Skip to main content
Log in

Entropy estimation for robust image segmentation in presence of non Gaussian noise

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this work we introduce a new approach for robust image segmentation. The idea is to combine two strategies within a Bayesian framework. The first one is to use a Markov Random Field (MRF), which allows to introduce prior information with the purpose of preserve the edges in the image. The second strategy comes from the fact that the probability density function (pdf) of the likelihood function is non Gaussian or unknown, so it should be approximated by an estimated version, and for this, it is used the classical non-parametric or kernel density estimation. This two strategies together lead us to the definition of a new maximum a posteriori (MAP) approach based on the minimization of the entropy of the estimated pdf of the likelihood function and the MRF at the same time, named MAP entropy estimator (MAPEE). Some experiments were conducted for different kind of images degraded with impulsive noise and other non-Gaussian distributions, where the segmentation results are very satisfactory comparing them with respect to recent robust approaches based on the fuzzy c-means (FCM) segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arbelaez P, Fowlkes MM, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898—916

    Google Scholar 

  2. Banerjee A, Maji P (2020) A spatially constrained probabilistic model for robust image segmentation. IEEE Trans on Im Proc 29:4898–4910

    Google Scholar 

  3. Berlinet A, Devroye L (1994) A comparison of kernel density estimates. Publications de l’Intitut de Statistique de l’Université, de Paris 38(3):3–59

    MathSciNet  MATH  Google Scholar 

  4. Bertaux N, Frauel Y, Réfrégier P, Javidi B (2004) Speckle removal using a maximum-likelihood technique with isoline gray-level regularization. J Opt Soc Am A 21(12):2283–2291

    Google Scholar 

  5. Besag JE (1974) Spatial interaction and the statistical analysis of lattice systems. J Royal Stat Soc Ser B B-36:192–236

    MathSciNet  MATH  Google Scholar 

  6. Besag JE (1986) On the statistical analysis of dirty pictures. J Royal Stat Soc Ser B B-48:259–302

    MathSciNet  MATH  Google Scholar 

  7. Bouman C, Sauer K (1993) A generalizaed Gaussian image model for edge-preserving MAP estimation. IEEE Trans Image Process 2(3):296–310

    Google Scholar 

  8. Bresson X, Chan TF (2008) Non-local unsupervised variational image segmentation models, UCLA Report, Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

  9. Chen K, Lin X, Hu X, Wang J, Zhong H, Jiang L (2020) An enhanced adaptive non-local means algorithm for Rician noise reduction in magnetic resonance brain images. BMC Med Imaging 20:2

    Google Scholar 

  10. Clausi DA, Yue B (2004) Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery. IEEE Trans Geosci Remote Sens 42(1):215–228

    Google Scholar 

  11. Coupé P, Manjón J, Fonov V, Pruessner J, Robles M, Collins DL (2011) Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage 54(2):940–954

    Google Scholar 

  12. De la Rosa JI, Villa JJ, Araiza MA (2007) Markovian random fields and comparison between different convex criteria optimization in image restoration. Proc. XVII Int. Conf. on Electronics, Communications and Computers, (CONIELE-COMP)(IEEE, Cholula, Pue. (Mex))

  13. De la Rosa JI, Fleury G (2002) On the kernel selection for minimum-entropy estimation. Proc of the IEEE Instrumentation and Measurement Technology Conference(IEEE, Anchorage, AK (USA)) 2:1205–1210

    Google Scholar 

  14. De la Rosa JI, Fleury G, Davoust M-E (2003) Minimum-entropy, pdf approximation and kernel selection for measurement estimation. IEEE Trans on Instrumentation and Measurement 52(4):1009–1020

    Google Scholar 

  15. De la Rosa JI (2004) Convergence of minimum-entropy robust estimators: Applications in DSP and instrumentation. Proc. of the XIV International Conference on Electronics, Communications, and Computers - CONIELECOMP’04(IEEE, Veracruz, Ver. (Mexico)), pp 98–103

  16. De la Rosa JI, Villa JJ, De la Rosa E, González E, Gutiérrez O, Escalante N, Ivanov R, Fleury G (2013) MAP entropy estimation: Applications in robust image filtering. Journal of the European Optical Society-Rapid Publication 8:13047, 7

    Google Scholar 

  17. Devroye L (1989) A note on the usefulness of superkernels in density estimation. Ann Stat 20:2037–2056

    MathSciNet  MATH  Google Scholar 

  18. Devroye L (1989) The double kernel method in density estimation. Annales de l’Institut Henri Poincaré 25:533–580

    MathSciNet  MATH  Google Scholar 

  19. Devroye L, Krzyzák A (1999) On the Hilbert kernel density estimate. Statistics and Probability Letters 44:299–308

    MathSciNet  MATH  Google Scholar 

  20. Devroye L (1997) Universal smoothing factor selection in density estimation: Theory and practice. Test 6:223–320

    MathSciNet  MATH  Google Scholar 

  21. Gawish A, Fieguth P, Marschall S, Bizheva K (2014) Undecimated hierarchical active contours for oct image segmentation. Proc. of IEEE International Conference on Image Processing (ICIP), Paris, pp 882–886

  22. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans Pattern Anal Machine Intell PAMI-6:721–741

    MATH  Google Scholar 

  23. Gong M, Liang Y, Shi S, Ma J (2013) Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans Image Process 22(2):573–584

    MathSciNet  MATH  Google Scholar 

  24. Guo F, Wang X, Shen J (2016) Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation. IET Image Process 10 (4):272–279

    Google Scholar 

  25. Gutiérrez O, De la Rosa I, Villa J, González E, Escalante N (2012) Semi-Huber potential function for image segmentation. Opt Express 20 (6):6542–6554

    Google Scholar 

  26. Gutiérrez O, De La Rosa I, Villa J, González E, Escalante N (2012) New approach of entropy estimation for robust image segmentation. In: Proc. XIV International Autumn Meeting on Power, Electronics and Computing (ROPEC2012)(Colima, Colima, Mexico Nov. 2012), pp 387–392

  27. Gutiérrez O, Serna A, De la Rosa JI, Villa J, González E (2014) MATLAB Graphic user interface for image segmentation using Markov random fields and entropy estimation with parallel processing. Proc. of the IEEE XXIV International Conference on Electronics, Communications, and Computers - CONIELE-COMP 2014(Cholula, Puebla, Mexico, 26th - 28th Feb. 2014), pp. 231–236

  28. Held K, Kops ER, Krause BJ, Wells WM III, Kikinis R, Müller-Gärtner HW (1997) Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 16(6):878–886

    Google Scholar 

  29. Hesamian MH, Jia W, He X, Kennedy P (2019) Deep learning techniques for medical image segmentation: Achievements and challenges. J Digit Imaging 32:582–596

    Google Scholar 

  30. http://people.brunel.ac.uk/~eesthhm/Hongying%20Meng%20Publications.html (Accessed 13th july 2020)

  31. Iftikhar MA, Jalil A, Rathore S, Hussain M (2014) Robust brain MRI denoising and segmentation using enhanced non-local means algorithm. Int Journ on Image Sys and Tech 24:52–66

    Google Scholar 

  32. Krishnamachari S, Chellappa R (1997) Multiresolution Gauss-Markov random field models for texture segmentation. IEEE Trans Image Process 6 (2):251–267

    Google Scholar 

  33. Lee CP (2005) Robust image segmentation using active contours: Level set approaches, Ph.D, Thesis, Dept. of Electrical and Computer Engineering. North Carolina State University

  34. Lei T, Jia X, Zhang Y, He L, Meng H, Nandi AK (2018) Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans on Fuzzy Systems 26(5):3027–3041

    Google Scholar 

  35. Lei X, Li Y, Zhao N, Zhang Y (2010) Fast segmentation approach for SAR image based on simple Markov random field. J Syst Eng Electron 21(1):31–36

    Google Scholar 

  36. Li SZ (2009) Markov random field modeling in image analysis. Springer, Berlin

    MATH  Google Scholar 

  37. Li Y, Gong P (2005) An efficient texture image segmentation algorithm based on the GMRF model for classification of remotely sensed imagery. Int J Remote Sens 26(22):5149–5159

    Google Scholar 

  38. Loader CM (1999) Bandwidth selection: classical or plug-in? Ann Stat 27(3):415–438

    MathSciNet  MATH  Google Scholar 

  39. Marroquin J, Mitter S, Poggio T (1987) Probabilistic solution of ill-posed problems in computational vision. J Amer Statist Assoc 82(397):76–89

    MATH  Google Scholar 

  40. Masry E (1983) Probability density estimation from sampled data. IEEE Trans on Information Theory IT-29(5):697–709

    MathSciNet  MATH  Google Scholar 

  41. Milanfar P (2013) A tour of modern image filtering. IEEE Signal Process Mag 30(1):106–128

    Google Scholar 

  42. Pronzato L, Thierry E (2000) A minimum-entropy estimator for regression problems with unknown distribution of observation errors. MaxEnt 2000(Edited by A. Mohammad-Djafari, American Institute of Physics, 2000), pp 169–180

  43. Pronzato L, Thierry E (2001) Entropy minimization of parameter estimator with unknown distribution of observation errors. Proc of the IEEE International Conference in Acoustics, Speech and Signal Processing(IEEE, 2001) 6:3993–3996

    Google Scholar 

  44. Pronzato L, Thierry E, Wolsztynski E (2004) Minimum entropy estimation in semi-parametric models: a candidate for adaptive estimation? In: Kapellerput N, Di Bucchianico A, Laüter H, Wynn HP (eds) Proc. of the 7th Int. Workshop on Advances in Model-Oriented Design and Analysis. Physica, Heidelberg, pp 125–132

  45. Riaz F, Rehman S, Ajmal M, Hafiz R, Hassan A, Aljohani NR, Nawaz R, Young R, Coimbra M (2020) Gaussian mixture model based probabilistic modeling of images for medical image segmentation. IEEE Access 8:16846–16856

    Google Scholar 

  46. Rivera M, Ocegueda O, Marroquin JL (2007) Entropy-controlled quadratic Markov measure field models for efficient image segmentation. IEEE Trans Image Process 16(12):3047–3057

    MathSciNet  Google Scholar 

  47. Sauer K, Bouman C (1992) Bayesian estimation of transmission tomograms using segmentation based optimization. IEEE Trans Nucl Sci 39(4):1144–1152

    Google Scholar 

  48. Szeliski R (1990) Bayesian modeling of uncertainty in low-level vision. Int J Comput Vision 5(3):271–301

    Google Scholar 

  49. Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruction. IEEE Trans Image Process 16(2):349–366

    MathSciNet  Google Scholar 

  50. Terrell GP (1990) The maximal smoothing principle in density estimation. J Am Stat Assoc 85:470–477

    MathSciNet  Google Scholar 

  51. Terrell GP, Scott DW (1985) Oversmoothed nonparametric density estimation. J Am Stat Assoc 80:209–214

    Google Scholar 

  52. Wachinger C, Brennan M, Sharp GC, Golland P (2017) Efficient descriptor-based segmentation of parotid glands with nonlocal means. IEEE Trans on Biomed Eng 64(7):1492–1502

    Google Scholar 

  53. Wachinger C, Fritscher K, Sharp GC, Golland P (2015) Contour-driven atlas-based segmentation. IEEE Trans on Med Imag 34(12):2492–2505

    Google Scholar 

  54. Wang G, Li W, Zuluaga MA, Pratt R, Patel PA, Aertsen M, Doel T, David AL, Deprest J, Ourselin S, Vercauteren T (2018) Interactive medical image segmentation using Deep Learning with image-specific fine tuning. IEEE Trans on Med Imag 37(7):1562–1573

    Google Scholar 

  55. Wang G, Zuluaga MA, Li W, Pratt R, Patel PA, Aertsen M, Doel T, David AL, Deprest J, Ourselin S, Vercauteren T (2019) DeepIGeoS: A Deep interactive geodesic framework for medical image segmentation. IEEE Trans Pattern Anal Mach Intell 41(7):1559–1572

    Google Scholar 

  56. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans on Im Proc 13(4):600–612

    Google Scholar 

  57. Wolsztynski E, Thierry E, Pronzato L (2004) Minimum entropy estimation in semi parametric models. In: Proc. of the IEEE International Conference in Acoustics, Speech and Signal Processing - ICASSP’2004(IEEE, Montreal, Canada), vol 2, pp 1045–1048

  58. Wolsztynski E, Thierry E, Pronzato L (2005) Minimum entropy estimators in semiparametric regression problems. In: Brest F, Jansen J, Lenca P (eds) Proc. 11th Int. Symp. on Applied Stochastic Models and Data Analysis, pp 882–889

  59. Wolsztynski E, Thierry E, Pronzato L (2005) Minimum entropy estimation in semi parametric models. Signal Process 85:937–949

    MATH  Google Scholar 

  60. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    Google Scholar 

  61. Zhao Z, Cheng L, Cheng G (2014) Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation. IET Image Process 8(3):150–161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José I. de la Rosa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Rosa, J.I., Gutiérrez, O., Villa-Hernández, J. et al. Entropy estimation for robust image segmentation in presence of non Gaussian noise. Multimed Tools Appl 80, 6991–7021 (2021). https://doi.org/10.1007/s11042-020-09999-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09999-9

Keywords

Navigation