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Abstract

We propose in this work a graph-based approach for automatic public health analysis using
social media. In our approach, graphs are created to model the interactions between features
and between tweets in social media. We investigated different graph properties and methods
in constructing graph-based representations for population health analysis. The proposed
approach is applied in two case studies: (1) estimating health indices, and (2) classifying
health situation of counties in the US. We evaluate our approach on a dataset including more
than one billion tweets collected in three years 2014, 2015, and 2016, and the health surveys
from the Behavioral Risk Factor Surveillance System. We conducted realistic and large-
scale experiments on various textual features and graph-based representations. Experimental
results verified the robustness of the proposed approach and its superiority over existing
ones in both case studies, confirming the potential of graph-based approach for modeling
interactions in social networks for population health analysis.

Keywords Graphs - Large-scale computing - Health on the web - Population health -
Geo-tagged tweets
1 Introduction

Population health measurement reflects the dynamic state of physical, mental, and social
well-being of a community [18, 43]. Understanding population health is thus essential for
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governments to identify health-related concerns and develop strategic healthcare programs
for communities.

Traditionally, population health data is collected via telephone interviews or postal ques-
tionnaires. The benefits of this approach include the simplicity of data collection and the
reliability of responses. This is mostly because the questionnaires have been designed by
professionals, and the population of interest have been actively and intentionally targeted.
Despite these advantages, traditional health surveys exhibit two major limitations: expen-
sive cost and time-consuming. For instance, the budget spent for the Behavioral Risk Factor
Surveillance System (BRFSS) survey in Florida, US over 5 years 2011 - 2015 was more than
3.5 million USD,' and the BRFSS reports in 2017 were typically based on the data collected
in or before 2015,> which, in turn, could lead to delayed public health policy decisions.

Social behaviors of a population provide cues for the health status of that population.
The challenge here is how to obtain large-scale and diversified datasets of such behaviors in
an automatic and low-cost manner. Fortunately, with the advent of the social networks that
allow billions of people to easily connect and communicate, social media has become an
abundant and diversified source of information for many healthcare studies [26]. Examples
include tracking influenza-like illness in populations from Google search queries [23], local-
izing illnesses by region [44], or measuring life satisfaction of populations using Twitter
data [50]. Importantly, several studies have shown that data collected from social networks
(e.g., Twitter) highly correlates to the results achieved by phone-based surveys [19, 35].
Moreover, community behaviors can be analyzed through social media in real-time and
at extremely low cost. Therefore, social media, if exploited properly, can provide impor-
tant insights into understanding people’s health behaviors at both individual and population
level. Our work is also motivated by this trend, i.e., exploiting social media as an infor-
mation source for automatic population health analysis. More specifically, we aim at using
geo-tagged tweets to predict and classify population health behaviors and outcomes.

Conventional social media-based health analysis methods extract health-related infor-
mation from the content of the social media data, e.g., from textual features [14, 15] or
built via relationships between the features [35, 36]. As shown in many studies in psy-
chology and sociology [5, 53], interactions in social networks are important factors to
understanding behaviors of communities [2]. However, this sort of information has not been
explored in social media-based healthcare research. In this paper, we propose a graph-based
approach taking into account these interactions for population health analysis. Specifically,
our contributions are four-fold as follows,

®  We propose to model interactions in social media data using graph theory. Graphs offer
a natural way to capture relationships in data and is often used to represent interactions
in social networks. However, existing approaches build graphs from social networks’
users and hence require expensive computation to handle large-scale networks. In
contrast, our graphs are constructed in a more manageable and scalable manner. Specif-
ically, we propose two graph structures called inter-feature and inter-tweet graphs built
via the coincidence of features and interactions between groups of tweets. To the best
of our knowledge, our graph construction methods are novel and our work is the first
taking into account interactions in social media data using graphs for population health
analysis.

®  We investigate various graph-based representations defined on the two proposed graph
structures for representing social media data at population scale.

Uhttps://bit.1y/2JjWqgn
Zhttps://www.cdc.gov/brfss/
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® We apply our model in two case studies: (1) estimating health indices, and (2)
classifying health situation of counties in the US.

® We conduct extensive experiments on a large-scale dataset consisting of more than one
billion geo-tagged tweets over three years 2014, 2015 and 2016. Experimental results
show that our proposed approach outperformed existing ones in both case studies.

Parts of this paper have been published in our recent work [38]. Compared with the
previous version, this work makes several extensions. First, in this version, we propose inter-
tweet graphs for modelling response behaviour, e.g. like/reply, in social networks. Second,
we extend our experiments with the case study of health status classification and provide
detailed insights with in-depth discussion.

2 Related work
2.1 Public health analytics with social media

Social media has been serving as a rapid vehicle for public health analytics. Social media
data has also been proven to be superior to traditional means due to time- and cost-
effectiveness [11]. Applications of social media in public healthcare can be found in
detection and monitoring of health issues including social well-being, positive mental
health, and self-rated health [6], in forecasting public health trends [33], and in developing
prevention programs [31].

The correlations between social media and clinical datasets haven been demonstrated
in various ways [4, 14, 19, 44]. For instance, in [25] Facebook likes were used to predict
mortality, diseases, and lifestyle behaviors of 214 counties across the US and the prediction
results were shown to be comparable with those obtained from the BRFSS. In [22], tweets
were used to build sentiment scores which were found to highly relate to self-rated mental
health, sleep quality, and heart disease at census tract level for the city of San Diego over
the period of 2014-12-06 to 2017-05-24. In [13], natural language processing tools were
applied on social media data, e.g., Twitter, Reddit, and Facebook, to answer public health
research questions.

Social media offers an effective means for tracking public health attitudes and behaviors.
Applications include tracking disease-relevant behaviors and sentiments [49], understand-
ing patient experiences and healthcare quality [48], building disease surveillance systems,
supporting public health tracking and prevention [1]. For instance, in [44], health-related
tweets with geo-tags were used with the Ailment Topic Aspect Model for tracking influenza
over time. The tracking results were benchmarked against the influenza database from the
Centers for Disease Control and Prevention (CDC). In [42], health-related tweets were
combined with Wikipedia articles for identifying public health concerns in populations.
Similarly, in [28], tweets were used to monitor the rate of alcohol consumption across
regions in the UK. In [15], linguistic analysis was applied on Twitter’s data and provided
a finer-grained representation of population health. In the same manner, tweets have been
found useful in prediction of depression in populations [16]. Tweets also have been incor-
porated with prior knowledge for tracking illnesses, measuring behavioral risk factors, or
localizing illnesses by geographic regions [44].

Social media also plays an important role in preventive healthcare. For example,
launched in 2019, Facebook’s Preventive Health [31] provided preventive health recom-
mendations customized to users’ age and sex. This demonstrates social media’s capacity
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in encouraging healthy behaviors to a wide population, including vulnerable and isolated
ones. Most recently, social media has been integrated to support managing the COVID-19
pandemic in both preparedness and emergency response [32]. As shown in [27], in diffi-
cult situations, e.g., during the MERS outbreak in South Korea where the information from
public health officials was untrustworthy, social media could be considered as an alternative
source.

Besides the supportive role, social media has also been found to have detrimental influ-
ences on public health [41], e.g., on suicidal behavior [51]. Likewise, social media has
been considered to be a main source spreading health misinformation, such as the COVID-
19 conspiracy theories [3]. Such information could make people reluctant to engage in
health-protective behaviors [3].

2.2 Social media data types

Literature has shown the role of various social media data types in population health analysis
[37]. Analysis of textual data can provide user demographics, personality, psychological
state, and mental health situation. To encode the textual data, textual features are extracted.
Those features capture both the content and emotion from the language used in social media
[15, 36, 46].

In prediction of population health indices through social media, linguistic style is often
employed. Linguistic style is an indicator of emotion in the language and has been discov-
ered to highly relate to health outcomes [15, 36]. For instance, when reading depressing
stories, judges tend to get depressed accordingly. Based on these findings, a software
package, namely Linguistic Inquiry and Word Count (LIWC), was developed to extract
psycho-linguistic features from textual data, e.g., documents or tweets [45]. Basically, given
a text to be analyzed, the LIWC software first goes through every word of the text, makes
comparison between each word with a pre-built dictionary [45], then calculates the per-
centage of each LIWC category occurring in the given text, and finally results in a list of
categories with their rates.

Various studies have adopted LIWC features to problems of social media-based health
analysis [15, 50]. For instance, Culotta [15] performed linguistic analysis of activities on
Twitter to estimate health indices from County Health Rankings and Roadmaps. Experimen-
tal results showed significant correlations (with 6 of the 27 indices) between the language
that people used and their health situation. This study also indicated that tweets better cap-
tured the health status of a community than demographics. In addition, the linguistic style
features were found to be predictive of well-being of the US counties [50].

Another popular type of textual features in analysis of health-related concerns is latent
topics. Topics capture the content of the textual data and can be learned using topic modeling
techniques. A commonly used topic modeling method is called latent Dirichlet alloca-
tion (LDA) [7]. LDA is an unsupervised technique using Bayesian probabilistic framework
to learn latent topics from a corpus. As shown in [50], LDA topics derived from tweets
were more useful than LIWC in predicting life satisfaction in the US counties. Moreover,
when combined with LIWC, demographic and social-economic controls (age, sex, ethnicity,
income, and education), prediction performance was significantly improved.

Spatio/temporal-referenced data have also been utilized in public healthcare. In partic-
ular, accumulated geo-tagged data can be harnessed to determine health issues, monitor
the spread of infectious diseases, and analyze the effects of clinical concepts on public
health. For instance, geo-tagged data was employed to estimate geographic densities of
clinical concepts in regions of interest [20], cluster groups of data having similar location
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characteristics [47], and build recommendation systems to advise locations of interest [55].
In [36], temporal information encoded in tweets was augmented with textual features to
predict sleep patterns of populations.

2.3 Graph-based representation of interactions

Interactions among users are an important aspect of social networks and are often modeled
as graphs. For instance, Chun et al. [12] constructed a graph to model the interactions in
Cyworld social network. In this graph, nodes were users and edges between two users repre-
sented communications (writing/responding) between them. Edge weights were computed
based on the frequency of communications. Similarly, Leskovec and Horvitz [30] created
a communication network for the Microsoft Messenger instant-messaging system in which
each user was represented by a node and an edge was formed between nodes if the corre-
sponding users exchanged at least one message during the month of observation. In [53],
Wilson et al. argued that, as observed from Facebook data, not all social links represented
active social relationships. They then recommended to build interaction graphs with a con-
straint on the minimum number of interaction events (e.g., respond, like) within a stipulated
window of time.

The graph models in the existing works, e.g., [30, 53] cannot be applied to our problem
for two reasons. First, modeling tweets as nodes and pairwise interactions between tweets
as edges is not scalable, especially when dealing with large-scale datasets, e.g., our dataset
contains billions of tweets. Second, tweets themselves do not have identities while nodes in
a graph require such information.

3 Proposed approach

As presented in the introductory section, interactions in social media data could be an impor-
tant implication of behaviors of communities and thus may play a role in predicting health
status of populations. In this section, we first describe how to model interactions in social
media data using graph theory (Section 3.1). We then introduce graph-based representations
of social media data at population scale (Section 3.2). Fig. 1 illustrates the flowchart of our
approach.

Social media
data of
populatio H Graph-based

population
_ representation

Linear
regression

Feature Graph
extraction construction

Case study 2: Health situation classification

Graph
convolutional s
neural net

Health situation:
good vs bad

Fig. 1 Flowchart of our approach
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3.1 Graph construction

We define interactions in social media data in two ways: via coincidences of features and
responses/likes between groups of tweets. We then model these interactions in so-called
inter-feature and inter-tweet graphs.

Specifically, let TP = {tlp . tlf,’ } denote a set consisting of N tweets collected from
a population P. Suppose that each tweet LP € TP can be described by a feature vector

= [flp . fP ] e RY, e.g., d = 78 psycho-linguistic features in LIWC.

3.1.1 Inter-feature graph

Having the low-level feature vectors {f . ¢ } we define the interaction 17 k> Where
Jj. k € {l, ..., d} between two arbitrary features J and k using the radial basis function (RBF)
as,

1 & 1 & ?
emow| - (R34 4 308) 0

i=1 i=1

where o is a free parameter which controls the width of the RBF and is used to normal-
ize feature distances into probabilistic metrics. In our implementation, o is set to 0.1. We
empirically found inter-feature graphs achieved the similar yet best overall performance for
o € [0.1, 1.0]. Note that our features were also normalized into [0,1].

As shown in (1), the representative value for each feature j is accumulated over all the
tweets in P. Therefore, by using the RBF, I; P « capture the coincidence of features j and k,

and thus represent the inter-feature relatlonshlps within the population P. The larger I 1S,
the more correlated feature j to feature k is.

We represent the interactions between features in P via a graph G* (VP ,EP ) where
VP = {vf s eees v5 } is the set of vertices, each vertex corresponds to a feature and ET is the
set of undirected edges defined as,

EP ={(vF o) e VP x VIS > 60} 2)

where 6 is a user-defined threshold. In our experiment, 8 was set so that edges with the top
20% of I P were maintained in the graph, i.e., only top 20% of highly correlated features
were con51dered We found graphs whose number of edges take 20-30% of the total number
of connections performed best on our dataset.

3.1.2 Inter-tweet graph

A straightforward approach to model pairwise interactions between tweets is to consider
each tweet as a node in a graph and interactions as edges. However, this approach is not
scalable. In addition, tweets do not have identities to be nodes. To overcome these issues, we
cluster a training tweet set using a K-means algorithm wherein each tweet is encoded by its
feature vector and the dissimilarity between two feature vectors is measured by Euclidean
distance. This step results in a set of K centroids that are then used in both training and
testing. Given a tweet set T* of a population P (TF can be either a training or test set),
we cluster 77 into K subsets TIP, T,f, ie, TP = Uf:l TJ.P. The partition is done by
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assigning each tweet in T to its nearest centroid from the K centroids. In our implemen-
tation, we empirically set K = 50. We observed that there were subtle changes in the
performances of inter-tweet graphs while this setting achieved the best overall performance
across all years in our dataset.

We define the interaction S; p « between two subsets TP and TP as the proportion of the
interactions between tweets in these two subsets. Specifically,

P P
Zz,ﬁeT].P Zt,{’eTkP r (tm »In )

T NIT7 |

STk = 3)

where r (tF,1F) = 1if 1 is a response/like to 1,7 or vice versa, and r (1F,1F) = 0,
otherwise; |TJ.P | and |TkP | is the cardinality of T/.P and Ty, P respectively.

We then construct a graph G* (VP JEF ) in which each node ij € V? corresponds to a
subset TP Like inter-feature graphs, two nodes v f and v,f are connected (by an undirected

edge) if thelr interaction S « > 0. We note that the subsets TP are deterministic in their
feature space and thus they 1mp1y identities.

3.2 Graph-based population representation

Given the population P, a graph G” (V¥ E”) is constructed from either features or tweets
as above. The graph-based representation of P is denoted as h”. In the following sub-
sections, we present different ways to define h”.

3.2.1 Graph properties

By using graph properties, h” can be represented as a vector of V' dimensions, i.e., h” =

hf s s hﬁ/ P where h f are computed from properties of vertices v;’ . In this work, we
investigate commonly used graph properties including Closeness Centrality, Betweenness
Centrality, and PageRank [39].

Closeness Centrality (CC) The closeness centrality of a node v JP € VP is defined as the
reciprocal of the sum of the shortest path distances from v jP to all other nodes [21],

p_ Py _ VPl -1
hj ccC (Uj ) vaevpi[uf} ; (U}D, Uf) 4)

where [ ( ) Vg ) is the length of the shortest-path from node vP to node vk

Intuitively, h’.) represents the proximity of vf to other nodes in the graph G’. For
instance, if the graph G? is built based on tweets, [ ( ) Vg ) represents how often tweets
in cluster j interact with tweets in cluster k. If G* is constructed from features, / ( v,f )

is calculated from the similarity between feature j and feature k. The shorter [ ( ) Vg )

the more direct v¥ ; can be linked to vk , e.g., more interactions exist between cluster j and
cluster k. In other words, & f captures the centrality (or sparsity) of the graph G*.
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Betweenness Centrality (BC) The betweenness centrality of a node vf e VP is the sum
of the fraction of all-pairs shortest paths that pass through v f’ [10],

P P, P
ﬂ(vk,vl |Uj)

§)
p (vl v)

ht = BC (uj’) - ¥

P P_yP
v LYy eV

where (v{, vlp) is the number of shortest paths from v,f to le and 8 (v,f, le|ij) is the

number of those paths passing through vf other than v,f) and le. It v,f = le, B (v,f, vP) =

P P\ _ e P P P P PP\ _
Bl vf) = I, and if v} € (vl vf },ﬂ(vk,vl Ivj)—O.
As shown in (5), in contrast to closeness centrality, betweeness centrality takes into
account indirect connections.

PageRank (PR) PageRank [40] was developed for measuring the importance of websites
on the Internet. This method makes use of an underlying assumption that more important
websites are likely to receive more links from others. In our case, we define the PageRank
property of a node vf e VP as:

hf:PR(vf): Z

v,fe./\/(vf)

PR (v()

L(7) ©

where A/ (v;’ ) is the set of all nodes linking to node vJI.J and L(v,iD ) is the number of links
from v,f’ .

3.2.2 Graph kernels

Graph-based representations h” defined in Section 3.2.1 are created from the graph G* of
the population P. Alternatively, one may consider the similarity among different graphs in
a training dataset in creating graph-based representations. Graph kernels have been proven
an effective tool to calculate the similarity among graph structures [9]. The core idea of
graph kernels is to decompose a graph into sub-graphs, then applies a kernel to measure the
similarity between these sub-graphs.

In general, let P = {P;} be the set of populations in a training dataset and G = {G "/} be
the set of graphs constructed using the methods presented in Section 3.1. The graph-based

representation h? of a population P is a vector of |P| dimensions, ht = [h‘lu A hﬁ,‘]

where
nr =K (6".6") =6 (6").9(c")) (M)

where GPi € G and ¢ is a function that maps a graph G into the Hilbert space H that
supports the structure of inner products (., .).

The advantage of using kernel methods is that the mapping function ¢ is not necessary
to be determined explicitly. This is because the kernel function /C can be conveniently com-
puted using inner products. Intuitively, KC measures the similarity between G¥ and G%i.
Note thatif G© = G%i, K (G, G*7) =1 (i.e., GPand G/ are isomorphic).
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Different kernels make use of different decomposition techniques and similarity mea-
sures [9]. For instance, shortest path kernel [8], computing the shortest path lengths between
all pairs of nodes in two graphs G and G’ is defined as follows,

K(G.G') = Ty, 0,e6Zu, e (L(viivj) . 1 (v, v))) ®)

where [ (vi, v j) is the length of the shortest path between node v; and v}, and « is calculated
as,

Uit (v, vp) =1 (v, vp) )

K (Z (v,-, Uj) ,1 (v;”, v;l)) = {
We note that computing the shortest paths between all pairs of nodes in a graph of n

nodes can be done efficiently in O (n®) using the Floyd-Warshall algorithm. In this work, we
investigate two kernels: shortest path (SP) [8] and Weisfeiler-Lehman (WL) subtree [52].

0 otherwise

4 Experiments
4.1 Case studies

We applied our approach in two case studies: 1) estimating health indices, and 2) classifying
health situation of counties in the US.

4.1.1 Case study 1. Population health index estimation

We conducted an across-county prediction task to estimate health indices. Technically, this
is a regression task where, given a county P, input is a feature vector extracted from that
county and output is a population health index. In this case study, three primary health
indices in BRFSS: “generic health”, “physical health”, and “mental health” were estimated.

We employed a linear regression model for the estimation task. Specifically, the health

index y* of a population P can be estimated as follows,
v =wThP +e (10)

where h” is defined in Section 3.2, ¢ ~ N (0, 62) is a Gaussian error term, and w is the
weight vector that can be learned directly from training data.

4.1.2 Case study 2. Population health situation classification

This case study aims to classify the health status of a given population into two classes:
good or bad [54]. Like case study 1, input of each county is the feature vector extracted
from that county and output is a health status (good vs bad).

We adopted the deep graph convolutional neural network (DGCNN) proposed in [57] for
classifying population health status. DGCNN allows end-to-end learning on original graphs
without preprocessing while demonstrating state-of-the-art performance on many tasks. To
apply DGCNN on our graphs, we used a single network structure consisting of four graph
convolutional layers, two 1-D convolutional layers followed by a dense layer, and a softmax
layer as output. Activation functions include the hyperbolic tangent function (tanh) in graph
convolutional layers and rectified linear units (ReLU) in other layers. Stochastic gradient
descent with the Adam updating rule [29] was employed in training the network.
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4.2 Dataset

We crawled 1,129,928,183 tweets in years 2014, 2015, and 2016, with associated US geo-
codes. We also collected 152,853,038 tweets made in 2013 for learning latent topics.

The collected tweets were associated with the US counties by mapping their geo-codes to
the Federal Information Processing System (FIPS) codes using the cartographic boundary
files provided by the US Census Bureau in 2013. There were 3,221 different geo-codes (i.e.,
3,221 counties) in the US. Note that we used only tweets with associated latitude/longitude
coordinates, those with self-reported location information but without coordinates were not
considered in our study.

We used BRFSS survey reports as the ground truth. The surveys were conducted by
the CDC via telephone interviews of the US residents regarding to their health-related
risk behaviors, chronic health conditions, and health outcomes. BRFSS contains more than
400,000 interviews conducted each year and is currently the largest health survey system,
not only in the US but also in the world. The questionnaires in BRFSS surveys are catego-
rized into core sections including current health status, number of healthy days, inadequate
sleep, chronic health conditions, and optional modules such as healthcare access or social
context.

For estimating health indices (case study 1), we used the annual health ranking data of
counties in BRFSS surveys including i) poor or fair health - percent of adults that report
fair or poor health, ii) poor physical health days - the average number of reported physically
unhealthy days per month, and iii) poor mental health days - the average number of reported
mentally unhealthy days per month. The ranges of the health indices in the ground-truth are
as follows: [4, 51] for poor or fair health, [1, 10] for poor physical health, and [1, 10] for
poor mental health.

For classitying health situation (case study 2), for each health index, top 500 counties
with highest scores were assigned to “good”, and top 500 counties with lowest scores were
assigned to “bad”.>

4.3 Computational resources

To process large-scale data in data aggregation, county mapping, feature extraction (from
billions of tweets), and graph construction, we employed Spark on top of Hadoop [56].
Spark is a computing platform which enables distributed and parallel computations on a
cluster scaled up to 8,000 nodes. Furthermore, Spark is an in-memory based system which
is convenient to keep data in memory for subsequent processing, thus allows much faster
computations than disk-based systems like Hadoop MapReduce [17]. Specifically, Spark
Hadoop cluster comprises 8 CentOS 7.2 physical machines, each of which is equipped with
Intel Xeon ES-26700 (8 cores, 16 threads) CPU, 128 GB RAM, Intel Xeon Phi Coprocessor
(60 cores), and 24TB HDD.

5 Results

There are several technical contributions proposed in the paper, including two graph con-
struction methods (Section 3.1), different graph-based representations (Section 3.2), and

3https://www.usnews.com/news/healthiest-communities/rankings
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two textual feature types: LIWC and latent topics. Different combinations of these pro-
posals result in different performances. In the following subsections, we investigate such
combinations in each case study and compare our proposed approach with existing works.

5.1 Case study 1. Population health index estimation

We used 70% of the counties (2,255 counties) in every year for training the regression
model in (10) and the remainder (966 counties) for testing it. To measure the performance
of health index estimation, we used Spearman’s rank correlation coefficient (or Spearman’s
rho [34]): rho = 1 — i(zrf;:fﬁ where n is the number of counties and d; is the difference
between the estimated and actual health index of the i-th county.

We first evaluated inter-feature graphs in population heath index estimation. Specifically,
we constructed inter-feature graphs using LIWC and latent topics respectively. For LIWC,
all 78 features were used. For latent topics, we varied the number of latent topics from 10
to 100. We observed that the performance of health index estimation slightly changed when
the number of latent topics was within 50-80 and reached the highest performance when the
number of topics was 80. The performance then dropped when the number of latent topics
was outside this range. Therefore, 80 topics were used in all following experiments.

Table 1 shows the performances in health index estimation of inter-feature graphs built
on LIWC and latent topics respectively. For each feature type (LIWC/Topics), we evaluate
all graph properties presented in Section 3.2. Experimental results show that, among graph
properties, Betweeness Centrality (BC) performed best on both LIWC and latent topics. In
addition, WL subtree kernel outperformed SP kernel. Therefore, to make Table 1 easy to
follow, only the results of BC property and WL subtree kernel (i.e., the best representa-
tions of graph properties and graph kernels) are included. As shown in Table 1, BC slightly
but consistently outperforms WL subtree kernel in all cases. In addition, BC achieves the
highest performance across all health indices, years, and on both LIWC and latent topics.

We then combined graph-based representations with features used to build the graphs,
e.g., BC property + LIWC, and found that these combinations made no improvements on
the use of LIWC. In contrast, the combination of BC property and latent topics gained
significant advance and also achieved the best overall performance across all years and on
all health indices.

We compared our graph-based approach with other non-graph-based ones. Culotta in
[15] established a seminal in the field of population health analysis through social media.
In [15], tweets within the same county were gathered into an aggregated tweet on which
features (LIWC and latent topics) were extracted. This approach is referred to as non-graph
approach and has been widely adopted in following studies such as [24, 37, 50]. We re-
implemented the non-graph approach and evaluated it on our collected data. Comparison
results, presented in Table 1, show that graph-based methods, including graph properties
and graph kernels, significantly outperform the non-graph ones. In particular, compared
with the non-graph approach, the graph-based representations built on inter-feature graphs
of latent topics and BC property improved the health index estimation performance on all
health indices and in all years, and the improvement was up to 14% in estimation of mental
health in year 2014.

We evaluated the performances in health index estimation of inter-tweet graphs on LIWC
and latent topics and reported results in Table 2. In general, inter-tweet graphs show lower
performances in comparison with inter-feature graphs on all health indices, years, and on
both LIWC and latent topics. Unlike inter-feature graphs, BC property and WL subtree
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Table 1 Case study 1: health index estimation performance (Spearman’s rho) of inter-feature graphs vs
existing work

Features Methods

2014

2015

2016

Generic Physical Mental Generic Physical Mental

Generic Physical Mental

LIWC

Topics
Latent

Non-graph [15] 0.67
WL subtree [52] 0.69
BC property [10] 0.69
WL subtree [52] 0.69
+LIWC

BC property [10] 0.69
+LIWC

Non-graph [15] 0.69
WL subtree [52] 0.33
BC property [10] 0.64
WL subtree [52] 0.67
+ Latent topics

BC property [10] 0.70
+ Latent topics

0.59
0.60
0.62
0.60

0.62

0.65
0.27
0.53
0.61

0.66

0.55
0.55
0.58
0.55

0.58

0.68
0.27
0.51
0.64

0.69

0.58
0.62
0.62
0.62

0.62

0.62
0.28
0.61
0.62

0.67

0.52
0.56
0.57
0.56

0.57

0.59
0.25
0.53
0.59

0.65

0.52
0.52
0.56
0.52

0.56

0.62
0.22
0.48
0.62

0.65

0.57 0.50 0.49
0.57 0.50 0.49
0.58 0.52 0.51
0.57 0.50 0.49

0.58 0.52 0.51

0.57 0.55 0.59
0.24 0.18 0.18
0.55 0.45 0.43
0.54 0.49 0.52

0.63  0.58 0.61

For graph-based methods, only BC property’s results and WL subtree kernel’s results are presented as BC
property and WL subtree kernel respectively perform best among other graph properties and kernels. The
index ranges are as follows: [4, 51] for generic health, [1, 10] for physical health, and [1, 10] for mental

health. In each year and on each health index, best performances are highlighted

kernel with inter-tweet graphs obtained comparable performances. For instance, as shown in
Table 2, WL subtree kernel is more dominant than BC property in year 2014 but less favor
in years 2015 and 2016. Compared with the non-graph approach, both WL kernel and BC
property defined on latent topics showed superior performance. Like inter-feature graphs,

Table 2 Case study 1: health index estimation performance (Spearman’s rho) of inter-tweet graphs vs
existing work

Features Methods

2014

2015

2016

Generic Physical Mental Generic Physical Mental

Generic Physical Mental

LIWC

Latent

topics

Non-graph [15] 0.46
WL subtree [52] 0.46
BC property [10] 0.46

Non-graph [15] 0.49
WL subtree [52] 0.54
BC property [10] 0.53

0.37
0.37
0.36

0.36
0.43
0.43

0.31
0.33
0.33

0.31
0.38
0.37

0.30
0.33
0.34

0.36
0.37
0.37

0.22
0.24
0.25

0.26
0.27
0.26

0.13
0.17
0.17

0.22
0.23
0.24

0.33 0.15 0.11
0.34 0.17 0.15
0.34 0.20 0.17

0.35 0.26 0.23
0.38 0.26 0.27
0.37 0.27 0.29

For graph-based methods, only BC property’s results and WL subtree kernel’s results are presented as BC
property and WL subtree kernel respectively perform best among other graph properties and kernels. The
index ranges are as follows: [4, 51] for generic health, [1, 10] for physical health, and [1, 10] for mental

health. In each year and on each health index, best performances are highlighted
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Fig.2 Learning curves of our graph convolution model on the training and validation set. We used the model
trained at 50 epochs in evaluations and comparisons

the graph-based representations built on latent topics and BC property improved 18% in

estimation of mental health in year 2016, in comparison with the non-graph approach.

5.2 Case study 2: population health situation classification

As shown in our experiments, inter-feature graphs significantly outperformed inter-tweet
graphs on both LIWC and latent topics. Therefore, in this case study, we focused on

Table 3 Case study 2: classification performance of inter-feature graphs on three health indices: generic,
physical, and mental

Year Features Generic Physical Mental

Acc Sen Spe Mean Std Acc Sen Spe Mean Std Acc Sen Spe Mean Std

AUC AUC AUC AUC AUC AUC

2014 LIWC 0.87 0.74 1.00 0.92 0.02 0.83 0.67 1.00 0.91 0.04 0.80 0.61 1.00 0.91 0.05

Latent 0.87 0.75 1.00 0.94 0.03 0.82 0.65 0.99 0.90 0.05 0.82 0.65 1.00 0.88 0.06
topics

2015 LIWC 0.85 0.71 1.00 091 0.04 0.82 0.64 1.00 0.90 0.04 0.80 0.61 1.00 0.88 0.05

Latent 0.84 0.69 1.00 0.93 0.04 0.81 0.62 1.00 0.89 0.05 0.77 0.54 1.00 0.88 0.06
topics

2016 LIWC 0.84 0.68 1.00 0.91 0.05 0.78 0.57 1.00 0.88 0.06 0.77 0.55 1.00 0.89 0.06

Latent 0.80 0.60 1.00 0.88 0.04 0.79 0.59 1.00 0.87 0.06 0.77 0.54 1.00 0.86 0.05
topics

We report the classification performance of our inter-feature graphs built upon LIWC and latent topics in
years 2014, 2015, and 2016. In each year and on each health index, best mean AUC performances are

highlighted
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Fig.3 Visualization of learning features in graph convolution. Each data point corresponds to a county whose
the graph is built on LIWC: a input graph features, b features learned after 50 epochs. Features are created
by concatenating node features in graphs and presented in 2D using Principal Component Analysis. The
most two prominent components are selected for this visualization. As shown, compared with input features,
learned features are better separated
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inter-feature graphs only. Similarly to case study 1, we also experimented inter-feature
graphs on both LIWC and latent topics. For evaluation, we performed 10-fold validation.
For each health index, based on the ground truth status scores, the top/bottom 500 counties
were considered as true positives (i.e., good) and true negatives (i.e., bad). We show the
learning curve of our graph convolution model in Fig. 2.

Since this problem is a binary classification problem, we measured the classification
performance using,

TP+TN
Accuracy =
TP+TN+FP+FN
o TP
Sensitivity = ————
TP+ FN
specificity — — N
pecificity = TN L FP

where T P/T N is the number of cases correctly classified as good/bad and F P/F N is the
number of cases incorrectly classified as good/bad.

In addition, for each health index, we generated Receiver Operating Characteristic (ROC)
curves, representing the trade-off between the sensitivity and specificity, in different train-
ing/test splits of the 10-fold setting. We then calculated the mean and standard deviation of
Area Under the Curve (AUC) of the ROC curves across all training/test splits.

We report the performances of inter-feature graphs built on LIWC and latent topics in
case study 2 in Table 3. Experimental results show that, compared with physical and mental
health, generic health was always classified at the highest accuracy in all years and on both
LIWC and latent topics. The classification accuracy of generic health reached its highest
performance in year 2014 at 94% of AUC on latent topics. Physical health took the second
place and got its highest position at 91% of AUC on LIWC in 2014. Unlike case study 1,
both LIWC and latent topics performed similarly in most cases. Table 3 also shows that the
classification was performed consistently across all experimental settings, e.g., the standard
deviation of AUC, denoted as “std AUC”, < 6%. We further validate the potential of graph
convolution method by illustrating the distributions of features learned by the method in
Fig. 3.

Like case study 1, we compared our graph-based approach (i.e., combination of inter-
feature graphs and DGCNN) with non-graph ones. For the non-graph methods, e.g., [15],
we created features for a population by aggregating features from individual tweets of that

Table 4 Case study 2: comparison of our method with existing ones using mean AUC in three years 2014,
2015, and 2016

Features Methods 2014 2015 2016

Generic Physical Mental Generic Physical Mental Generic Physical Mental

LIWC  Non-graph [15] 0.80 0.76 075 0.74 0.71 0.70  0.63 0.65 0.61
Ours 0.92 0.91 091 091 0.90 0.88 0.91 0.88 0.89

Latent  Non-graph [15] 0.85 0.80 081 0.82 0.82 076 0.75 0.76 0.76
topics  Ours 0.94 0.90 088  0.93 0.89 0.88  0.88 0.87 0.86

We report the performance of our method and the work in [15] on both LIWC and latent topics. In each year
and on each health index, best performances are highlighted
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population. These features were then fed to a logistic classifier for classifying the population
health status. The same evaluation protocol (i.e., 10-fold validation with the same train-
ing/test split per fold) was applied. We present the comparison results in Table 4. As shown
in our results, our graph-based approach significantly outperforms the non-graph ones (up
to 18% on LIWC and 13% on latent topics).

6 Conclusion

This paper proposes a novel approach for population health analysis through social media.
In our approach, interactions in social media data are modeled in graphs and defined via
the coincidences of features and responses/likes between groups of tweets. We investigated
various graph-based representations. We applied the proposed approach in two tasks: health
index estimation and health situation classification of counties in the US, and conducted
extensive experiments on a large-scale dataset benchmarked by the Behavioral Risk Factor
Surveillance System of the US. Experimental results verified the importance of interactions
in social media for health analysis at population scale. Specifically, our approach achieved
state-of-the-art performance on both the tasks while inter-feature graphs built on latent top-
ics performed best on health index estimation. Studying the interactions between different
feature types and combination of various social media data types, e.g., text, images, etc.,
will be our future work.
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