
 

Instructions for use

Title Deterioration level estimation via neural network maximizing category-based ordinally supervised multi-view canonical
correlation

Author(s) Maeda, Keisuke; Takahashi, Sho; Ogawa, Takahiro; Haseyama, Miki

Citation Multimedia tools and applications, 80(15), 23091-23112
https://doi.org/10.1007/s11042-020-10040-2

Issue Date 2020-11-20

Doc URL http://hdl.handle.net/2115/83370

Rights This is a post-peer-review, pre-copyedit version of an article published in Multimedia tools and applications. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s11042-020-10040-2

Type article (author version)

File Information main_final.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Noname manuscript No.
(will be inserted by the editor)

Deterioration level estimation via neural network maximizing
category-based ordinally supervised multi-view canonical
correlation

Keisuke Maeda · Sho Takahashi · Takahiro
Ogawa · Miki Haseyama

Received: date / Accepted: date

Abstract A deterioration level estimation method via neural network maximizing
category-based ordinally supervised multi-view canonical correlation is presented in
this paper. This paper focuses on real world data such as industrial applications and
has two contributions. First, a novel neural network handling multi-modal features
transforms original features into features effectively representing deterioration levels
in transmission towers, which are one of the infrastructures, with consideration of only
correlation maximization. It can be realized by setting projection matrices maximizing
correlations between multiple features into weights of hidden layers. That is, since the
proposed network has only a few hidden layers, it can be trained from a small amount
of training data. Second, since there exist diverse characteristics and an ordinal scale
in deterioration levels, the proposed method newly derives category-based ordinally
supervised multi-view canonical correlation analysis (Co-sMVCCA). Co-sMVCCA
enables estimation of effective projection considering both within-class divergence
and the ordinal scale between classes. Experimental results showed that the proposed
method realizes accurate deterioration level estimation.
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1 Introduction

With the development of hardware devices and advent of the big data era, convolutional
neural networks (CNNs) have been effectively trained by using a large-scale dataset
[10,45] such as ImageNet and have achieved accurate image classification [12]. In the
field of information science, although many researchers have focused on large-scale
datasets, many recent studies have been conducted by using not images for generic
object recognition but real data such as agricultural images [20], medical images [23]
and images for infrastructure management [24] in order to efficiently support experts
in several fields. In studies using images for infrastructure management, automatic
detection of specific distresses [4] such as potholes and automatic deterioration level
estimation [39] have attracted much attention. Since human errors often occur in
manual deterioration level estimation due to ambiguity in the decisions of inspectors,
there is an urgent need to realize automatic and quantitative analysis of the levels by
using statistical approaches and machine learning technologies [38].

In image classification and object recognition targeting these real data, since
preparation of a large number of training images is difficult, not full-scratch CNNs
but some transfer learning-based approaches have been adopted [8, 9]. Specifically,
transfer learning includes fine-tuning and CNN-based feature extraction. In order
to fine-tune CNNs for a target domain, parameters optimized by using a large-scale
dataset, which is often called a source domain, are used as initial values of the network
parameters. On the other hand, CNN-based features calculated from an intermediate
layer of CNNs pre-trained by the large-scale dataset are also useful for several tasks.
Unfortunately, there is a limitation to improvement of the performance of these transfer
learning-based approaches due to the following two problems.

– Since visual characteristics of real data such as images for infrastructure manage-
ment (distress images) are more different than those of images used for generic
object detection, simple transfer learning frameworks have difficulty in extracting
discriminant features for deterioration level estimation [6].

– Estimation of deterioration levels is not a basic classification task. Concretely,
there exists an ordinal scale between deterioration levels, and diverse visual char-
acteristics exist within the same levels. Therefore, in order to obtain discriminant
ability, consideration of the ordinal scale between classes and the within-class
divergence is essential.

To solve the above problems, construction of a trainable framework from a small num-
ber of training images that can calculate high discriminant features with consideration
of the ordinal scale and the divergence is needed.
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In many applications, there exist not only image data but also their corresponding
metadata. For example, in a web application such as twitter, there are images, text
description and movies uploaded by users. Moreover, multi-modal data have also been
widely used in RGB and depth saliency fields [7,46]. Also, in the field of infrastructure
maintenance, engineers not only take distress images but also record their correspond-
ing text data including supplemental information related to deterioration levels such
as materials of structures and distress locations when they manually decide the deteri-
oration levels [25]. From the above, the multi-modal information, distress images and
text data, becomes effective evidence for manual judgment in the actual maintenance
inspection. Several multi-modal approaches for maintenance inspection of infrastruc-
tures have been proposed. For example, Im et al. proposed a method for crack direction
detection by using visual and audio information obtained by sensors [17], and Kasa-
hara et al. proposed an unsupervised learning approach for automation of a hammering
test [21]. Since determination of the existence of a defect becomes feasible by using
sounds returned after a hammer strike on a structure’s surface, they collaboratively
used audio and position information. However, methods target only one distress such
as a crack. On the other hand, there exist some multi-modal methods corresponding to
more complex tasks such as classification of multiple types of distress and classifica-
tion of road surface conditions. In [27], by using images and text information recorded
in the inspection, multiple types of distress including cracks were classified on the
basis of deep learning. Furthermore, Jonsson et al. performed spectral analysis by
using infrared images that enabled classification of area segments of weather-related
road surface conditions such as icy, wet, or snowy, that is, they treated with multiple
wavelength data [19]. In addition, the method in [2] enabled prediction of the quality
of a road using a triaxial accelerometer and a gyroscope. Furthermore, they created a
real-time android application called “RoadSense” and that is useful for road manager
to evaluate the states of their road networks. In analysis of transmission towers, which
this paper focuses on, the method proposed in [37] used an unmanned aerial vehi-
cle and images recorded by the vehicle. Detection of regions of transmission towers
was realized by object detection approaches, Faster R-CNN [32] and Yolo-v3 [31].
Although several uni-modal approaches [36] for deterioration level estimation based
on only visual features such as color information obtained from images have been
proposed, our approach proposed in this work and [28] is the first work focusing on
multi-modal information for deterioration level estimation in transmission towers.

It has been reported in the fields of multi-modal signal processing that consid-
eration of the canonical correlation between heterogeneous features obtained from
multi-modal information enables calculation of features with high discriminant abil-
ity [40]. Furthermore, in the case of treatment with a small number of training images,
it has been verified that a neural network maximizing canonical correlation was more
effective than feature transformation by using many hidden layers such as general deep
learning approaches [26]. Therefore, we can realize enhancement of the discriminant
ability by constructing a neural network that can train projections maximizing canon-
ical correlation with consideration of both the ordinal scale and the within-class
divergence.

In this paper, we propose a novel neural network maximizing category-based
ordinally supervised multi-view canonical correlation. Figure 1 shows an overview of
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Table 1 Example of text data. Distress images taken by inspectors have inspection records such as office:
A and transmission line: C.

Inspection item Inspection record Num. of dimension
Office A, B, ... 𝐷1

Transmission line C, D, ... 𝐷2
Area E, F, ... 𝐷3

Salt damage A1, A2, ... 𝐷4
Type of towers Angle towers, pipe towers, ... 𝐷5
Voltage (kV) 275, 66, ... 1

Height of towers (m) 120, 50, ... 1
Inspection date 2006, 1995, ... 1
Coating year 2005, 1980, ... 1

Latitude 34.8, 35.0, ... 1
Longitude 139.0, 138.9, ... 1

Sum - 𝑑𝑡 =
∑5

𝑞=1 𝐷𝑞 + 6

the proposed neural network which consists of the following three procedures: feature
extraction, correlation maximization via category-based ordinally supervised multi-
view canonical correlation (Co-sMVCCA) and neural network-based classification.
The contributions of our method are twofold.

– In order to tackle the first issue, we extract CNN-based visual features via the sim-
plest transfer learning and text features from text data. Furthermore, we estimate
projection matrices that maximize canonical correlation between heterogeneous
features. The derivation of features with high discriminant ability becomes feasible
by setting the projection matrices to the intermediate layer of our novel network.

– In order to tackle the second issue, we derive a novel canonical correlation tech-
nique that can consider the ordinal scale between classes and the within-class
divergence. Specifically, we newly derive Co-sMVCCA, which is an extended ver-
sion of sMVCCA [22], in order to obtain discriminant features for deterioration
level estimation. Co-sMVCCA can estimate the optimal projection matrices that
can transform original features to high discriminant features since it not only adds
a term considering the ordinal scale between classes to the objective function of
our CCA but also calculates covariance matrices between samples belonging to
the same classes.

In summary, construction of a neural network realizing effective transformation from
a small amount of training data by maximizing canonical correlation is the first contri-
bution of this paper. Derivation of Co-sMVCCA, which can consider the ordinal scale
and the within-class divergence is the second contribution. The proposed neural net-
work with a novel CCA-based approach, Co-sMVCCA, realizes accurate deterioration
level estimation.

The rest of the paper is organized as follows. First, an explanation of the proposed
method is presented in Section 2. In Section 3, we show experimental results. Finally,
we show conclusions in Section 4.
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2 Neural Network Maximizing Category-based Ordinally Supervised
Multi-view Canonical Correlation

The neural network maximizing category-based ordinally supervised multi-view
canonical correlation is shown in this section. As shown in Fig. 1, the proposed
method consists of three procedures: heterogeneous feature extraction (2.1), maxi-
mization of canonical correlation (2.2) and classification (2.3).

2.1 Heterogeneous Feature Extraction

In this subsection, we explain extraction of visual features via transfer learning of
CNNs and extraction of text features from recorded text data. Extraction of class label
features used in the training phase for calculation of the projection matrices is also
explained. Since the number of samples of distress images is small as mentioned
in Section 1, we use pre-trained CNN-based visual features. In fact, detection and
classification problems in the field of infrastructure management have often been
solved by the use of CNN features pre-trained by using a large-scale dataset for
generic object recognition [8]. Furthermore, in the detection of myocardial infarction
using ECG images [1], fine-tuning of the CNN model and output features from the
middle layer of the CNN model have been used when extracting visual features from
the images. Thus, the feature calculation in studies using real data is considered to
be valid. Given training images 𝑛 (𝑛 = 1, 2, ..., 𝑁; 𝑁 being the number of training
images), we input them into a CNN model pre-trained by using a large-scale dataset,
ImageNet. We extract visual features from an average pooling layer of the CNN model.
In addition, we obtain visual features 𝒗𝑛 ∈ R𝑑𝑣 by applying a simple dimension
reduction approach, principal component analysis (PCA), to the obtained features in
order to prevent over-fitting. Note that application of PCA to CNN features is generally
used for dimension reduction [14, 41].

Next, given a training image 𝑛, we calculate text features 𝒕𝑛 ∈ R𝑑𝑡 (𝑑𝑡 =
∑5

𝑞=1 𝐷𝑞+
6) from text information that the image has. There are various kinds of variables
in text information as shown in Table 1, and we explain our encoding approach
below. When we calculate text features from nominal qualitative variables such as
office and transmission line, we extract one hot vector for each inspection item.
Note that we regard office, transmission line, area, salt damage and type of tower
as nominal qualitative variables in the proposed method. Thus, we calculate 𝐷𝑞-
dimensional binary features from the 𝑞 (= 1, 2, ..., 5) th record. Specifically, an
element corresponding to the inspection record that the image 𝑛 has becomes one.
Otherwise, non-corresponding 𝐷𝑞 − 1 elements become zero. On the other hand,
when continuous numeric variables are given, we directly use their original values
without specific processing. Then we extract six-dimensional features from numeric
variables. Therefore, the total dimension of text features 𝑑𝑡 is

∑5
𝑞=1 𝐷𝑞 + 6.

Furthermore, in only the training phase, we also calculate class label features
𝒍𝑛 ∈ R𝐶 . Note that 𝐶 is the number of class labels. The class label features consist
of binary values, and an element corresponding to their own class is one. The other
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elements become zero. Consequently, Co-sMVCCA adopts three modalities, visual,
text and class label features.

CNN-based features are often used in the field of infrastructure management.
However, detection performance and classification performance are limited due to the
simplest transfer learning using only CNN-based features. Specifically, since these
methods extract CNN-based features from distress images and perform classification,
the performance depends on the representation ability of visual features, but there is a
limitation of the potential of visual features calculated from the pre-trained network.
Therefore, in order to obtain discriminant features, multi-modal feature integration
via the proposed network including canonical correlation maximization is effective
for deterioration level estimation.

2.2 Co-sMVCCA-based Correlation Maximization

Derivation of Co-sMVCCA, which can consider the ordinal scale and class informa-
tion, for correlation maximization is shown in this subsection. Co-sMVCCA has the
following two strong points: (i) dealing with continuously varying deterioration levels
and (ii) considering the within-class divergence. Co-sMVCCA estimates the optimal
projection 𝒑𝑘 ∈ R𝑑𝑘 . Note that 𝑘 ∈ {𝑣, 𝑡, 𝑙} represents the modality. In Co-sMVCCA,
we can integrate these heterogeneous features by maximizing the following objective
function:

arg max
𝒑𝑣 ,𝒑𝑡 ,𝒑𝑙

∑
𝑘1∈{𝑣,𝑡 ,𝑙 }

∑
𝑘2∈{𝑣,𝑡 ,𝑙 }, 𝑘2≠𝑘1

𝒑⊤𝑘1
𝑪𝑘1 ,𝑘2 𝒑𝑘2√

𝒑⊤𝑘1
𝑪𝑘1 ,𝑘1

𝒑𝑘1

√
𝒑⊤𝑘2

𝑪𝑘2 ,𝑘2
𝒑𝑘2

, (1)

where 𝑪𝑘1 ,𝑘2 is a covariance matrix considering the ordinal scale and the within-class
divergence between the modalities 𝑘1 and 𝑘2. Its details are shown below. In addition,
𝑪𝑘1 ,𝑘2

is the covariance matrix between the modalities 𝑘1 and 𝑘2. Since the solution of
the optimization problem does not depend on the scale of 𝒑𝑘1 , Eq. (1) can be rewritten
as follows:

arg max
𝒑𝑣 ,𝒑𝑡 ,𝒑𝑙

∑
𝑘1∈{𝑣,𝑡 ,𝑙 }

∑
𝑘2∈{𝑣,𝑡 ,𝑙 },𝑘2≠𝑘1

𝒑⊤𝑘1
𝑪𝑘1 ,𝑘2 𝒑𝑘2 . (2)

s.t. 𝒑⊤𝑘1
𝑪𝑘1 ,𝑘1

𝒑𝑘1 = 1 (𝑘1 ∈ {𝑣, 𝑡, 𝑙})

In our method, we define 𝑷 = [𝑷⊤
𝑣 , 𝑷

⊤
𝑡 , 𝑷

⊤
𝑙 ]⊤ ∈ R(𝑑𝑣+𝑑𝑡+𝐶)×(𝑑𝑝×3) . Note that 𝑑𝑝 (≤

min(𝑑𝑣 , 𝑑𝑡 , 𝐶)) represents the dimension of the transformed features via Co-sMVCCA.
Then Eq. (2) can be rewritten as

arg max
𝑷

trace(𝑷⊤𝑪𝑷) s.t. 𝑷⊤𝑪𝑷 = 𝑰, (3)

where

𝑪 =


0 𝑪𝑉𝑇 𝑪𝑉 𝐿

𝑪𝑇𝑉 0 𝑪𝑇 𝐿

𝑪𝐿𝑉 𝑪𝐿𝑇 0

 , (4)
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𝑪 =


𝑽𝑽⊤ 0 0

0 𝑻𝑻⊤ 0
0 0 𝑳𝑳⊤

 . (5)

Note that 𝑪𝑉𝑇 = 𝑪𝑇𝑉 , 𝑪𝑉 𝐿 = 𝑪𝐿𝑉 and 𝑪𝑇 𝐿 = 𝑪𝐿𝑇 . In addition, we use mean-
normalized feature matrices, 𝑽 = [𝒗1, 𝒗2, · · · , 𝒗𝑁 ], 𝑻 = [𝒕1, 𝒕2, · · · , 𝒕𝑁 ] and 𝑳 =
[𝒍1, 𝒍2, · · · , 𝒍𝑁 ], for solving the above problem. In general CCA-based methods, the
non-diagonal element of 𝑪 is simply calculated as general covariance 𝐸𝑛 (𝒗𝑛 𝒕𝑛⊤),
where 𝐸𝑛 (·) performs the average. However, a general covariance matrix cannot
consider both the ordinal scale of continuously varying deterioration levels and the
divergence of samples belonging to the same label. We therefore apply a weight matrix
𝑾 dealing with the ordinal scale to the non-diagonal covariance matrices of 𝑪. From
the above, in order to deal with the ordinal scale, we define 𝑪𝑉 𝐿 and 𝑪𝑇 𝐿 as follows:

𝑪𝑉 𝐿 = 𝑽𝑾𝑳⊤, (6)
𝑪𝑇 𝐿 = 𝑻𝑾𝑳⊤, (7)

where

𝑾𝑛1 ,𝑛2 = max(0, 1 − |𝑐𝑛1 − 𝑐𝑛2 |/𝜖), (8)

where 𝑾𝑛1 ,𝑛2 represents the (𝑛1, 𝑛2) th element of 𝑾, and 𝜖 is a parameter. Further-
more, 𝑐𝑛1 ∈ {1, 2, ..., 𝐶} is a class label (deterioration level) of the training image 𝑛1.
In addition, Eqs. (6) and (7) can be formulated due to the inspiration of the definition of
the within-class covariance matrix of discriminative CCA (DCCA) [34]. The weight
matrix with a size of 𝑁 × 𝑁 for construction of the within-class covariance matrix
of DCCA consists of binary values. Specifically, each element of the weight matrix
corresponding to the same class label becomes one, and the other elements become
zero. Then, although DCCA can effectively consider the covariance between samples
belonging to the same class, the weight matrix 𝑾 of Co-sMVCCA affects the covari-
ance matrix between two sets of samples when deterioration levels of the samples
are similar. That is, since Co-sMVCCA sets fuzzy weights according to the distance
between the levels as shown in Eq. (8), the matrix 𝑪 can be effectively obtained.

Furthermore, although these covariance matrices between class label features and
other features can consider label information, the covariance matrix 𝑪𝑉𝑇 between
visual and text features cannot consider label information. Thus, we adopt a novel
category-based covariance matrix inspired by [42]. Specifically, in order to consider
the within-class divergence, we newly derive the category-based covariance matrix
𝑪𝑉𝑇 as follows:

𝑪𝑉𝑇 = 𝛽𝐸𝑐⊂𝐶 (𝑪𝑠
𝑉𝑇 (𝑐)) + (1 − 𝛽)𝐸𝑐⊂𝐶 (𝑪𝑡

𝑉𝑇 (𝑐)), (9)

where

𝑪𝑠
𝑉𝑇 (𝑐) = 𝐸𝑛∈𝑐 (𝒗𝑛𝑾 (𝑛, 𝑛) 𝒕𝑛⊤), (10)

𝑪𝑡
𝑉𝑇 (𝑐) = 𝐸𝑛1 ,𝑛2∈𝑐,𝑛1≠𝑛2 (𝒗𝑛1𝑾 (𝑛1, 𝑛2) 𝒕𝑛2⊤). (11)

Note that 𝛽 (0 ≤ 𝛽 ≤ 1) is used as a parameter. Although general CCA-based
methods adopt a covariance matrix between multiple features calculated from the same
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(a) Class A (b) Class A (c) Class B

(d) Class B (e) Class C (f) Class C

Fig. 2 Examples of images [11] used in the proposed method.

sample, Co-sMVCCA focuses on the covariance matrix of visual and text features from
different samples belonging to the same class label in order to consider the within-
class divergence in Eq. (11). Furthermore, Eqs. (10) and (11) also include the weight
matrix 𝑾. Thus, Co-sMVCCA can deal with the ordinal scale between levels and
the within-class divergence. Therefore, it is expected that the definition provides the
projection matrix of effective feature transformation.

Finally, we solve the following generalized eigenvalue problem:

𝑪𝑷 = 𝜆(𝑪 + 𝛾𝑰)𝑷, (12)

where 𝛾 is a regularization parameter. The optimal projection �̂�𝑘 ∈ R𝑑𝑘×𝑑𝑝 for the
feature transformation is obtained by solving the above problem. The matrix �̂�𝑘 is
constructed by using the eigenvectors of the 𝑑𝑝-largest eigenvalues. Then we can
calculate the projected features as follows:

𝑿𝑣 = �̂�⊤
𝑣 𝑽 ∈ R𝑑𝑝×𝑁 , (13)

𝑿𝑡 = �̂�⊤
𝑡 𝑻 ∈ R𝑑𝑝×𝑁 , (14)

where 𝑿𝑣 = [𝒙1
𝑣 , 𝒙

2
𝑣 , ..., 𝒙

𝑁
𝑣 ] and 𝑿𝑡 = [𝒙1

𝑡 , 𝒙
2
𝑡 , ..., 𝒙

𝑁
𝑡 ]. Then we can obtain the

projected features 𝒙𝑛 = [(𝒙𝑛𝑣 )⊤, (𝒙𝑛𝑡 )⊤]⊤ of the 𝑛 th sample. The calculated features
are used for training of a classifier. Consequently, Co-sMVCCA enables estimation
of the effective projection considering both the ordinal scale and the within-class
divergence.

2.3 Classification via Extreme Learning Machine

Training of an Extreme Learning Machine (ELM) is explained in this subsection [16].
An ELM is one of the feedforward neural networks and can be trained from a small
number of training images. Note that the architecture of an ELM is similar to that of
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Algorithm 1 Correlation maximization via Co-sMVCCA.
Require: 𝑽 ∈ R𝑑𝑣×𝑁 , 𝑻 ∈ R𝑑𝑡×𝑁 and 𝑳 ∈ R𝐶×𝑁 , mean-normalized feature matri-

ces.
Ensure: �̂�𝑘 ∈ R𝑑𝑘×𝑑𝑝 , an optimal projection matrix of Co-sMVCCA.
𝑾 is obtained as Eq. (8).
𝑪𝑉 𝐿 and 𝑪𝑇 𝐿 are obtained as Eqs. (6) and (7).
𝑪𝑠
𝑉 𝐿 and 𝑪𝑡

𝑇 𝐿 are obtained as Eqs. (10) and (11).
𝑪𝑉𝑇 is obtained as Eq. (9).
𝑪 and 𝑪 are obtained as Eqs. (4) and (5).
�̂�𝑘 is obtained by solving Eq. (12).
return �̂�𝑘 .

a random vector functional-link net [29, 33]. First, we apply a sigmoid function 𝑮 as
an activation function to the projected features 𝒙𝑛 as follows:

𝒛(𝒙𝑛) = [𝐺 (𝒂⊤1 𝒙𝑛 + 𝑏1), 𝐺 (𝒂⊤2 𝒙𝑛 + 𝑏2), · · · , 𝐺 (𝒂⊤𝑈𝒙𝑛 + 𝑏𝑈 )]⊤, (15)

where 𝑈 is the number of nodes of a hidden layer. 𝒂𝑢 and 𝑏𝑢 (𝑢 = 1, 2, · · · ,𝑈) of the
activation function 𝐺 are parameters that are randomly determined on the basis of a
uniform distribution. Furthermore, by minimizing the least square error between the
hidden layer’s outputs 𝜷𝒁 and the class label matrix 𝑳, the ELM estimates a weight
matrix as follows:

𝜷 = 𝑳𝒁†, (16)

where 𝒁 = [𝒛(𝒙1), 𝒛(𝒙2), · · · , 𝒛(𝒙𝑁 )] is the hidden layer’s output matrix, and 𝒁†

means the Moore-Penrose generalized inverse of 𝒁. Algorithms 1 and 2 show the
algorithmic steps of the proposed method. As shown in these tables, it is confirmed that
the proposed method can be calculated at low computational cost, and our approach
is therefore suitable for real data analysis, for which preparation of a large number of
images is difficult.

In the test phase, given a test vector 𝒙, we obtain the output vector 𝒚 = 𝜷𝒛(𝒙).
From the above, since parameters of the activation function are determined via ran-
dom values and the weight matrix 𝜷 is determined uniquely due to the least square
estimation, the ELM can be effectively trained from a small amount of training data.
The proposed method can effectively transform original features to high discrimi-
nant features instead of constructing multiple hidden layers adopted in general deep
learning methods by setting the canonical correlation-based projection matrices into
the hidden layer’s weights. Thus, training can be performed from a small number of
training images. Therefore, our novel neural network including correlation maximiza-
tion via Co-sMVCCA can extract more discriminant features and accurately classify
deterioration levels.
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Algorithm 2 Construction of the ELM classifier.
Require: 𝑽 ∈ R𝑑𝑣×𝑁 , 𝑻 ∈ R𝑑𝑡×𝑁 , �̂�𝑣 ∈ R𝑑𝑣×𝑑𝑝 and �̂�𝑡 ∈ R𝑑𝑡×𝑑𝑝 .
Ensure: 𝜷 ∈ R𝐶×𝑈 , a weight matrix of ELM.

𝒂 and 𝑏 are randomly determined for activation function.
𝑿𝑣 and 𝑿𝑡 are obtained as Eqs. (13) and (14).
𝒁 which is output of a hidden layer is obtained as Eq. (15).
𝜷 is obtained as Eq. (16).
return 𝜷.

3 Experimental Results

The effectiveness of the proposed method is verified in this section. The experimental
conditions are explained in subsection 3.1 and evaluation of the performance of our
method is described in subsection 3.2.

3.1 Experimental Conditions

In the proposed method, we used a dataset provided by Tokyo Electric Power Company
Research Institute. This dataset includes distress images taken by inspectors and
text data recorded by them during actual maintenance inspections. There are three
deterioration levels in distress images, classes A, B and C, and each image belongs to
one class. Note that there is an order between classes, e.g., class C means dangerous and
class A means safe. The number of images in the dataset is very small. The numbers
of images belonging to classes A, B and C are 589, 775 and 391, respectively. We
adopted 10-fold cross validation as the verification process. In each cross validation,
we divided all of the data into test data and the remaining data in a ratio of 1:9, and
we also divided the remaining data into validation data and training data in a ratio of
1:4.

Moreover, we used some CNN models for verifying the robustness of our method.
We used Inception-ResNet-v2 [35], DenseNet-201 [15] and Xception [5] implemented
in Keras, and we extracted the outputs of the middle layers of those models as transfer
learning. In addition, in order to verify the effectiveness of our method, we used nine
comparative methods shown in Tables 2-4. The details are shown below. In this ex-
periment, we first used comparative methods constructed by using only text features
or only visual features. “Only text features” means that we calculate text features 𝒕𝑛

and train the ELM by inputting the obtained text features. On the other hand, “only
visual features” means that we calculate visual features 𝒗𝑛 and train ELM by inputting
the obtained visual features. Furthermore, since it has been reported in [8, 9] that
fine-tuning was often an effective approach when the number of training images was
small, we used fine-tuned CNNs as comparative methods. In this experiment, CNNs
were pre-trained by using ImageNet and were retrained by using our dataset. The
above three comparative methods focus on uni-modal information. On the other hand,
the other six comparative methods focus on multi-modal information. As a baseline
feature transformation approach, we adopted general canonical correlation analysis
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(CCA) [13]. CCA estimates projection matrices maximizing the canonical correla-
tion between two sets of features. Furthermore, we used other CCA-based approaches
maximizing the correlation between multi-modal features with consideration of geo-
metrical information. Specifically, graph-regularized multiset canonical correlations
(GrMCCs) [44] introduce a locality intra-view structure into the objective function of
multiset CCA (MCCA), which can deal with multi-view information. Laplacian mul-
tiset canonical correlations (LapMCCs) [43] introduce a locality inter-view structure
into the objective function of MCCA. Furthermore, we adopted linear discriminant
multi-set canonical correlation analysis (LDMCCA) [30] as a comparative method.
LDMCCA contains class information of the training data and represents the fused
features more efficiently and discriminatively in some dimensions. Deep CCA [3],
which includes deep learning-based feature learning, was also used as a comparative
method. Finally, we used supervised multi-view CCA (sMVCCA) [22] and ordinally
sMVCCA (OsMVCCA) [28], which is our previous method. sMVCCA can deal with
multi-modal features and consider class label information by using class label features
as one modality. OsMVCCA is an extended version of sMVCCA and introduces a term
balancing the ordinal scale into the objective function of sMVCCA. We compared
results obtained by the proposed method with the results obtained by using the nine
comparative methods to verify the effectiveness of the proposed method. Note that in
the CCA series of comparative methods, the middle layer maximizing the canonical
correlation was used for constructing the multi-modal neural network.

In the experiments, the number of hidden nodes 𝑈 was determined in such a way
that our method achieved the best performance for the validation dataset. The searching
range of 𝑈 was {100, 200, ..., 1000}. The parameters 𝜖 were experimentally set to
0.01. 𝛽 values used in Co-sMVCCA dealing with Inception-ResNet-v2, DenseNet-
201 and Xception were 0.3, 0.3 and 0.5, respectively. By using Recall, Precision and
F-measure, we evaluated the performance of our method.
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3.2 Performance Evaluation

Tables 2-4 show the classification results based on Inception-ResNet-v2, DenseNet-
201 and Xception, respectively. Focusing on the average of classification results,
since several CCA-based methods dealing with multi-modal features including Co-
sMVCCA in our method outperform uni-modal approaches, fine-tuning and “only vi-
sual features” and “only text features”, it was confirmed that multi-modal approaches
are effective. Since the proposed network is superior to fine-tuning, not CNN train-
ing a large number of hidden layers but a shallow neural network transforming to
discriminant features via Co-sMVCCA is effective for constructing classifiers from a
small number of training images. Thus, the effectiveness of our first contribution is
confirmed.

Furthermore, our neural network including Co-sMVCCA is superior to other
CCA-based methods, LapMCCs, which is one of the state-of-the-art methods, and
GrMCCs, which is a standard method that can be used for several applications [18],
and Deep CCA [3] performing non-linearity of a feature space. Thus, it is verified
that the ordinal scale and the within-class divergence are more effective than consid-
ering geometrical structures and non-linearity. Moreover, Co-sMVCCA outperforms
LDMCCA combining linear discriminant analysis and MCCA. Also, by comparing
Co-sMVCCA with sMVCCA, these results indicate that introduction of the ordinal
scale and within-class divergence into the objective function of sMVCCA is effective.
Furthermore, by comparing Co-sMVCCA with OsMVCCA, the use of category-based
covariance matrices is useful for performance improvement. Thus, the effectiveness
of our second contribution is confirmed.

In this experiment, “only visual features”, CCA, and sMVCCA are the benchmark-
ing methods. Since “only visual features” are calculated from pre-trained models that
are often used in real data analysis, the results show the baseline performance as
uni-modal analysis. As shown in Tables 2, 3 and 4, it is confirmed that multi-modal
analysis exceeds the performance limitation of uni-modal analysis since these methods
with both visual and text features outperform the method with ”only visual features”.
Next, CCA, which is a multi-modal approach, is often used as a baseline method. In
some CNN models, it is confirmed that the accuracy of CCA exceeds that of GrMCCs
and LapMCCs considering the geometrical structure of features. Generally, GrMCCs
and LapMCCs can easily capture the structure in the case of using images such as
those used in general object recognition since objects included in different classes are
obviously different. However, the images of transmission towers used in the deterio-
ration level estimation differ significantly from such general images; that is, there is
only a slight difference between visual characteristics in images belonging to different
deterioration levels. Thus, it is considered that it is difficult to reflect these structures
via GrMCCs and LapMCCs. On the other hand, the direct use of class information
has been reported to be effective in such real data analysis [22,28], and sMVCCA is a
benchmarking method. Since sMVCCA outperforms GrMCCs and LapMCCs, which
consider the geometrical structure, and Deep CCA, which deals with the nonlinear
structure, it is indicated that the use of class information as one view is effective. Al-
though Deep CCA is a strong method among recent CCA-based approaches due to the
deep learning-based approaches, it requires more training data than does sMVCCA in
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order to sufficiently train its model. On the other hand, since sMVCCA can directly
use class information as one modality, it can represent deterioration levels without a
large amount of training data. Therefore, since sMVCCA is valid for real data analysis,
we turned our attention to the derivation of an extended version of sMVCCA.

Confusion matrices of Co-sMVCCA, OsMVCCA and sMVCCA by using Inception-
ResNetV2 are shown in Fig. 3. As shown in Fig. 3 (b) and (c), although the ratio of
images that belong to class A predicted as class A via OsMVCCA is equal to that via
sMVCCA, the misclassification ratio of images that belong to class A predicted as
class C via OsMVCCA is lower than that via sMVCCA. That is, by introducing the
ordinal scale, it became easy to estimate to a level near the target level. On the other
hand, since the misclassification ratio of images that belong to class C predicted as
class A via OsMVCCA is high, it is confirmed that consideration of only the ordinal
scale is not sufficient to represent the deterioration levels. Focusing on Co-sMVCCA
as shown in Fig. 3 (a), the misclassification ratio is lower than that of the other meth-
ods. It is considered that the decrease of the misclassification ratio of images that
belong to class C predicted as class B should be focused on. Thus, we focused on
examples of distress images belonging to class C that were correctly classified by
our method but were misclassified as class B by OsMVCCA. The number of those
images is 22, but those images do not necessarily represent distresses that occurred
in different transmission towers; that is, there are some distresses that occurred in the
same transmission tower. Examples of those images are shown in Fig. 4. In addition, as
shown in Table 5, we listed the methods that misclassified images in Fig. 4. Note that
we adopted images that were misclassified by OsMVCCA since those images are used
for validation of the differences between Co-sMVCCA and OsMVCCA. As shown in
Table 5, Co-sMVCCA was the only method that correctly classified all images in Fig.
4. Since distress images of the same transmission tower generally have the same text
data, it is considered that there is a correlation between those images and text data
of the same tower. Thus, when the images are of the same towers and have the same
levels, it is expected that calculation of the covariance matrix between heterogeneous
features of different samples is effective for deterioration level estimation.

In order to discuss the representation ability of the transformed features, visual-
ization results of the features based on tSNE are shown in Fig. 5. Figure 5 shows
the visualization results of “only visual features”, CCA, sMVCCA, OsMVCCA and
Co-sMVCCA when using InceptionResNet-v2 as the CNN model. The red, green and
blue points in this figure represent features belonging to classes “A”, “B” and “C”,
respectively. As shown in Fig. 5 (a), it was revealed that “only visual features” obtained
from the pre-trained model do not represent the deterioration levels. Second, although
CCA-based transformed features belonging to the same class are arranged nearby, they
are scattered in the space, and they do not have high discriminative ability. On the
other hand, sMVCCA shows that the transformed features belonging to the same class
are grouped into a few clusters, and we confirm that it is more expressive than “only
visual features” and basic CCA. Compared to sMVCCA, OsMVCCA-based features
are efficiently grouped together. However, as shown in the resutls for OsMVCCA, red,
blue and green features become admixed. That is, it is difficult to reflect the class
information by both the class information as one view and the ordinal scale. Then,
in Co-sMVCCA, by introducing class divergence into the computation process of the
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covariance matrix, we succeeded in reducing the mixing of three classes as shown
in Fig. 5 (e). In addition, in Fig. 5 (e), “classes A and B” and “classes B and C” are
arranged nearby, but, interestingly, features of “classes A and C” are separated from
each other. It is thought that this results from consideration of the category-based or-
dinal approach. From the above, Co-sMVCCA can strongly reflect class information
and the ordinal scale, and it achieves better feature transformation than that achieved
by various CCA-based methods.

Although previous CCA-based methods including OsMVCCA cannot calculate
the covariance matrix between heterogeneous features of different samples, Co-
sMVCCA can consider within-class divergence by dealing with the covariance matrix
as shown in Eqs. (9) and (11), and this is the contribution of this paper. Therefore, the
effectiveness of Co-sMVCCA including the category-based approach is verified.
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4 Conclusion

We have proposed a deterioration level estimation method via a novel neural net-
work maximizing category-based ordinally supervised multi-view canonical corre-
lation. The proposed method has two contributions. One is construction of a neural
network-based classifier that can be trained from a small number of training images
by introducing a canonical correlation maximization approach into a middle layer
of the network. The other contribution is derivation of a novel CCA-based method,
Co-sMVCCA, that can consider both the ordinal scale between different classes and
the within-class divergence. Consequently, the proposed neural network including
Co-sMVCCA realizes accurate deterioration level estimation.

When the number of images is small, it is difficult to train CNNs, and other
approaches are needed for calculating visual features with high representation ability.
Thus, the calculation of visual features is limited to the use of pre-trained models or
fine-tuning. That is, it is not possible to directly calculate the features that are effective
for class discrimination from the images. Therefore, the strong point of the proposed
method is that it enables learning from a small amount of training data by considering
the correlation between multi-modal features even if the representation ability of the
calculated features is low. Although this approach has been applied to the image data
of transmission towers, this approach can solve the problem of a small amount of data
in the case of real data, and it is therefore considered that it has high applicability
to various fields. Furthermore, when focusing on multivariate analysis, our proposed
Co-sMVCCA is the first CCA-based multi-modal approach that can consider label
features, the ordinal scale, and class divergence, and we believe that it will make a
significant contribution to the field of multivariate analysis.
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(a) Co-sMVCCA (b) OsMVCCA

(c) sMVCCA

Fig. 3 Confusion matrices of Co-sMVCCA, OsMVCCA and sMVCCA by using Inception-ResNet-V2.
The value in the each cell represents the ratio of classification results. The vertical axis is the truth label
and the horizontal axis is the predicted label.
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