It
shows that combining with global and part feature can provide more useful
information.

To verify the effectiveness of localization model, we remove the STN module
and attention module in the AANet and divide the vehicle image into two
regions directly as rigid parts. On VeRi-776, compared with “original-Rigid-
All”, “original-AANet-all” has gains of 2.34%, 2.68% in mAP and rank-1,
respectively. For VehicleID, we also observe improvements of 2.34%, 2.11%,
3.61%, 1.2% in mAP on test set with the size of 800, 1600, 2400 and 3200.
All of these show that the proposed AANet could learn more discriminative
features for vehicle reID.



Table 4: Performance of features fusion on VehicleID. The mAP (%) and cu-
mulative matching scores (%) at Rank 1, 5 are listed.

Descriptor
Test size = 800 Test size = 1600

mAP Rank1 Rank5 mAP Rank1 Rank5

global 69.78 66.51 79.25 67.71 64.79 78.86

original-Rigid-Part1 67.82 65.69 74.28 65.37 63.38 71.22

original-Rigid-Part2 67.43 65.25 73.98 64.64 62.60 72.57

original-Rigid-All 74.93 71.45 88.32 72.36 69.34 82.41

original-AANet-Part1 69.22 66.69 77.00 67.44 64.81 75.37

original-AANet-Part2 70.64 67.97 79.15 68.57 64.11 74.19

original-AANet-All 77.27 73.79 89.98 74.47 71.07 84.90

transfer-AANet-Part1 71.78 69.47 79.43 70.17 68.06 76.60

transfer-AANet-Part2 71.24 68.87 78.93 70.10 67.91 76.67

transfer-AANet-All 78.89 75.51 91.14 76.53 73.60 86.46

Descriptor
Test size = 2400 Test size = 3200

mAP Rank1 Rank5 mAP Rank1 Rank5

global 64.43 60.68 74.37 62.88 59.79 71.53

original-Rigid-Part1 63.42 61.50 68.85 61.96 60.21 66.78

original-Rigid-Part2 63.48 61.66 68.54 61.69 59.94 66.61

original-Rigid-All 67.58 63.60 81.01 67.91 65.21 75.71

original-AANet-Part1 65.30 62.75 73.07 65.12 63.13 77.35

original-AANet-Part2 64.77 62.45 71.62 63.17 60.96 69.50

original-AANet-All 71.19 68.01 81.54 69.11 66.18 78.17

transfer-AANet-Part1 68.04 66.06 73.85 66.12 64.23 71.40

transfer-AANet-Part2 67.65 65.62 73.64 66.16 64.28 71.36

transfer-AANet-All 73.11 70.08 83.20 70.75 67.98 79.35

4.5 Visualization of Results

Furthermore, to illustrate the validate of the proposed CCA, some experiment
results on VehicleID are visualized. Examples are shown in Fig.6. In Fig.6,
There are two group results on VehicleID. For each group, the left column
shows query images, while images on the right-hand side are the top-5 results
obtained by the proposed CCA. Vehicle images with green border are right
results while other images are wrong results. For all results, the number on the
left-top means Vehicle ID. The same Vehicle ID represents the same vehicle.
The Camera ID is the camera number that images are captured. From Fig.6,
it is significant that our proposed CCA has high accuracy and good robustness
to different viewpoints and illumination.



Query Image top-1                                                                              top5 Query Image top-1                                                                              top5

Fig. 6: The retrieval results on the VehicleID. The left column shows query
images while the images of right-hand side are retrieval results obtained by
proposed method

5 Conclusion

In this paper, we propose cross-camera adaptation framework for better smooth-
ing the bias between different cameras, which reduces the influence of illumi-
nation, background and resolution for vehicle reID task by transferring images
into a common space and learning a powerful discriminative feature. Besides
that, AANet is designed to obtain a series of local regions for vehicle reID,
which focuses on locating the meaningful parts while suppressing background.
In this paper, it could be observed that appearances of various viewpoints are
totally different, which has a big impact on training the reID model. Hence,
in our feature studies, we aim to focus on the extension of dataset that uti-
lizes the generative adversarial network to generate the various viewpoints of
vehicle images to improve the performance of reID model.
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