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Abstract Immersive 3D media is an emerging type

of media that captures, encodes and reconstructs the

3D appearance of people and objects, with applications

in tele-presence, teleconference, entertainment, gaming

and other fields. In this paper, we discuss a novel con-

cept of live 3D immersive media streaming in a server-

less setting. In particular, we present a novel network-

centric adaptive streaming framework which deviates

from a traditional client-based adaptive streaming used

in 2D video. In our framework, the decisions for the pro-

duction of the transcoding profiles are taken in a cen-

tralized manner, by considering consumer metrics vs

provisioning costs and inferring an expected consumer

quality of experience and behavior based on them.
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In addition, we demonstrate that a naive application

of the serverless paradigm might be sub optimal under

some common immersive 3D media scenarios.
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1 Introduction

Media intensive applications and services become in-

creasingly important. The ongoing COVID-19 pan-

demic has forced people to work, learn, and commu-

nicate remotely on an unprecedented scale. With more

people in quarantine and isolation, the demand for low

latency applications, such as video streaming, online

games, and teleconferencing has soared to the point

that has prompted some countries to look at ways to

curb streaming data to avoid overwhelming the Inter-

net [39]. It has been suggested by many that in a post-

COVID-19 world, as restrictions are gradually lifted,

many people might use telecommunication as a new

normal mode of working. Several large companies have

already announced that this unintended pilot on re-

mote teleworking might become the standard way of

how people will work in the 21st century.

With the emergence of immersive media, this op-

tion – remote teleworking and infotainment – becomes

even more attractive and real, since much better qual-

ity of experience will be provided to the users. How-

ever, immersive media is likely to further exacerbate

the issues related to bandwidth and latency (even in the

new generation 5G networks), since all next-generation

media types [87] —either omni-directional (360o) or

multi-view or three-dimensional —impose bandwidth

requirements and latency requirements that vastly sur-

pass those of the traditional media, even when the high-
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end profiles of the current media are considered (i.e.

UHD).

A number of approaches aim at mitigating this issue

by optimizing the use of resources for media intensive

services. The media services vary by type. A large and

increasingly important family of media services are re-

lated to tele-presence and infotainment. These services

are characterised by highly dynamic consumer popu-

lations. Therefore they require efficient scaling with

instantaneous elasticity to handle irregular workload

spikes [80].

However, for the real-time media streaming setting,

the resource management should extend beyond scal-

ing. The finer-grained decisions might include selection

of bit-rate and transcoding profiles to optimize cost-

efficiency from the service provider perspective [96].

More advanced optimization relies on recent standards,

such as MPEG-DASH SAND [46], which leverages the

knowledge it obtains from the network to collabora-

tively manage media services in order to optimize the

users’ quality of experience (QoE) [60].

The aforementioned approaches evolved for the cen-

tralized cloud model and are limited by each cloud

provider’s infrastructure, functionalities, and billing

schemes. With the emergence of the 5G networks, ultra-

fast, ultra-reliable, and high bandwidth capable edge

becomes an attractive option to media services devel-

opers. For the immersive media, 5G is a crucial enabling

technology, since its targeted key performance indica-

tors stipulated by the architecture documents are es-

sential to providing good QoE for the users [64].

Software Defined Networks (SDN) and Network

Function Virtualization (NFV) technologies drive the
network softwarization transformation. A softwarized

network is much more amenable to collaborative ap-

plication and infrastructure optimization via optimized

workload placement, application demand adaptation,

and network optimization across cloud and edge, based

on elaborate monitoring of the infrastructure and ser-

vice behavior analytics. The cloud-native transforma-

tion that drives innovation in the modern cloud and

telco cloud edge opens up a number of new opportuni-

ties for fine grain resource optimization.

The finer-grained approaches are able to factor in

the information provided by the network into the opti-

mization schemes [96] and are better suited to address

the central challenge of developing a network architec-

ture being able to dynamically adapt to fluctuating traf-

fic patterns [28].

Serverless computing was first introduced in the end

of 2014 and in the last two or three years it has be-

come an extremely popular cloud native pattern used

to build highly granular, yet very cost-efficient, micro-

services. Serverless computing is an execution model

in which a provider of a serverless computing platform

manages servers in the back-end and dynamically allo-

cates server resources to virtualization containers (e.g.

Docker containers) to execute customers’ workloads. In

serverless computing, a developer only focuses on the

code while the actual packaging and execution is be-

ing taken care of by the serverless framework. Broadly

speaking, a serverless application scales to zero in ab-

sence of the load and automatically scales out (almost

instantaneously) when the load is applied. A customer

of the serverless computing framework (e.g. a devel-

oper) does not have to worry about auto-scaling. This

mechanism is automatically included with the server-

less framework. A serverless execution model, where a

unit of work is a function provided on demand (e.g. in

response to some event) is called Function-as-a-Service

(FaaS). FaaS is a sub-model in a broader serverless

paradigm. However, exempting instances where clarity

demands a specific term, we will use the terms server-

less and FaaS interchangeably in this paper. An impor-

tant feature of FaaS is its billing model. FaaS comes

much closer to the initial business value promise of the

Cloud — pay as you go — than any other cloud con-

sumption model. A typical billing scheme for FaaS is

based on amount of main memory committed during

the execution multiplied by the number of seconds, to

the granularity of 100 ms (and is hence priced per GB

· seconds). In order to simplify scheduling and flatten

capacity planning cycle, FaaS providers limit maximal

lifetime of serverless functions by 10–15 minutes. Be-

cause of its importance to scheduling (serverless func-

tions are treated as “sand” that can always be scheduled

among “boulders”, i.e. jobs with generally distributed

lifetimes), limited maximal lifetime is not a transient

feature of FaaS. Therefore, it is mostly suited for ses-

sion based, event driven, highly dynamic, but relatively

short workloads1.

These are exactly the characteristics of many im-

mersive media applications. However, to the best of

our knowledge, FaaS is not being widely applied to me-

dia intensive services yet. There are multiple reasons

for that: First, serverless functions do not communi-

cate with each other via the data network. A typical

inter-function communication is via a database. This is

way too slow and inadequate for media. Second, FaaS

frameworks do not support Day 1, Day 2 configura-

tion of services based on FaaS. Consider an application,

1 Note that there exist popular serverless frameworks, such
as Knative [5] that do not have limitations on the maximal
life time of a function. In these framework, function is not
even a building block. Rather such frameworks help building
Web services that scale to zero helping with code to container
devops cycle along the way.
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in which serverless functions should be executed in re-

sponse to events, get configured to connect to the rest

of an application and then terminate while the rest of

an application continues to execute. Such complex man-

agement flows are not supported in current frameworks.

Third, in many media intensive applications, the use of

specialized hardware (e.g. GPUs) is required. This is

not supported out of the box neither by open source

FaaS, nor by commercial offerings. Fourth, since this

model is relatively new, it is largely unknown to the

broader community involved with immersive media.

This paper is intended to fill this void. We present a

novel architectural approach to developing cost-efficient

immersive media applications using the FaaS approach.

The overall architectural framework and standards for

deploying applications in 5G edge is being evolved by

standardization organizations, such as ETSI that stip-

ulates application of FaaS technology in 5G MEC [71].

A typical use case envisioned for FaaS in 5G MEC is

IoT. In our previous work, we applied the 5G MEC

principles to media intensive applications at the cloud

edge [9] and presented an overall architectural frame-

work that pioneered the use of FaaS in media intensive

applications. That work applied for the first time FaaS

to NFV orchestration utilizing a FaaS VIM integrated

with the ETSI MANO framework.

In this paper, we continue this line of work by

considering session-based workloads typical in immer-

sive media streaming related to infotainment and tele-

presence. We developed a fully functional prototype of

a tele-immersive gaming service, where time-varying

multi-view textured meshes of two players are being

produced in real time (a watertight geometry of a player

is being produced from four camera streams) and em-

bedded into the virtual environment, where the players

can freely move in all 6 degrees of freedom. The players

communicate with each other via a broker that is be-

ing placed in the 5G MEC in geographical proximity to

the players to leverage the 5G latency and bandwidth

for the sake of the application. Spectators can join from

any edge location and also from non 5G access network.

The spectators tolerate some small lag (much like it is

the case for the sport events broadcasting).

In contrast to the players, who directly exchange

immersive media frames via the broker, the specta-

tors consume 3D streams that are being transcoded to

match the capabilities of the spectators’ terminals. It

should be noted that we take an approach different from

a typical media streaming architecture. Rather than let-

ting spectators ask for specific transcoding, our appli-

cation automatically considers the capabilities of the

users’ terminals and the network conditions and allo-

cates the most cost-efficient transcoding scheme, trying

to balance the trade-off between the cost of transcoders,

revenue produced by the spectators and the total ben-

efit for spectators in the form of QoE that motivates

them to stay longer in the sessions. In other words,

our application optimization strives at achieving max-

imum profit while providing maximum QoE to specta-

tors. Each player’s stream may be transcoded to lower

bit-rate versions, namely transcoding profiles, that may

be consumed by a multitude of spectators. Cheaper

transcoding profiles are being accommodated on CPU,

with less RAM and perhaps lower quality configuration,

while more expensive ones utilize GPUs (using our ex-

tended FaaS framework based on Apache Open-Whisk

and Kubernetes).

When in-application events of interest occur (e.g.

scoring in an immersive game), a replay serverless func-

tion can be executed on demand. The function uses

some buffered media to produce a replay clip on and

stores it in a low cost cloud storage from which specta-

tors can retrieve it at any time. The number of events

happening during the session serves as a proxy to esti-

mate the session popularity with the spectators.

For remote spectators joining at edges where no bro-

ker is present, a broker is being started on demand,

connected to the main broker, which is being used by

the players and each of the transcoded 3D streams is

being transmitted by only once to the remote broker,

to reduce overall traffic load on the network.

A few important points should be noted about our

approach. First, each serverless function in our appli-

cation has one well defined functionality and a single

configuration profile. This greatly simplifies design and

operation. Second, thanks to the inbuilt auto-scaling,

the application is elastic by design. Third, FaaS is an

excellent match for the session-based nature of the ap-

plication and its fine granularity (a single function level)

allows to optimize cost-efficiency of resource allocation

at the level of individual sessions paying only for what is

actually being used. These advantages are not available

out of the box in any other cloud-native model.

We validate our approach via extensive experimen-

tation, contrasting our network-centric optimization

approach with a naive serverless implementation (which

would always start transcoders on demand irrespective

of the predicted accrued benefit), and a traditional Vir-

tual Machine (VM) based approach. Since some fea-

tures (e.g. support for GPUs) are not yet available in

commercial offerings, the billing schemes necessary for

experimentation on cost efficiency are not available. To

that end, we examine how GPUs are being offered in

the cloud today and examine conditions for their cost

efficiency in FaaS offerings in 5G MEC. We then use the

billing schemes extrapolated from this study as a proxy
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to obtain preliminary figures illustrating a comparative

cost-efficiency of the proposed approach.

In summary, our main contributions are as follows:

– We expand the range of applications for serverless

architectures to media streaming, addressing its re-

quirements and introducing the concept of serverless

streaming;

– We apply this concept to a demanding use-case of

next-generation media by implementing and deploy-

ing an adaptive streaming service to 5G-enabled

network infrastructure, in the context of a real-time

and interactive media scenario;

– We show how a serverless architecture within a 5G

framework can also enable in-network service op-

timization and network centric adaptation for the

media intensive verticals;

– We demonstrate the cost effectiveness of serverless

streaming compared to traditional solutions taking

into account the balance between the total QoE and

cost of production;

– Our findings also serve as a guideline to how server-

less should be used in similar use-cases and indi-

cate that naively applying serverless would be sub-

optimal.

The rest of this paper is organized as follows: In Sec-

tion 2 we discuss related work and the present work’s re-

lation and connection to it. In Section 3, we outline our

extensions to Apache OpenWhisk serverless framework,

while in Section 4 we present our serverless adaptive

streaming service. In Section 5, network-centric cost

optimization is discussed and in Section 6 experimen-

tal results are given. Finally, Section 7 concludes the

paper.

2 Related Work

In this work, we expand on the novel concept of

network-centric 3D immersive media real-time adaptive

streaming in a serverless setting. The concept is mul-

tidisciplinary and therefore has several partial overlaps

with various topics in the literature.

To facilitate the reader’s comprehension, we split

this section into a small number of more focused sub-

sections covering different sub-topics. In Subsection 2.1,

we briefly describe and provide examples of 3D immer-

sive media production platforms. In Subsection 2.2, we

present the principal ideas and some of the more recent

advancements in the area of video adaptive stream-

ing. In Subsection 2.3, we focus on immersive media,

namely 360o video and 3D representations. Next, in

Subsection 2.4, we go over other adaptive streaming so-

lutions, including some of the more recent works in the

area of server-based, network-assisted adaptive stream-

ing and cloud-based streaming solutions. Finally, in

Subsection 2.5 we provide an overview of the server-

less computing model focusing on the features that are

more relevant to the context of this work.

2.1 3D Immersive Media Production Platforms

The key enabler of 3D immersive media production is

a volumetric capturing system. A volumetric capturing

setup is usually comprised of a 360o arrangement of in-

ward looking camera sensors, defining a capturing space

with specific boundaries. Despite the fact that volumet-

ric capturing systems most commonly output a multi-

view plus depth [29] representation of the captured

scene, the most common 3D immersive media format is

colored point clouds or textured 3D meshes. The latter

are produced by 3D reconstruction algorithms [50,51]

run on the 3D points of the spatially aligned captured

views. In general, the 3D reconstruction process can be

performed either offline, or in real-time which — given

sufficient computational and network resources — can

additionally allow for live streaming.

An open, free-to-use, state-of-the-art, low-cost and

portable volumetric capture system, which does not in-

tegrate a 3D reconstruction algorithm, is [82]. One of

the earliest low-cost platforms [97] utilized 4 consumer

grade RGB-D sensors and incorporated 3D reconstruc-

tion, enabling tele-immersion at interactive rates.

More recently, Holoportation [66] utilized 16 IR-

stereo pairs for depth estimation along with 8 color

cameras for texturing, to produce and stream high

quality 3D textured meshes. Even though this sys-

tem produces stunning 3D reconstructions, its compu-

tational complexity is high as it requires 1 GPU per

IR stereo pair and a main workstation equipped with 2

GPUs to undertake the task of actual processing. More-

over, the output bit-stream requires approximately 40

Mbit/frame, which for a 30 frames-per-second real-time

streaming scenario would require over 1 Gbps of band-

width.

A significant improvement on the volume of the

streamable content, which has been kept below 16 Mbps

without compromising quality, has been demonstrated

by the offline immersive media platform in [25]. To

achieve such a remarkable performance, the authors em-

ployed 61 12-core Intel Xeon machines, while processing

would take 25-29 sec/frame. Other 3D immersive me-

dia platforms also exist in the literature [30,75]. Com-

mon elements among most existing works are the in-

creased processing power required to achieve high qual-

ity content and the extreme bandwidth requirements



Serverless Streaming for Emerging Media: 5G Network-driven Cost Optimization 5

for streaming, which can only be mitigated by devoting

even more processing resources.

2.2 Adaptive Streaming

Consumers of media content over the internet are highly

heterogeneous. A consumer is characterized by device

capabilities, available processing power and network

quality (bandwidth, latency, and loss rate). The most

common way that the contemporary technology opti-

mizes QoE for consumers, is through HTTP Adaptive

Streaming (HAS) [16]. The objective of HAS is to main-

tain the viewer’s QoE at high levels, countering the neg-

ative impact of the network bandwidth fluctuations. In

HAS, prior to the distribution, the video needs to be

available in segments and encoded in multiple qualities.

The most popular HAS protocols today are MPEG-

Dynamic Adaptive Streaming over HTTP (DASH) [79]

and Apple’s HTTP Live Streaming (HLS) [67]. While

they have differences in specification and content de-

ployment, recent MPEG’s standardization efforts for

the Common Media Application Format (CMAF) [2],

allow adaptive streaming using either MPEG-DASH or

HLS from a single source.

There exist multiple studies on QoE in video adap-

tive streaming [76,45,15,69]. Some of the more im-

portant factors affecting QoE include: initial delay,

stalling frequency, stalling duration, adaptation (qual-

ity change) interval, adaptation frequency, adaptation

direction, adaptation amplitude, video’s spatial resolu-

tion, video’s frame-rate and video’s visual quality [76].

Due to the multiplicity of factors affecting a consumer’s

QoE, there is no single QoE model that different studies

converge on and which can serve as a common reference

framework.

HAS leaves encoding schemes and the adaptation

strategy without a specification. According to [17], and

based on the location of the adaptation logic inside

the HAS system, HAS schemes can be split into four

categories: i) client-based ii) server-based iii) network-

assisted and iv) hybrid. The most common scheme is

(i), in which the adaptation logic runs on the client

with the video player fetching the video segments based

on a manifest. In most implementations, the adaptation

logic relies on monitoring internal buffer levels and mea-

suring throughput [19]. Current state-of-the-art client-

based bitrate adaptation algorithms are presented in

[81] and [57]. A cutting-edge reinforcement-learning ap-

proach is provided by [59], while [93] describes ensemble

algorithms tailoring different network conditions.

2.3 Immersive Media Adaptive Streaming

2.3.1 Omnidirectional Media

A survey on 360o video streaming can be found

in [36]. Regarding immersive media, MPEG has re-

cently standardized the Omnidirectional Media Format

(OMAF) [40] specification for 360 degree video stream-

ing. For the 360o video streaming, the most common

adaptation strategy is viewport-based, in which the

equirectangular image is split into tiles which are en-

coded at different bitrates based on the viewing direc-

tion of the client [77,73,72,78,38] often exploiting tiling

support in video coding algorithms, like HEVC [84,63].

In [44], a tile-based approach is described using

MPEG-DASH SRD (Spatial Relationship Descriptor)

and tile-over-viewport prioritization. Naive tile-based

approaches download the portion of the video that the

viewer is looking at. However, the fetching of new tiles

from network results in more latency than motion-to-

photon latency of the VR headset. In [88], a proba-

bilistic approach is taken for a tile pre-fetching strat-

egy that minimizes expected distortion of the down-

loaded tiles. In [21], a tile-based probabilistic approach

is taken, that captures the likelihood of the viewer nav-

igating towards specific tiles in the form of heatmaps.

In [41], the authors attempt to provide a solution to

360o video streaming to smartphones, overcoming their

processing power limitations compared to desktop PCs.

Finally, [14] presents a real-time streaming system of

360o video relying on GPU-based HEVC [84] coding.

2.3.2 3D Media

Due to a higher complexity of 3D representations, the

3D Immersive media coding and streaming approaches

are less mature compared to 360o or standard 2D video.

To begin with, there exist very few 3D immersive me-

dia codecs exploiting inter-frame redundancy in time-

varying mesh sequences (the mesh sequences of varying

geometry and connectivity like the ones produced by

real-time 3D reconstruction systems) [31], [90]. Thus,

for the 3D mesh geometry, only static 3D mesh codecs

are utilized [32]. Furthermore, there is very little litera-

ture regarding QoE for 3D immersive media streaming,

which could drive adaptive streaming systems [33].

On the other hand, for the point-cloud representa-

tions more options exist. In [55] and [23], point clouds

are compressed exploiting volumetric function represen-

tations, while in [62] point cloud sequences are intra-

frame and inter-frame coded based on octrees and mo-

tion prediction. A detailed survey summarizing works in

3D geometry compression can be found in [58]. Finally,
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the accompanied textures used to colorize the 3D mesh

are often compressed using standard 2D image or video

compression algorithms like Motion-JPEG (MJPEG)

or HEVC.

One of the first works for real-time adaptive stream-

ing of textured 3D time-varying meshes is [26], which

is based on a dynamic rule adaptation strategy modi-

fying compression parameters of the real-time stream.

For point-cloud streaming, in [43] and [68], multiple 3D

objects of the same scene are streamed with adapta-

tion relying on content’s proximity to the viewer, along

with the viewer’s looking direction and distance to con-

tent. One of the first complete HAS implementations of

a point-cloud adaptive streaming solution is presented

in [42]. The authors in [42], demonstrate a DASH-

compliant HAS system for dynamic point clouds, in-

troducing rate adaptation heuristics that are based on

viewer’s position and looking direction, network band-

width and buffer status. At the same time, the encoding

scheme utilizes the recently introduced MPEG Video

Point Cloud Coding (V-PCC) algorithm [27].

2.4 Other Adaptive Streaming Solutions

Server-based, network-assisted and hybrid approaches

to adaptive streaming used to be less popular, but re-

cently they started attracting an increased interest with

the emergence of Software-Defined-Networking (SDN)

and 5G Networks. In [35], a DASH-based server-client

adaptive streaming system for standard 2D video is

proposed that achieves efficiency, stability, fairness and

convergence with server and clients co-operating for

maximum gains. A SAND-DASH network assisted ap-

proach is given in [61], describing a method to perform

adaptive video streaming to mobile devices, in Multi-

Access Edge Computing (MEC) scenarios. Noticeable

performance improvements have been observed when

the achievable throughput was moderately high or the

link qualities across mobile clients were alike. Finally,

in [86], the authors propose Cloud Live Video Stream-

ing (CLVS), a model that exploits Amazon S3’s stor-

age capabilities in order to enable cost-efficiency in a

live video streaming scenario oriented towards small

streaming sessions.

The solution in [86] eliminates the need for a con-

stantly up-and-running streaming server (and in that

sense it is serverless). Rather, a source video is being

recorded by a mobile device, on which then it is seg-

mented and encoded. Next, those video segments are

pushed into a designated Amazon S3 bucket. On end-

user devices, the client program of CLVS directly re-

trieves the most recent video segments from the S3

bucket, then performs decoding and video playing back.

While being inventive and accruing the cost-efficiency

advantages compared to a typical solution, in which

a cloud based video streaming server can have idle

periods, CLVS will not scale to support 3D adaptive

streaming neither from the latency, nor from the band-

width, nor from the cost-efficiency perspectives. Also

this design does not allow a network-centric adaptation

of QoE.

In addition to the previously presented related work,

we find it important to also mention two other works in

the literature that are relevant to our domain. In [52]

a game engine plugin is designed based on MPEG-

DASH [79] SRD and HEVC [84] with an in-game 360

virtual camera in order to enable 360o video streaming

of the game environment in e-sports events. And in [85],

the authors try to exploit the 5G network infrastructure

to offer better QoE in 360o video streaming.

2.5 Serverless Computing for Media

The serverless programming model rapidly becomes

popular with developers. Serverless computing relieves

the developers from the tasks related to application

packaging and server provisioning. The developers need

only to provide the code of their application and a

source to executable pipeline automatically creates a

running task in a cloud. As explained in the previ-

ous section, broadly speaking, the serverless computing

paradigm refers to services that scale to zero. FaaS, a

specifically popular serverless computing model, refers

to structuring applications as stateless functions that

are being called on demand (e.g. in response to events).

The reader is advised to consult [54] for a comprehen-

sive review of serverless frameworks.

Recently FaaS has been applied by practitioners to

video streaming [37,74]. Little scientific literature ex-

ists on the topic. In [94] a measurement study of trans-

coding tasks has been performed to explore how differ-

ent lambda function configurations (in terms of memory

and proportionally allocated CPU) affect performance

and cost.The study reveals that the memory configura-

tion for cost-efficient serverless functions is non-trivial.

The best memory configuration is influenced by the task

type or even the video content. More work is needed to

design an efficient and adaptive system to find the best

configuration for serverless functions in video process-

ing pipelines. In [10], a serverless framework facilitating

development of video processing pipelines is described.

Common to all these solutions is rising serverless func-

tions (e.g. AWS Lambda) for performing operations

(e.g. transcoding) on a video file that is uploaded to the

cloud storage (e.g. S3 bucket). Upon the file upload, an

event is being generated by the storage, which triggers
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the execution of a serverless function, whose output is

either stored in the cloud storage again (potentially cre-

ating another trigger for another function execution) or

propagated to a Content Distribution Network (CDN),

such as AWS CloudFront.

To the best of our knowledge, until this work, no

attempt has been made to use serverless functions for

adaptive transcoding of a live 3D immersive media

stream. In our implementation we used open source

Apache OpenWhisk project [1]. We leveraged Open-

Whisk’s capability of executing functions on top of Ku-

bernetes to provide features such as direct network com-

munication among serverless functions (as opposed to

the communication via storage or database, which is

typical in other frameworks), support for Day 0, Day 1,

and Day 2 configuration, as well as support for GPUs.

All these features are not being provided out of the

box to the developers, which hinders serverless adop-

tion for media intensive applications. In this paper we

demonstrate how adding this features might open up

new opportunities to achieve cost-efficient immersive

media implementations.

2.6 Summary of our innovations

In this paper, we expand on a preliminary design [34]

of a novel multiplayer tele-immersive game applica-

tion [24] where players are embedded inside the game

environment via their 3D reconstructed avatars. The

gaming application is supported by a 3D immersive

media production platform which uses [82] for volu-

metric capturing and a re-implementation of the 3D

reconstruction algorithm found in [7]. This platform is

low-cost, portable, real-time and produces streamable

content of ∼ 50 Mbps, at interactive rates (25 frames

per second). The application offers live spectating of

the game action and on-demand viewing of replay clips.

It is deployed on 5G serverless infrastructure and em-

ploys adaptive streaming techniques to stream the 3D

appearance of the players to spectators. Our adaptive

streaming algorithm is based on [32] for compressing

geometry and MJPEG for compressing textures. Adap-

tation is achieved by varying compression parameters to

produce different profiles at various bit-rates. Further,

apart from costs, adaptation optimization is driven by

a variant of the QoE model in [92]. Our work is among

the first to discuss live 3D immersive media streaming

under a 5G, serverless framework. Such an attempt was

not possible before, mainly due serverless frameworks

lacking support for network communications of server-

less functions, Day 0/1/2 configurations and GPUs.

Furthermore, this work is also among the first to pro-

vide a network-centric novel adaptive streaming algo-

rithm which takes into account the serverless benefits

in order to minimize service costs while offering high

QoE to spectators.

3 FaaS Extensions

FaaS frameworks and offerings are rapidly proliferat-

ing. However, there are just a few industrial grade open

source FaaS platforms available. One such framework is

Apache OpenWhisk [1], which powers the IBM Cloud

Functions commercial offering [4]. Presently, FaaS com-

mercial offerings do not offer usage of GPUs in server-

less functions. The reason for that is that GPU sharing

is a relatively new topic that poses a number of chal-

lenges. Since NVIDIA has introduced Multi-Process

Service (MPS) in its Volta GPU architecture [65], GPU

sharing is being a hot research topic [95].

A most common compute virtualization technology

powering FaaS is containers. In production, containers

are managed by container orchestrators, such as Kuber-

netes [56]. However, current container orchestrators do

not know how to leverage architectures such as NVIDIA

MPS yet. Thus, a solution that we adopt for extending

FaaS to use GPUs is time-sharing of GPUs rather than

collocating workloads on the same GPU. Another rea-

son for preferring time sharing to spatial collocation is

that collocating workloads on GPUs might require re-

writing of the application code.

Another problem that is currently not being ad-

dressed by the FaaS frameworks is supporting both in-

bound and outbound network traffic to and from server-

less functions. Usually, only the outbound traffic is be-

ing supported seamlessly. For the inbound traffic, an

image of the serverless function container should in-

clude some communication service, which might be dif-

ficult to do due to inability to expose the function as a

service to the outside world and intricate firewall set-

tings. In our solution we rely on using Container Net-

work Interface (CNI) to connect serverless functions to

a logical network maintained by container orchestrator.

Finally, in the context of 5G MEC, a FaaS frame-

work is provided as part of the MEC platform. Figure 1

shows the ETSI reference architecture for 5G MEC. In

this architecture variant, termed MEC in NFV, the

application components (serverless functions) are re-

quired to be packaged as Virtual Network Functions

(VNFs) to be managed by the ETSI Management and

Orchestration Stack (MANO) via either a Virtual Net-

work Function Manager (VNFM) or a Network Func-

tion Virtualization Orchestrator (NFVO). Finally, the

actual container allocation should be performed by Vir-

tual Infrastructure Manager (VIM) MANO component.

Therefore, a challenge arises in how to harmonize ETSI
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MANO standards with FaaS. We partially addressed

this problem in our previous work [9], where we de-

scribed an ETSI compatible FaaS VIM. In this paper,

we deal with additional problems related to harmo-

nizing orchestration of serverless functions with ETSI

MANO to implement the tele-immersive media appli-

cation.

We will now briefly discuss the challenges mentioned

above, and outline how we deal with them in the pro-

posed solution2.

3.1 Orchestrating Serverless Applications in 5G MEC

One of the more important challenges to integration be-

tween MANO and serverless technology that we faced

in our serverless tele-immersive media implementation

was the inability to model a FaaS based service us-

ing ETSI VNF Descriptors and VNF Packages. Par-

ticularly, a FaaS-based network service includes com-

ponents that should not be started upon service in-

stantiation, but created and deleted based on custom

events. Some of these events are possibly happening

inside the application itself. This pattern cannot be re-

duced to what ETSI MANO already handles well —

auto-scaling. Rather it requires additional flexible or-

chestration mechanisms, which are application specific.

We have developed such serverless orchestration, which

generalizes to any custom orchestration scenarios and

across multiple use cases.

In Figure 2 we show how we combine serverless

orchestration with MANO for the sake of managing

serverless tele-immersive media in 5G MEC. We used

Kubernetes as our NFVI because of it being a de facto

container orchestration standard. Also it provides out-

of-the-box capabilities for networking and GPU con-

sumption by the OpenWhisk serverless functions, as

we discuss in Subsection 3.2 and Subsection 3.3, re-

spectively.

To harmonize serverless functions with the standard

ETSI network service modeling and life cycle manage-

ment cycle, we add key/value pairs to the optional in-

formation field of a Virtual Network Function Descrip-

tor (VNFD), indicating whether a VNF/CNF is server-

less and whether is should be started upon instantiation

of the network service or upon some custom event.

Each serverless VNF/CNF in our system is an

OpenWhisk action3 that is pre-registered with the

2 A reference implementation of our extended FaaS frame-
work and its integration with MANO, can be found in
https://github.com/5g-media/faas-vim-plugin.
3 In Apache OpenWhisk parlance, functions are termed ac-

tions. We will use the terms interchangeably, wherever this
does not cause an ambiguity

OpenWhisk FaaS system, which is provided as part of

the 5G MEC Platform. This is part of the onboarding

into a VIM mechanism prescribed by MANO. For more

details see our previous work [6]. The image of a server-

less VNF/CNF is simply a fully qualified action name

that points to an appropriate metadata associated with

the action: key/value pairs describing the action exe-

cutable, resource limits, such as memory, CPU, maxi-

mum execution time, and a variety of annotations that

help OpenWhisk to invoke and manage this function.

This metadata is interpreted by our OpenWhisk

VIM that does not invoke an action (does not start

the serverless VNF/CNF) upon the initial instatiation

driven by ETSI MANO (shown on the left of the fig-

ure). A standard MANO instantiation flow consists of

un-packaging the network service package, instantiating

VNFs/CNFs in the sequential order of appearance of

their VNFDs in the package. MANO’s NFVO of VNFM

polls VIM periodically to obtain metadata on the in-

stantiated VNFs/CNFs when they get started and con-

figured with Day 0 configuration (e.g. IP:port address).

This data is being stored inside MANO’s in-memory in-

ventory of the running VNFs/CNFs, called Virtual Net-

work Function Record (VNFR). Our OpenWhisk VIM

initially makes up default metadata, such as “0.0.0.0:0”

for serverless VNFs/CNFs that should not be started

upon instantiation, but rather upon events.

To handle event-driven instantiation and configura-

tion of serverless functions, we developed a novel orches-

tration subsystem, which is shown on the right side of

Figure 2. We use CNCF Argo Workflows [12] and Argo

Events [11] as the basic mechanism for the proposed

serverless orchestration. The former is a Kubernetes-

native workflow management engine, while the latter is

a Kubernetes-native event dependency resolution sys-

tem that can trigger Argo Workflows in response to

external events. We include a special bootstrap function

with every network service that uses serverless func-

tions that should be started on demand. In particular,

in our implementation of the tele-immersive gaming,

transcoders and replay functions are started on demand

in response to in-application events rather than upon

the initial instantiation.

The bootstrap function contains yaml definitions

for two Kubernetes Custom Resources (CRs): Gate-

way and Sensor, which are specific to this network ser-

vice. The CRs comprise the standard Kubernetes mech-

anism to extend the Kubernetes resources ecosystem,

so that external resources can be managed like native

ones, such as pods, deployments, jobs, etc. An inter-

ested reader is referred to the Argo documentation for

details of how to use Argo. For the sake of the expo-

sition in this work, it suffices to mention that CRs are
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Fig. 1: Serverless Tele-Immersive Media in 5G MEC

essentially yaml files adhering to the Argo dialect. Each

such file, a CR, is an instance of a schema called Custom

Resource Definition (CRD). Gateway and Sensor life-

cycles are managed by Gateway and Sensor controllers,

respectively, which watch for the new CR instances of

Gateway and Sensor CRDs. When such instances ap-

pear as a result of applying the CR document to the

Kubernetes API server, the Gateway controller sets up

a new Gateway instance and connects it to an external

event source and a Sensor target, as specified in the CR

specification. Likewise, when a new Sensor CR is ap-

plied, a Sensor controller that watches the Sensor CRD

creates a new Sensor instance and makes itself available

to receiving events from the appropriate gateways.

In our implementation, the Argo Gateway, Sensor,

and Workflow controllers are part of the pre-deployed

services provided by the MEC (see Figure 1). A boot-

strap function is always started upon instantiation and

immediately after starting, and applies yaml CR defi-

nitions of Gateway and Sensor for this service instance,

thus creating a session level event-driven orchestration

control plane. This control plane exists for the duration

of the service and once the service is deleted (or nat-

urally comes to a termination, e.g. if the game time is

up), this event driven control plane is purged from the

system.

Our implementation uses an out-of-the-box Web-

hook Gateway that can receive external HTTP requests

that it passes to the Sensor. The sensor is more intri-

cate. Based on the payload of the HTTP request (i.e.

an event that it receives from the Gateway), it condi-

tionally executes lifecycle management actions, such as

starting a serverless VNF/CNF, stopping a VNF/CNF,

Day2 configuration related actions, etc. A service de-

veloper has to program the Sensor to enable this event-

driven orchestration at runtime.

The lifecycle management action is an Argo Work-

flow instance (yet another CRD) that natively executes

in Kubernetes. In essence, when a Sensor condition-

ally triggers Argo workflows dependent on the opera-

tion passed to the Sensor by the Gateway. The opera-

tion specification is part of the original HTTP request.

The triggering is performed by applying a correspond-

ing Argo Workflow CR instance to the Kubernetes API

Server. The Argo Workflows controller that watches for

the new CR instances pick it up and sees for the work-

flow execution.

We use this this novel orchestration mechanism as

follows. When our network-centric optimization decides

to reallocate specific transcoding profiles, the control

plane of the application that performs the optimiza-

tion of a specific session sends an HTTP request to

the Gateway of that session (previously set up by the
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bootstrap function upon instantiation of the service)

requesting termination of some transcoder profiles and

allocation of some other profiles (i.e. terminating some

running OpenWhisk actions and invoking some other

OpenWhisk actions in the Kubernetes NFVI through

the OpenWhisk API). Likewise, when an event of in-

terest happens in the session, an HTTP request to start

a replay function is sent to the Gateway of the session,

triggering a management workflow in the Sensor of the

session that invokes the replay action, configures it and

connects it to the rest of the running service.

3.2 Networking for Serverless Applications in the 5G

MEC

FaaS frameworks do not support direct network com-

munication among functions out of the box. In our

prototypical implementation, we use Kubernetes as the

backend for OpenWhisk actions (containers) execution.

Kubernetes provides a number of networking solutions

out of the box through its Container Network Interface

(CNI) standard. These solutions differ in the level of

maturity and sophistication. A survey of the Kuber-

netes networking landscape is out of scope for this pa-

per, so we provide only a high level description pertain-

ing to our implementation. In our proposed solution,

we use Flannel [3], a simple pod level overlay network

that can be used to enable containers running in these

pods to communicate directly. The challenge in using

Flannel for our work was in devising the orchestration

workflows in the Sensor to set up the network just in

time upon the service instantiation and then connecting

the newly invoked OpenWhisk actions (which eventu-

ally run as pods) to get connected to this network.

A typical hard problem associated with this is port

mapping. For each pod in Kubernetes, an IP address

of the pod is the address of the Kubernetes Master

(also known as an address of the cluster). However,

ports should be allocated dynamically and without con-

flicts. For internally addressable (i.e. within the same

Kubernetes cluster), the port mapping is automatically

solved by using a NodePort resource that exposes a pod

as a service. However, in our case, if a service compo-

nent should be accessed externally, a more elaborated

Ingress resource should be defined. We omit the tech-

nical details of setting up and configuring the Ingress

resource and Ingress Controller. It is important to stress

that in our system this is being done on demand using

our serverless orchestration mechanism described in the

previous subsection.

3.3 GPU Allocation for Serverless Applications in 5G

MEC

Some transcoding profiles require GPUs for efficiency.

In fact, a large part of this work is devoted to optimiz-

ing usage of GPUs for serverless tele-immersive media

applications in 5G MEC, where these resources might

be scarce and relatively expensive. However, before we

can optimize usage of GPUs by serverless frameworks,

we need a basic support for consuming them. Apache

OpenWhisk proved to be an easily extensible frame-

work in this respect. OpenWhisk contains an extensi-

ble dictionary of action kinds that define their runtimes.

We created a new runtime that uses NVIDIA’s CUDA

framework. For example, a generic CUDA action can

be defined as follows:

1

2 "cuda ":[

3 {

4 "kind": "cuda:8@gpu",

5 "default ": true ,

6 "image": {

7 "prefix ": "docker5gmedia",

8 "name": "cuda8action",

9 "tag": "latest"

10 },

11 "deprecated ": false ,

12 "attached ": {

13 "attachmentName ": "codefile",

14 "attachmentType ": "text/plain"

15 }

16 }

Listing 1: CUDA action

Adding an entry to the action kinds dictionary is

not sufficient to make Apache OpenWhisk to interpret

this new action kind. There is a component in Apache

OpenWhisk called Kubernetes Client, which — when

OpenWhisk is being configured to use Kubernetes as

a container management environment for the actions

— creates a Kubernetes pod yaml definition out of the

action metadata. This yaml definition is then applied

by the Kubernetes Client to the Kubernetes API Server

and the action starts executing as a Kubernetes pod.

A Kubernetes yaml definition for the action shown in

Listing 1 would look as follows:

1 apiVersion: v1

2 kind: Pod

3 metadata:

4 name: cuda8action

5 spec:

6 containers:

7 - name: cuda8action

8 image: "docker5gmedia/cuda8action:

latest"

9 resources:

10 limits:
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Fig. 2: Serverless Tele-Immersive Media in 5G MEC

11 nvidia.com/gpu: 1

Listing 2: CUDA action Kubernes yaml definition

We modified Apache OpenWhisk Kubernetes client

to recognize GPU action kinds that we defined for

transcoding profiles that use GPUs. When such an ac-

tion is on-boarded on OpenWhisk that is configured to

work with Kubernetes that has GPU equipped worker

nodes in its cluster, the action will be placed by the

Kubernetes scheduler to a node that has NVIDIA GPU

(this functionality is being supported in Kubernetes as

an experimental feature since Kubernetes 1.8). A full

implementation is available in [20].

4 Serverless Adaptive Streaming Service

In this section, we describe the design of our adaptive

serverless streaming service. In our implementation we

used FaaS, as described in Section 3. Although FaaS

actions have limited life time, we found them adequate

for implementing our short-session-based service.

Tele-immersive media streaming services are usu-

ally sporadic in nature, with long periods of idleness

interspersed with short sessions of activity (e.g. gam-

ing or conferencing). As a result, under a traditional

VM-based design, apart from the increased service com-

plexity, a constant sizing problem would manifest when

seeking to optimize the service’s costs. FaaS offers a

more cost-efficient alternative as it automatically scales

to the number of active sessions.

As media streaming consumers can have very differ-

ent bandwidth or processing capabilities and network

conditions can fluctuate, a crucial part of an effective

media streaming service is adaptation. The original con-

tent is transcoded into a number of media profiles, each

targeting a different bandwidth and media quality, al-

lowing each consumer to receive the profile most suited

to their needs. Lack of an appropriate profile can lead

to frequent buffering events, for on-demand consump-

tion, or make meaningful reception completely impos-

sible for live streaming. Hence, adaptation is especially

important in live streaming media services.

An apparent advantage of a serverless adaptive me-

dia streaming service is more efficient utilization of its

available resources, such as different transcoding pro-

files. Indeed, for smaller consumer size sessions, not

all profiles might be relevant, which allows for cost-

optimized use of resources. Thus, apart from inter-

session scaling, serverless streaming offers the capability

of finer-grained intra-session scaling and adaptation.

This is more pronounced for emerging media ser-

vices, whose profiles and codecs have not yet converged

to a standard, in contrast to traditional (i.e. flat/2D)

audiovisual media. Thus, emerging media has to deal
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with a wider repertoire of profiles. Specifically for 3D

immersive media [49], [24], the profile selection prob-

lem is more complex [32] due to the simultaneous avail-

ability of various profiles (joint 2D and 3D) and their

suitability to highly heterogeneous consumer types (i.e.

mobile, workstations, VR headsets) that in turn, come

with different requirements in terms of the delivered

profiles.

This type of immersive media delivers two payloads

simultaneously, the 3D mesh media stream and the

multi-view textures media streams. While the latter are

encoded with traditional flat/2D media encoders, the

former use distinct 3D codecs. This effectively renders

each immersive media stream profile to be a tuple of

a video (i.e. 2D), P2D, and 3D, P3D profiles, leading

to a more complex visual quality formulation [33]. Fur-

thermore, emerging consumption means that VR and

AR accompany traditional displays (i.e. desktop/laptop

and mobile), creating a far more complex landscape for

profile selection that depends on each consumer type’s

computing and viewing characteristics. We argue that

for sessions with relatively few consumers, which will

require only an optimal subset of profiles, a serverless

streaming model is more appropriate, because it opens

up more opportunities for optimization.

As explained in the previous section, our extended

FaaS framework allows GPU consumption. This adds

another dimension to our profiles, expanding the two-

tuple to a three-tuple (P a3D, P
b
2D, R

c), containing the

3D and video profiles, in addition to the computing re-

source type Rc (i.e. CPU: c = 0; or GPU: c = 1). Thus,

profiles with similar bit-rates, may reduce processing la-

tency at the expense of using higher cost resources. For

conciseness, we denote a transcoder’s joint 3D media

profile as Pn, with n encoding a unique combination of

a, b and c.

Serverless design follows a single responsibility prin-

ciple: each function is responsible only for a single task,

instantiated as the need arises and destroyed when the

task is completed. In the context of media streaming

adaptation, this translates to having one transcoding

function for every combination of profile and source (i.e.

a player).

A general scenario for tele-immersive media stream-

ing includes a population of producers (K), which gen-

erate live 3D video streams; and a population of specta-

tors (S) who need to receive the streams of all producers

and reconstruct them in the virtual environment. Our

service then comprises a broker function (vBroker) and

|N | · |K| transcoder functions (vTranscoder), where N

is the set of transcoding profiles, as each vTranscoder

is responsible for transcoding the stream of one specific

player to one specific profile.

Producers send their production streams to the

vBroker, while vTranscoders receive these streams from

the vBroker, transcode them according to predefined

profiles, and upload them back to the vBroker. Con-

sumers then are served either the production stream or

a transcoded one from each producer, based on an adap-

tation logic. In the context of Kubernetes, this means

allocating a set of transcoding actions for each produc-

tion stream.

This serverless adaptive streaming design lends it-

self to optimization. Transcoder functions can be de-

ployed on demand while monitoring the service’s be-

haviour, as events in response to the monitoring anal-

ysis. Typically this relates to monitoring its cost, and

seeking to minimize it, and monitoring the QoE of its

consumers, seeking to maximize it. Taking into account

the cloud-native transformation happening thanks to

the emergence of 5G and the virtualization and soft-

warization of the network, it is possible to perform ser-

vice optimization in an integrated manner with the net-

work itself. Instead of relying on a local client-based

adaptation, service adaptation and optimization can

take a more global approach.

Our streaming service is entirely dynamic, with the

vBroker action deployed at the start of each session,

for that specific session. This allows for edge proxim-

ity placements and a flexible vBroker interconnection

scheme that unifies edge and core resources, allowing

our session based services to span multiple infrastruc-

tures. Transcoders are deployed on-the-fly according to

the network-centric session optimization logic. The ser-

vice has a choice either starting with zero transcoders

and subsequently adding them on demand as guided

by the optimization, or starting with a default trans-

coder profiles configuration, and then adapt it to the

actual consumers. This is similar to client-based adap-

tation that start either on the lowest/highest profile,

and then adapt to that which results in higher QoE.

Application specific events (e.g. replaying high-

lights) trigger processing functions that are deployed

on the serverless infrastructure and are responsible to

synchronize media and game-state streams to produce

replay clips that they can later be served to spectators

on demand.

In Fig. 3, the service components are depicted. On

the left, producers in the 3D immersive media produc-

tion platform produce high quality profile 3D media

streams, denoted as P k0 . The adaptive streaming com-

ponents are comprised of a set of vTranscoders each

one being responsible for transcoding an input 3D me-

dia stream from a single player to a single profile.

Those transcoded streams become available to the con-

sumers via the vBroker instance. Additionally, vReplay
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Fig. 3: An abstracted architecture of our service: vTranscoders are instantiated or destroyed as needed, each

one responsible for transcoding the media stream of one producer to one profile. vReplay functions are similarly

triggered by certain events. All streams flow through the vBroker, from which consumers receive the allocated

media streams.

instances are instantiated on the FaaS infrastructure in

response to specific events, as described in Section 3.

Upon the completion of replay clip processing, the pro-

cessed media clips become available to the application

consumers on demand.

In more detail, our network-centric real-time adap-

tive streaming service drives an AugmentedVR [49]

gaming application. The application manages gaming

sessions supporting K players and S spectators, where

|S| � |K|. Each player is captured with a volumet-

ric capturing station [83] and 3D-reconstructed in real

time [7], producing a live 3D media stream. The players’

live media traffic, along with the application game state
metadata are transmitted and synchronized among the

playing users (more details regarding the application’s

architecture can be found at [24]). In this way, players

are emplaced within the same shared virtual environ-

ment, and interact within it under a capture-the-flag

context. Through the aforementioned adaptive stream-

ing service back-end, the application allows for remote

party spectating of each gaming session.

The spectators S receive the synchronized game

state and all |K| players’ media streams, faithfully re-

producing the current session, with example screen-

shots presented in Fig. 4. While the players’ communi-

cation is based on stringent real-time requirements, the

spectators’ media consumption relies on broadcast traf-

fic, and thus requires consistent streaming with relaxed

latency constraints. This is driven by a centralized con-

trol plane of the application, which oversees the produc-

tion and delivery of appropriate profiles to each specta-

tor for smooth playback. The control plane is extensible

and new optimization algorithms can be plugged in as

needed. In Section 5.5 we present our proposed network-

centric optimization to drive the control plane and in

Section 6 we compare this smart optimization with a

more naive baseline algorithm to quantify the benefits

of the network-centric optimization. The control plane

of the application interacts with the Serverless Orches-

tration mechanism described in Section 3 to actuate the

transcoder profile allocation plans calculated via opti-

mization.

These profiles are selected from a set of profiles N ,

with each spectator receiving one profile P k
n ∈ N (with

n ∈ |N |) for each player k ∈ K. Each profile is served

by a single transcoding action, spawned and managed

by the service, that re-encodes the originally produced

profile P k
0 from a specific playing user, to a lower bit-

rate profile P k
n , which is made available on the broker.

At the same time, the application orchestrates the pro-

duction of on-demand media in the form of highlight

replay clips. These are event-driven processing actions

that produce finite media streams of previously cap-

tured live traffic. Once produced, these too are available

on the service’s broker for on-demand consumption by

the spectators. Finally, the orchestration and manage-

ment of the transcoding actions are handled by our ser-

vice’s optimization logic that has a dual role. On one

hand, to optimize the application’s costs, while preserv-

ing the resulting QoE by making scaling decisions for its

elastic components (i.e. the transcoding actions); and,

on the other hand, to apply network-centric adaptation

by collectively deciding each spectator’s consumed pro-

file.
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Fig. 4: Screenshots of the AugmentedVR [49] immersive media game where the playing users real-time 3D me-

dia streams are embedded into the same shared virtual environment. The screenshots’ viewpoints are those of

spectating users that can freely navigate the scene in order to spectate the action around the virtual arena.

One important design concern is dealing with the

fixed maximal life time of FaaS executions. In cases,

when the session time is about to exceed the lifetime of

the functions involved, a shadow FaaS invocations can

be started and configured. As explained in Section 3

we use NodePort to expose serverless functions as Ku-

bernetes services. This means that we can transparently

switch one FaaS invocation by another without disturb-

ing the service. Therefore, while any concrete serverless

function cannot execute beyond its maximal life time,

collectively an intensive media session can be extended

as needed at fine granularity.

5 Network-centric Cost Optimization

When considering the optimization of a serverless live

streaming delivery network, there are two conflict-

ing objectives: to maximize the QoE of every indi-

vidual spectator and to minimize the cost to the ser-

vice provider. Maximizing the QoE entails making the

streams available in multiple versions differentiated in

visual quality and bitrate, so that each spectator can

consume a version most suited to her device type, pro-

cessing power and connection capabilities. The produc-

tion of multiple transcoding profiles, however, involves

running more transcoder FaaS functions, thus increas-

ing cost.

In order to balance a tradeoff between QoE and cost,

both must be expressed in common units. Providing a

certain QoE level can be naturally connected to gener-

ating revenue for the stream producer, either directly or

indirectly. Our proposed optimization maximizes profit

for the stream provider (i.e. the revenue minus cost ob-

jective). This section describes the components involved

in modelling revenue and cost.

5.1 Spectator behavior

During the course of a session of live-streamed me-

dia, individual spectators may be consuming the stream

from its start, or join at any later point in time. Streams

of different characteristics (e.g. popularity) may attract

new spectators at different rates and numbers. Simi-

larly, spectators may stay online until the stream ends,

or quit before that, for reasons which may or may not

be relevant to the stream characteristics.

5.1.1 Spectator arrival

Traditionally, an arrival process of people to stores, fa-

cilities, telephone calls have been modeled using Poisson

distribution [53], [47]. The Poisson distribution calcu-

lates the probability of k events (e.g. arrivals) occurring

in a specified interval, given the average number λ of

events per interval [91]:

P (k events occurring in interval) =
λke−λ

k!
(1)

The process of spectators arrival to an immersive

gaming session involves humans making discrete deci-

sions on joining a gaming session. Modeling spectators’

arrival to immersive gaming requires a thorough study

and careful characterization. However, we are unaware
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of the literature presenting accurate stochastic mod-

eling for spectators’ arrival. Probably, this can be ex-

plained by this domain being relatively new and rapidly

evolving.

It is reasonable to assume that in certain settings

the overall arrival process in immersive gaming might

differ considerably from the Poisson distribution. For

example, a large number of spectators can arrive simul-

taneously at the beginning of a session if a session is

perceived as extremely interesting because of the promi-

nence and high ratings of the players. More spectators

might arrive later and their arrival process can follow

the Poisson distribution with the overall distribution

being non-Poisson. Note that Poisson inter-arrival pro-

cess requires that the inter-arrival times are distributed

exponentially. Obviously, a simultaneous bulk joining of

spectators breaks this assumption. Likewise, a session

inter-arrival process can start as a Poisson one and then

a bulk of spectators can join all at once, e.g. because of

a viral notification in a social network that this session

is a must to attend. Obviously, the Poisson assumptions

will be broken in this case as well.

These are extreme scenarios which, albeit possible,

are not necessarily expected in each and every gaming

session. Furthermore, these scenarios are not amenable

to the fine grain optimization that we propose in this

paper, because statistically in large spectator popula-

tions we would expect to have enough members with ev-

ery possible terminal capability to justify allocation of

all possible combinations of transcoding profiles to max-

imize the total QoE for spectators. This would make the

proposed serverless architecture to perform no better

than other approaches.

To explore and characterise the sweet spot of our

proposed optimization, we focus on relatively small ses-

sions in terms of spectators number and make an as-

sumption that these spectators will behave similarly to

the viewers of the video streaming services. It should

be noted that spectators consume video and because

the sessions are relatively short and dynamic their be-

havior might be similar to that of the video streaming

services customers browsing video content and watch-

ing previews. It is widely accepted to model the inter-

arrival process of such customers using Poisson distribu-

tion [48,18] even though some works exist that indicate

that the inter-arrival process to the media streaming

services can be better modeled by the lognormal distri-

bution [8].

In this work, we decided to follow the mainstream

approach and model inter-arrival process of spectators

to the gaming sessions as a Poisson distribution. We

define the distribution’s interval as the ten-second time

step and set the average number λ of arrivals per inter-

val to a range of values from 0.25 to 1, with a default

of 0.5 arrivals per ten-second time step.

5.1.2 Spectator quitting

Once spectators join, they may remain online until the

end of the stream or quit before then. Chen et al. [22]

model spectator quitting probability as a function of

their QoE: a spectator with very bad QoE is certain to

quit, while a spectator with very good QoE is likely to

remain but still has some 20% probability of quitting

before the session ends, for non-QoE related reasons.

Between these two extremes, the decrease of quitting

probability with QoE is assumed to be linear.

In a scenario with a diverse mix of spectators, QoE

may vary significantly depending on device type, pro-

cessing power and connection bandwidth. Spectators

with powerful PCs and a good connection will have a

better QoE than spectators with mobile devices, which

would lead to mobile spectators quitting much more fre-

quently. In this work we consider that each spectator is

aware of their own hardware and connection capabili-

ties, and will be happy with the best QoE possible for

that configuration. Hence, in estimating quitting proba-

bility, we consider the difference between the maximum

QoE possible for each spectator and their actual QoE.

Other factors that might impact quitting for non-

QoE related reasons include the interest level of a given

session: spectators may abandon a boring or slow ses-

sion more easily than a very active or thrilling session.

This will also impact QoE-based quitting probability

modeling, as spectators may be reluctant to leave an

interesting stream despite QoE being mediocre. QoE-
related quitting can be further altered by how demand-

ing a spectator population is.

Hence, based on the findings of [22] and these con-

siderations, we build a linear quitting model for each

10-second time step. The probability that during a time

step t a spectator experiencing QoEt, will quit, is:

qt = q(QoEt) = b+(QoEmax−QoEt) ·d = b+dQoE ·d
(2)

where:

– b is the base quitting probability per time step for

non-QoE related reasons, with a default value of

0.37%, corresponding to a cumulative probability

of 20% to quit at some point in the course of a 10-

minute session.

– dQoEs is the difference from the maximum possible

QoE for that spectator.
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– d is a factor denoting how much QoE impacts quit-

ting, which is dependent on QoE value range pro-

duced by the QoE model and the session parameters

(i.e. how interesting or important a session is, and

consequently how likely spectators are to leave be-

cause of QoE dissatisfaction). The QoE model we

adopt (see 5.3) produces values usually within the

range of 2.8–3.8. Hence, d ranges from 10% (an in-

teresting session that spectators won’t quit easily)

to 50% (very demanding spectators), with a default

value of 20%.

The probability that a spectator remains online in

a given time step is pt = 1 − qt. The probability of a

spectator to remain online from t0 to t1 would be the

product of remaining at each individual time step in

between, which, naturally, is decreasing over time:

pt0→t1 =

t1∏
t=t0

pt =

t1∏
t=t0

(1− qt) (3)

Eq. 3 assumes that quitting events during different

time steps are independent and identically distributed.

While this may not always be the case, a more so-

phisticated model of spectator behavior is currently

outside of the scope of this work, because more field

data should be collected on immersive media spectators

online behavior as these services become mainstream.

Presently, this is still a new area and we believe that us-

ing simpler modelling is justified forr initial exploration

of cost/QoE trade-offs.

To calculate the probability of a spectator remaining

active from the beginning of the session to its end, t0
and t1 can be set to 0 and |T |, respectively. For a 10-

minute session comprised of 10-second time steps, |T |
would equal 60.

Hence, for example, a demanding spectator in a bor-

ing session, with a dQoE of 0.5, might have a 5.37%

probability to quit every 10 seconds, meaning she may

soon leave unless her QoE improves. Note that in the

relatively narrow QoE range produced by the QoE

model (see Section 5.3), a dQoE of 0.5 represents a

significant decrease from the optimal QoE for this spec-

tator. Conversely, for an undemanding spectator in an

interesting session with a dQoE of only 0.1, quitting

probability would be 0.57% per ten-second time step,

and he is 71% likely to remain until the end of a 10 min

session.

5.2 Revenue

Depending on the use-case and the marketing approach,

revenue for the media stream service provider can range

from direct (e.g. a subscription-based or pay per-use

service) to indirect (e.g. a service supported by ads).

In general, the provider is interested to keep specta-

tors engaged for longer time periods, because it might

generate more revenue. In an ad-supported service,

spending more time watching the stream results in

greater exposure to the advertisements. In a subscrip-

tion service, spectators who don’t spend so much time

watching the stream may reconsider renewing their sub-

scription. Spectator QoE may also impact the revenue

they are generating, or not, depending on the specific

use-case. In a pay per-use service, the revenue gener-

ated is directly proportional to the time spent in the

service.

In this work, we consider an ad-supported use-case

as a baseline scenario, and correspondingly assume that

each active spectator generates indirect revenue per

time unit, so long as they remain active. Revenue gen-

erated per time step can be constant, or a function of

the spectator’s QoE, considering that spectators hap-

pier with their QoE may be more receptive to ads. As

revenue modelling varies by use-case and is outside the

scope of this paper, we consider the generic case that

revenue is a function of QoE. This can be modelled

by any monotonically non-decreasing function, e.g. con-

stant, linear or logistic:

rt = r(QoEt) = a1 (constant)

(4)

or rt = r(QoEt) = a2 ·QoEt (linear)

(5)

or rt = r(QoEt) = a3 ·
1

1 + e−QoEt
(logistic)

(6)

Over the course of a streaming session, the revenue

generated by a spectator during each time step accu-

mulates to produce the total revenue over time:

rtjoin→tquit
=

tquit∑
t=tjoin

rt (7)

However, the time that spectators remain active,

and therefore generate revenue, is directly affected by

the QoE they are experiencing, as mentioned in subsec-

tion 5.1.2 and Eq. 2. For a given future time step t, the

average expected revenue generated by a spectator with

QoEt and qt probability of quitting will be dependent
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on the probability they remain active until t. Taking

into consideration Eq. 3:

E(rt) = rt · pt0→t1 = rt ·
t1∏
t=t0

(1− qt) (8)

Therefore, taking into consideration Eq 8 and the

dependency of r and q on QoE for every time step,

the total expected revenue from a spectator, from the

current time t0 until time t1 is:

E(rt0→t1) =

t1∑
k=t0

E(rk) =

t1∑
k=t0

[
rk ·

k∏
t=t0

(1− qt)

]

=

t1∑
k=t0

[
r(QoEk) ·

k∏
t=t0

(
1− q(QoEt)

)] (9)

Eq. 9 highlights how QoE can impact revenue both

directly, by altering the revenue an active spectator gen-

erates per time unit, and indirectly, affecting their prob-

ability of quitting early.

5.3 QoE model

In order to keep spectators from quitting the stream

early, thus maximizing generated revenue, an optimiza-

tion algorithm would need to know what each spec-

tator’s QoE is at present, and how it may change de-

pending on the network-centric optimization decisions.

Although a number of video streaming QoE models ex-

ist (e.g. [69,70,89]), there is none, to our best knowl-

edge, that regards textured 3D meshes viewed in a free

viewpoint environment. However, for testing purposes,

a suitable 2D video QoE model may be adopted.

In this paper we derive our QoE model from Zad-

tootaghaj et al. [92]. In that work the authors consider

cloud gaming, which is a close match to our own use-

case. Using subjective mean opinion score (MOS) mea-

surements, they derive QoE as a second degree function

of image PSNR and frame rate (FR), fitted to the MOS:

QoE =− 8.97 + 0.056 · FR + 0.41 · PSNR− 0.0038 · PSNR2

− 0.001 · FR2 + 0.00079 · FR · PSNR

(10)

Knowing the average PSNR and frame size for each

transcoding profile and each spectator’s bandwidth, we

use this model to calculate each spectator’s QoE at

present and estimate their QoE in the future for dif-

ferent profiles.

In a tele-immersive game, a spectator will be receiv-

ing each player’s 3D representation in a transcoding

profile. For each profile, the average PSNR is known,

calculated from the PSNR of the textures used to color

the 3D mesh, considering that part of the screen occu-

pied by the 3D reconstruction. Although the latter of

course varies by a spectator viewpoint, in the vast ma-

jority of cases the 3D reconstruction will occupy an area

of 1-5% of the total screen area. Given that the area

not occupied by the 3D reconstruction is computer-

generated and suffers no loss of quality with different

transcoding profiles, we offset average texture PSNR to

obtain an estimate of average spectator view PSNR.

Depending on a spectator’s maximum bandwidth,

they may be unable to receive the incoming stream at

its full framerate. Eq. 10 considers the actual framerate

experienced by a spectator, which will be dependent on

that spectator’s connection bandwidth and the average

frame size of the received profile.

In the general tele-immersive scenario, each spec-

tator will receive transcoded media streams from |K|
players. Each received stream might employ a different

transcoding profile and have different PSNR and frame-

rate values, thus resulting in a different QoE, regard-

ing the quality of the 3D reconstruction of a particular

player.

The total QoE for each spectator, which aims to re-

flect their satisfaction with the whole immersive expe-

rience, will be a function of the individual QoEs corre-

sponding to each player. A simple approach would be to

simply average the QoE of each player’s 3D reconstruc-

tion. A more thorough modelling, which is beyond the

scope of the present work, might take into account the

position and orientation of the spectator and the play-

ers inside the virtual space and assign greater weights

to the 3D representations of players closer to the spec-

tator, and nearer the center of their field of view. How-

ever, position and orientation would not likely remain

constant in an immersive environment, even for a ten-

second time step.

In this work we opt for the simple averaging ap-

proach, assuming that spectators can see both players

equally in the virtual space. This in no way limits the

generality of the methodology and outcomes, as it con-

siders the most generic case.

5.4 Costs

The costs of delivering live media to a population of

spectators are comprised of two separate categories: the

cost of running the necessary software to transcode and

buffer the data, and the cost of delivering the data to

the consumers.
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In the serverless approach we examine in this work,

each transcoded media quality is being produced by its

own dedicated FaaS transcoder. We assume that such

transcoders are being deployed in a 5G MEC FaaS (e.g.

using our extended FaaS framework). Since MEC is, es-

sentially, a cloud deployed at the edge (also referred to

by telcos as a cloud edge) the business model is similar

to that of the cloud, but the resources are more scarce

and therefore are likely to be priced differently. Appli-

cations (such as our tele-immersive gaming) rent these

resources on a pay as you go basis. In fact, the applica-

tion deployment can be more sophisticated. For exam-

ple, some low end transcoders for spectators who also

can tolerate slower (and thus cheaper) network connec-

tions can be be placed in a public cloud, such as those

provided by IBM, Amazon, Google, etc. Some other,

more demanding transcoders, will be placed closer to

the spectators, i.e. in the MEC and utilize the un-

precedented 5G connectivity speed and bandwidth at

a higher price point, striving at the overall profit max-

imization for the service provider.

In addition to the regular resources available to

FaaS in the current commercial offerings, our video

transcoders may require the use of a GPU for real-

time processing, which will incur additional costs, as

described in the following subsection.

In addition to the transcoders, a broker function,

active throughout the session, is also necessary to fa-

cilitate the media stream traffic. The core broker func-

tion also facilitates communication between the players.

Therefore it will always be placed in the MEC.

In cloud-deployed functions, only outgoing (not in-

ternal) traffic is usually charged, with typical prices

ranging from $ 0.05 to $ 0.10 per GB. However, the

Cloud cannot match KPIs In 5G MEC deployments

it is too early to reason about the pricing plans for

inside-edge traffic and in-bound and out-bound traffic

between 5G MEC and the cloud, because commercial

offerings are just being formulated. In general, there

are two pricing approaches for the 5G traffic: unlimited

plans (cheaper if the network is used a lot) and limited

ones, which can be quite expensive.

For simplicity, in our experimentation we focus

on the model, in which all application functions

(transcoders, brokers, buffering, replay) are deployed at

the 5G MEC and exclude traffic pricing from the quan-

titative analysis, focusing on other resources needed for

production. However, it should be stressed that our op-

timization problem formulation is general and includes

traffic costs as part of the overall cost modelling.

5.4.1 GPU Pricing Model

Over the last few years, GPUs have become essential to

a multitude of applications. Cloud vendors have recog-

nized this market potential and have started providing

new virtual server families that include GPUs. However,

GPUs present some new issues. In particular, GPUs are

not easily amenable to sharing among different work-

loads. This dictates a time-sharing approach and drives

up the cost of the cloud based GPU servers.

Limitations to GPU sharing are especially challeng-

ing for serverless computing. If time-sharing is used,

then only one serverless function consuming GPU can

run at a GPU-equipped virtual server at a time, with

the rest of the server resources (CPU, RAM) being

wasted. As we go to press, we are not aware of any com-

mercial offering for serverless computing with GPUs.

This does not preclude such offerings in the near future

as GPU sharing improves (Nvidia4, Nuweba5). Fur-

thermore, we believe that a significant progress with

building commercial cloud offerings for serverless GPUs

will only become possible when shareable GPU archi-

tectures will become ubiquitous and this programming

model will be consumable at the application level.

In our previous work, we developed a first-of-its-

kind prototype for using GPUs with serverless func-

tions. Our prototype uses Apache OpenWhisk and Ku-

bernetes [20]. To enable quantitative reasoning about

using serverless computing for tele-immersive gaming

in the 5G MEC’s FaaS, we need to develop an esti-

mation of a realistic pricing model for GPUs usage in

serverless computing. Since the MEC business model is

essentially the same as the public cloud business model

with an important distinction of resources being more

scarce in MEC, which justifies their higher pricing than

in a typical public cloud. Essentially, the supposition of

MEC is hat it behaves like a cloud in the edge allowing

to leverage proximity to users and higher KPIs at pos-

sibly higher price points for providers, but overall mak-

ing more profit by enabling new application capabilities

and providing much better QoE that would attract a

large customer base.

We therefore derive our hypothetical pricing plan for

MEC using public clouds as a starting point. To that

end, we consider a typical CPU-based cloud functions

pricing, and CPU-based virtual server pricing vs GPU-

based virtual server pricing and develop a speculative

model for the GPU based serverless costs. It should be

stressed that our intention is neither to propose an ac-

tual pricing model for GPU-based serverless computing

4 https://www.nvidia.com/en-us/data-center/virtual-gpu-
technology/
5 https://www.nuweba.com/

https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
https://www.nuweba.com/
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nor to argue that the profit margins should necessarily

be the same as for the CPU-based one. Rather, our in-

tention is to provide an educated guess for what this

model might look like and use it to study the pros and

cons of our proposed approach quantitatively.

Our methodology is to assume the same profit mar-

gins ratio between the GPU- and CPU-based serverless

computing as between GPU- and CPU-based virtual

servers. The latter is directly observable from the pub-

licly advertised cloud vendors pricing plans. Note that

while this assumption can deviate from the actual ra-

tios in practice, a proportionality between the internal

cost of production and the profit should exist. Hence, as

long as we preserve the directly observable ratios in our

estimations, they should serve as a reasonable proxy.

As an example pricing reference point, we con-

sider pricing plans for IBM Cloud. Similar results can

be obtained for other cloud vendors. Functions6 and

IBM Cloud Virtual Server Instances7. ACL1.8x60 and

M1.8x64 are the two models of virtual servers with and

without GPU, respectively. These two models have the

same number of CPUs (8) and approximately the same

amount of RAM (60 and 64, respectively). Billing is be-

ing done on a monthly basis. At full time utilization (i.e.

720 hours per month up time), M1.8x64 costs $362.88

at hourly rate $0.504 while ACL1.8x60 costs $1402.56.

This means that leasing a GPU-enabled server with

other parameters being equal to a CPU-based one is

about of 3.8 times more expensive. Note that what is

important in this study is the internal cost.

With the time shared GPU-based serverless com-

puting, the server can run only one GPU based function

at a time. Typically, GPU-enabled servers are large.

Therefore, running a single GPU-based function is tan-

tamount to fully occupying a large server for the dura-

tion of the function lifetime. The number of 15 minutes

long serverless functions per month per server will be

2, 880 = 720 · 4. Therefore, the cost of a single 15 min

execution can be assumed to be $0.487 = 1,402.56
2,880 .

To verify this calculation, one can observe that ex-

actly the same number can be obtain by simply dividing

the hourly rate of ACL1.8x60 ($1.9472) by 4 (number of

15 minute long functions per hour). This would give a

base rate of $0.00054 = 1.94
3,600 GPU seconds (we assume

the same usage of RAM as for the CPU case).

Note that while running a GPU-based serverless

function, the same host can be used to also run CPU-

based functions. Otherwise the CPUs and RAM of

the GPU based host will be just wasted. As we ob-

served above, the cost ratio between a CPU- and a

GPU-based VM is 3.8. IBM Cloud Functions are be-

6 https://cloud.ibm.com/functions/learn/pricing
7 https://www.ibm.com/cloud/virtual-servers/pricing/

ing priced at the base rate of $0.000017 per second

of execution, per GB of memory allocated (we abbre-

viate this to per GB seconds). This implies a base

rate of $0.000064 = 3.8 · 0.000017 per GB seconds for

CPU based functions (when running on a GPU-enabled

host). Of course, it is unreasonable that a CPU func-

tion will become more expensive in the public cloud

just because we introduced GPU-based functions. This

means that to keep the CPU functions at the current

base rate, GPU-based functions should be made even

more expensive, which will increase the ratio between

the GPU and CPU serverless computing costs beyond

3.8 (alternatively, GPU sharing architecture should be

developed and deployed to reduce the GPU price when

consumed via serverless functions). However, in the 5G

MEC, the users can be more receptive to higher price

points, because it is expected for the MEC resources to

be scarcer and, therefore, more expensive.

A detailed pricing modeling for the time-shared

GPU model is outside of the scope of this paper. For the

sake of modeling costs of serverless GPU functions in

this work, we assume that the FaaS is provided on top

of the GPU-enabled servers, similar to, say, ACL1.8x60

with the base rates of $0.000064 per GB seconds for

CPU-based functions and $0.00054 per GB seconds for

GPU-based functions (i.e. an order of magnitude differ-

ence in the cost). With this choice, we will be able to

avoid inflating the estimated benefits of our proposal

while still be able to demonstrate its usefulness.

5.5 Optimization

Our goal is to maximize the profit that an immersive

game provider accrues from offering the service on the

5G MEC using FaaS. While there are multiple costs

involved with provisioning (e.g. storage for replay clip

files, databases for managing service subscription, mon-

itoring subsystem, FaaS charges for replay clips, etc.),

in this paper, we focus on minimizing the overall pay-

ment for serverless transcoders allocated to spectators

to maximize their QoE.

The revenue is assumed to be generated by active

spectators, who have a greater probability to remain ac-

tive if they experience a QoE that is maximally match-

ing their capabilities in terms of their terminal and

bandwidth, as discussed in Subsection 5.2.

Higer QoE is produced by the transcoding profiles

that consume more resources and, therefore, are more

expensive. Since our goal is to maximize profit for the

provider, the network-centric optimization should serve

spectators a better QoE only if this increase in QoE

is expected to produce revenue that exceeds the cost.

Conversely, worsening QoE to save costs is justified only

https://cloud.ibm.com/functions/learn/pricing
https://www.ibm.com/cloud/virtual-servers/pricing/
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when this does not impact revenue too much by trig-

gering too many spectators to quit the stream.

In the course of our network-centring cost-efficiency

optimization two sets of decisions must be taken on-line

based on the metrics reported by active spectators and

models for spectator behavior, cost, revenue and QoE

developed in previous subsections:

1. Which transcoding profiles should be deployed in

production at each point in time to minimize costs

of production?

2. Which of the transcoding profiles for each player

should be allocated by the service provider to each

spectator to maximize their QoE, thus, maximizing

revenue?

We now define our optimization problem more rig-

orously. Table 1 summarizes the notations that we use

in problem formulation.

Given a set of transcoding profiles N , a set of players

K, and a set of spectators St0 at time t0,

Determine the transcoding profiles xkn that should be

produced and assign which of those produced profiles

each spectator should consume ysk→n, so as to

Maximize an estimated total profit (ETP) for

the immersive gaming service provider:

Based on all of the above, the expected total profit

is given by:

ETP =
∑
s∈St

E

(
rst→|T |

(
QoEst (ysK→N )

))

−
∑
k∈K

∑
n∈N

(
c(~n) ·

⌈∑
s∈St

ysk→n
|S|

⌉)
−o ·

∑
n∈N

[
bn ·

∑
k∈K

∑
s∈St

(
ysk→n − fsk→n

)]
(11)

Subject to constraints:∑
n∈N

ysk→n = 1, ∀s ∈ St, ∀k ∈K, ∀t ∈ T (12)

∑
k∈K

∑
n∈N

bn ·
(
ysk→n − fsk→n

)
≤ bst ,

∀s ∈ St, ∀t ∈ T ,fsk−>n ∈ (0, 1)

(13)

ysk→n ≥ fsk→n, ∀s ∈ St, ∀k ∈K, ∀n ∈ N, ∀t ∈ T (14)

Eq. 11 gives the expected total profit (ETP) of the

provider as the difference between the expected rev-

enue and the costs. It consists of three terms: The first

term, deriving from Eq. 8, sums the expected revenue

for all spectators, which is a function of their QoE,

which, in turn, depends on the profiles each of them

is assigned to consume. The second term represents

transcoding costs, summed for all players and profiles.

For each player/profile combination, the ceiling func-

tion returns 1 if at least one spectator consumes that

profile (and hence it is actually in production), and 0

if none do. The third term calculates traffic costs,

summed for all spectators, players and profiles. Each

profile n has an average bandwidth requirement of bn,

which is the maximum consumed by a spectator s who

is receiving that profile from player k (i.e. ysk→n = 1 ).

However, some of these spectators may be receiving n

at a lower framerate and thus consume less bandwidth;

this reduction is expressed by fsk→n.

Constraint 12 ensures that each spectator is allo-

cated exactly one transcoding profile per each player.

Constraint 13 makes sure that the total effective band-

width consumed by any spectator at any given time in-

stance does not exceed the maximum bandwidth that

this spectator can contain. QoE modeled by Eq. 10 im-

plicitly corrects the frame rate to match constraints of

a spectator on inbound bandwidth at time t. In the

problem formulation we explicitly model this via band-

width adaptation coefficients fsk→n ∈ (0, 1) . Finally,

Constraint 14 prevents negative outbound traffic allo-

cation.

Algorithm 1 depicts how we solve the provider prob-

lem in the on-line setting. Since in this setting the fu-

ture is not known, we solve the optimization problem

at every time step, estimating the revenue that will be

accumulated if all currently active spectators will re-

main in the stream. In the next time step we correct

the estimation and again solve the optimization prob-

lem to deploy the transcoding profiles and allocate them

to the spectators. Since the network conditions (as well

as availability of the compute resources) might change

from one time window to another for spectator s, the

transcoding profile allocation for s can also change. As

we use FaaS, there are no additional costs associated

with releasing serverless transcoders and starting new

ones. Since in practical settings the optimization prob-

lem is relatively small it can be solved exactly either

using linear solvers like CPLEX or even through brute

force.

Obviously, the proposed algorithm is suboptimal,

because it is based on estimating the quitting probabil-

ities of spectators based on an estimated QoE and does

not make long term decisions. Estimating QoE can be

tackled in a number of ways. In [13] this problem is

approached using reinforcement learning, reducing its

complexity.
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Table 1: Notation Summary

Notation Description

Sets Description
K playing users (players), k ∈ K
S spectators s ∈ S; St is the set of spectators at time t
N transcoding profiles, n ∈ N

Sequences

T = {ti}|T |i=0 equidistant time steps t0, t1, . . . , |T |, where |T | is the maximal session lifetime

Parameters

qs(QoE) = qst an estimated probability that spectator s quits at time t for a given QoE value (See Eq. 2)
pst = 1− qst an estimated probability that spectator s stays in the session at time t
~n = (m, g) a resource demand vector of a transcoding profile n, where:

m is memory in GB,

g =

{
1, if GPU should be allocated

0, otherwise
bn the average outbound bandwidth (GB/sec) of a transcoding profile n
bst the average inbound bandwidth (GB/sec) that spectator s can contain at time t
c(~n) the cost (per second) of hosting a transcoding profile n using FaaS
o(bn) the cost (per GB) of the outbound traffic produced by a transcoding profile n
rst (QoE) the revenue generated by spectator s at time t for QoE level (see Eqs. 4, 5, 6)
QoEs

K→N QoE of a spectator s when consuming transcoding profiles allocation K → N , ∀k ∈ K, ∀n ∈ N

Decision Variables

ysk→n spectator consumption assignments: ysk→n =

{
1, if spectator s consumes profile n for player k

0, otherwise
fs
k−>n ∈ (0, 1): a fraction of the nominal bandwidth consumption bn of s reduced to match capacity

Auxiliary Variables

xk
n transcoding profile active status: xk

n =

{
1, if transcoding profile n is produced for player k

0, otherwise

Achieving cost efficiency depends on an accurate

modelling of the costs and revenues. The former de-

pends on the available cloud and 5G MEC commercial

offerings for FaaS. The latter depends on the spectators’

behavior. The modeling approach of Subsections 5.1–

5.4 is relatively simple and generic, developed with the

use-case of immersive 3D media live streaming in mind.

Naturally, each use-case will have its own peculiarities,

which will need to be modelled accurately and possibly

fine-tuned using real data.

In this paper, our focus is on demonstrating that

even for the relatively simple model, the serverless com-

puting paradigm might result in significant benefits to

the provider.

6 Experiments and Results

We performed a series of experiments to validate the

proposed optimization approach and quantify its ben-

efits in different scenarios and conditions. Our exper-

iments consider the aforementioned Augmented VR

game use-case, in which the spectators must receive two

3D video streams, one for each of the two players.

6.1 Experimental setup

To develop and test the application functionality,

all components of the service, as described in Sec-

tion 4 and Fig. 3, were implemented, deployed and

tested in the infrastructure provided by the 5G-MEDIA

project8 that offered Kubernetes NFVI with worker

nodes equipped with NVIDIA GTX Geforce 1650 GPUs

and Open Sorce MANO (OSM) R5.05 with FaaS VIM

plugin installed9. Players, spectators, and the control

plane, have been deployed locally on PCs, while the

broker, transcoders and replay application components

have been deployed as FaaS VNFs via OSM/FaaS Plu-

gin and orchestrated by the control plane in an event-

driven manner using our Serverless Orchestration mech-

anism with OSM being a unified entry point.

However, the infrastructure we had access to has

been relatively small and imposed hard limits on both

the number of spectators and the number of concurrent

transcoders that can use GPUs. Hence, after initial tests

on the actual infrastructure, a more extensive study of

cost optimization was conducted using simulation.

8 http://www.5gmedia.eu/
9 https://github.com/5g-media/faas-vim-plugin
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Algorithm 1: The Overall Smart network-

centric optimization Algorithmic Framework

Input: Transcoding Profiles N , Players K
Output:

(1) Optimized Deployment of Transcoding
Profiles ∀t ∈ T

(2) Optimized Allocation of Transcoding
Profiles to spectators ∀t ∈ T
QoE model ← Eq. 10;
Costs model ← pricing plan for GPU and CPU FaaS
and outbound bandwidth;

Revenue model ← e.g. Eq. 4;
for t← t0 to |T | do

Metrics← collect metrics from the active
spectators St;

Infer bst and compute power ∀s ∈ St;
Estimate QoEs

K→N , ∀s ∈ St and ∀K → N ;
Estimate qst ∀s ∈ St;
ysk→n, f

s
k→n ← solve the optimization,

considering Eq. 11, Eq. 12, Eq. 13, Eq. 14;
Determine which transcoding profiles to activate
for each player:

xk
n =

{
1, if ∃ ysk→n = 1

0, otherwise

Activate transcoders (via FaaS), as required;
Inform spectators about the new profile
allocation;

end

6.1.1 Simulated spectators

The Simulated spectators adhere to joining and quit-

ting behavior described in Subsection 5.1.1 and Sub-

section 5.1.2. The experiments feature a diverse set of

spectators, varying in connection bandwidth and pro-

cessing capabilities, to reflect a mixture of real-life user

profiles. For each spectator a set of metrics is collected

every 10 seconds, reporting their bandwidth, process-

ing power, the transcoding profiles they are currently

receiving, and the framerate for each. Based on those

metrics, each spectator’s current QoE is be calculated

(from Eq. 10), as well as an estimate of the QoE they

would experience if they were to receive different trans-

coding profiles.

We consider relatively small sessions and assume

that GPUs are available as needed in 5G MEC’s NFVI.

Spectator bandwidth is subject to a small degree

of random fluctuation, to simulate changing network

conditions. Likewise, the processing power that can be

allocated to the video processing is varied to simulate

changing workload conditions of the user equipment.

Processing power can impose a limit to the maximum

frame-rate a spectator can decode.

6.1.2 Network Optimization

The control plane receives metrics from all spectators

and, based on them, decides the optimal set of trans-

coding profiles that must be produced, and which one

of them each spectator should consume. The algorithm

makes decisions on 10 second time steps corresponding

to the 10 second monitoring intervals.

We compare two optimization algorithms:

– Naive Optimization greedily optimizes spectator

QoE. Based on the QoE modelling described in Sub-

section 5.3, it determines which transcoding profile

will result in the optimal QoE for each spectator and

allocates transcoders to produce this set of profiles,

regardless of the production cost.

– Smart Network-Centric Optimization optimizes

cost-efficiency. It balances the trade-off between the

profit and QoE. It considers spectator QoE, the

quitting probability as a function of QoE, revenue

generated by the spectators remaining online, and

production and delivery costs, and determines the

set of transcoding profiles to be produced to max-

imize profit (see Eq. 11, Eq. 12, Eq. 13, Eq. 14).

In particular, expected revenue (Eq. 8) is calculated

on the assumption that profiles assigned to specta-

tors during the current time step will also persist

for future time steps.

In what follows, we will refer to these two algorithms

simply as Naive and Smart.

6.1.3 Transcoder Parameters

For each of the two players’ 3D video streams five trans-

coding profiles are supported, in addition to the produc-

tion streams, which are also available for consumption

by the spectators and require no transcoding.

The production stream and all still images profiles,

encode textures as JPEG images of quality 30, in vari-

ous resolutions. The video profiles encode textures as a

HEVC video of fixed resolution, targeting various bit-

rates. Production frame-rate is set to be 25 frames per

second. Table 2 lists the specifications of transcoding

profiles used in our experiments.

Table 2: Transcoding profiles’ specifications

Texture Mesh
Name Node Frame size Resolution PSNR Geometry Blend weights

Production None 200 KB 960x540 32.02 dB 10 bits 6 bits
Images Mid CPU 170 KB 864x486 28.78 dB 9 bits 5 bits
Images Low CPU 135 KB 768x432 28.02 dB 8 bits 4 bits
Video Low GPU 55 KB 960x540 28.66 dB 8 bits 4 bits
Video Mid GPU 70 KB 960x540 30.00 dB 9 bits 5 bits
Video High GPU 85 KB 960x540 31.59 dB 10 bits 6 bits
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Still images profiles produce slightly worse image

quality and, naturally, a significantly larger average

frame size. They can be transcoded in real time on a

CPU node. Since they have no inter-frame decoding de-

pendency, spectators who fail to receive or decode the

frames at the production frame-rate can skip frames to

always display the most current frame.

On the other hand, video profiles achieve better im-

age quality with much higher compression rates, and re-

quire a GPU node for real-time transcoding. In the test

implementation, they do not support skipping frames,

due to inter-frame compression. Spectators who can-

not match the production framerate may start lagging

behind, so the optimization algorithm running in the

control plane will never assign a video profile to such a

spectator.

6.1.4 Experiment timeline

Each experiment considers a streaming session of ten

minutes. The stream starts with a default number of

spectators being 10. New spectators join the stream

according to the Poisson process (See Subsection 5.1.1)

and leave the stream according to their probability of

quitting (see Subsection 5.1.2).

Figure 5 shows the timeline of a sample experiment

featuring the Smart optimization in the control plane.

Cost-related quantities (revenue, cost, and profit) cor-

respond to the upper left vertical axis and are shown in

a per-time-step basis. Initially revenue is low, due to a

low number of initial spectators, resulting in low profit,

at times dipping into the negative, for the first couple

of minutes. As the session progresses, more spectators

join, gradually increasing revenue and profit.

Node costs are significant in the beginning of the

session, becoming less so as more spectators join and

revenue increases. They remain more or less constant,

while random changes in spectator bandwidth or pro-

cessing power occasionally result in the production of

an extra set of GPU profiles, when it is deemed prof-

itable. Towards the end of the session node costs dip

lower, as the expected future revenue of individual spec-

tators diminishes, capped by the session duration. The

higher cost of video profiles is partially offset by their

lower bitrate, which result in lower traffic costs. The

latter naturally increase as more spectators join, but

at a much lower rate, reaching a plateau after about

four minutes, when the active spectator population can

justify the production of more video profiles.

Average QoE follows an upward trend. As more

spectators join, the increased revenue can support the

production of more transcoding profiles, able to satisfy

a more diverse population.

The part of the graph below the horizontal axis

shows the QoE progress of three sample spectators. Al-

though the behavior of individual spectators has very

small impact to the total revenue and profit in a ses-

sion of about 20 active spectators, these examples can

provide some intuition about the progress of a session.

Spectator A has joined from the start; she has limited

bandwidth with significant fluctuations. Sometimes she

is unable to receive the better quality profiles, and her

QoE drops as a result. Finally, when it drops too low,

she decides to leave. Her departure can be seen marking

a small decrease in the revenue and profit of the next

couple of time steps. Spectator B joins in the middle

of the stream and experiences only very minor fluctua-

tions. After some time he leaves, perhaps for non-QoE-

related reasons, as his QoE is not so low. When specta-

tor C joins, she is experiencing a quite low QoE. How-

ever, the optimization algorithm quickly assigns an ap-

propriate transcoding profile that maximizes her QoE,

and so she remains active until the end of the stream.

Abrupt changes in individual spectators’ QoE are

not always reflected in the average QoE or the profit,

meaning that the optimizer made a decision to lower

some spectators’ QoE and raise that of the others, aim-

ing for maximum expected profit.

6.1.5 Experiment variables

In order to obtain general results and compare the

Smart and Naive optimization adaptability under dif-

ferent client conditions, experiments were performed us-

ing a range of values for different experiment variables.

Each set of experiments measured the impact of chang-

ing one variable while keeping the others constant at

their default values. Experiment variables included:

– Spectator arrival rate, following the Poisson distri-

bution. Default value of 0.5 new spectators per time

step.

– Revenue generated by each spectator. Default value

of 0.2 cents per time step.

– Numbers of GPUs available. Six of the transcoding

profiles require a GPU to perform in real time. A

limitation on GPUs that can be used concurrently

(implies that some profiles may not be produced

concurrently). The default number is 6, i.e. no lim-

itation on the concurrent use of GPUs.

– GPU costs. As mentioned before, there is currently

no commercial option to rent GPU processing for

FaaS. Based on calculations derived from current

CPU and GPU pricing for VMs, and considering the

implementation obstacles in GPU sharing, we esti-

mate a default value of 10 times that of an otherwise

equivalent CPU node, and test for factors between



24 K. Konstantoudakis, D. Breitgand et al.

Fig. 5: A sample timeline of an experiment. Above the horizontal axis: revenue, node cost, traffic cost, profit (left

vertical axis) and mean QoE (right vertical axis). Below the horizontal axis: Individual QoE progress for three

example spectators.

x5 and x20, which seem reasonable, considering the

analysis in 5.4.1.

– Spectator population. We identify 5 broad types of

spectators:

• Mobile devices on Wi-Fi.

• Mobile devices on 4G data.

• Standard PC on basic DSL connection.

• Standard PC on faster connections (e.g. VDSL)

• High-end PC on a fiber optic connection.

In the preliminary experiments, average decoding

timings for all transcoding profiles were measured

for each device type, and these are used to calculate

a maximum frame rate from a hardware perspective.

In addition, each connection type is associated with

a bandwidth typical for it, which provides a frame

rate cap from a connection perspective. The default

population consists of a balanced mix of the above

spectator types, while we also conduct experiments

where specific types of spectators are dominant.

– Quitting behavior: As mentioned in Subsec-

tion 5.1.2, quitting probability is a function of QoE

dissatisfaction and non-QoE-related causes, such as

how interesting a specific session is. As the default,

derived from [22], we assume a 20% probability to

quit before the session’s end at maximum QoE. We

conduct experiments for relatively boring (50% to

quit) or interesting sessions (10% to quit), and also

for more demanding spectators, in which case QoE

dissatisfaction weighs more.

6.2 Results

In the following graphs we present a comparison be-

tween Smart and Naive optimizations. Each graph dis-

plays a number of experiments differing at one exper-

iment variable (see Subsection 6.1.5), shown on the

horizontal axis while keeping the others constant. The

graphs show aggregate measurements of the entire ten-

minute sessions, averaged across several replications of

the same experiment.

Quantities denoted with an S refer to Smart and are

shown in a lighter shade, while those denoted with an

N refer to the Naive. Across all graphs, money-related

quantities (revenue, cost, and profit) are shown as bars

and correspond to the left vertical axis. An additional

quantity, relevant to each graph, is shown as a line cor-

responding to the right vertical axis. Such additional

values may include:

– Spectators: The average number of spectators active

during the session. This directly impacts revenue.

– dQoE: the average difference between spectators’

actual QoE and the maximum QoE they could pos-

sibly achieve, given their network connection and
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Fig. 6: Total session revenue, costs and profit (on the left vertical axis) and average spectator number (on the right

vertical axis) for different rates of new spectator arrival.

hardware. This directly impacts the quitting prob-

ability, which indirectly affects revenue. dQoE is

shown in an inverted vertical axis.

– Total QoE: The sum of spectators’ QoE, averaged

across all time steps, which can be perceived as a

measurement of a total quality of experience.

6.2.1 Arrival rate

Fig. 6 compares performance of Naive and Smart under

different spectator arrival rates. As the rate increases,

so does the average number of spectators staying in the

session and the revenue they generate. Traffic costs also

naturally increase, as there are more spectators down-

loading the streams. With more spectators, Smart’s

spending on transcoding nodes also increases slightly,

as the higher costs of producing more profiles is offset

by a larger number of spectators who will benefit from

them. It can be noted that, as expected, the Smart’s

advantage is more pronounced when less spectators are

active.

6.2.2 Revenue rate

Fig. 7 presents the experimental results for different

revenue rates around the default of 1 cent per 10-second

time step. This set of experiments follows the default

arrival rate of 0.5, meaning that revenue is generated

by an average of about 25 spectators per session.

Naturally, as the revenue generated by each active

spectator increases, so too does the overall revenue. The

costs also increase, as it is becomes more profitable to

keep spectators satisfied. This is also reflected on the

decreasing dQoE, shown on the right vertical axis. At

lower revenue rates Smart makes a greater difference in

profit. A similar behavior of Smart is observed with the

increasing arrival rate as shown in Fig. 6.

6.2.3 Available GPUs

This series of experiments, shown in Fig. 8, considers

the case where production GPUs usage is limited, cap-

ping the number of video profiles that can be trans-

coded simultaneously. As the number of available GPUs

drops, so do the options and versatility of Smart, lim-
iting its benefit.

6.2.4 Revenue model

Fig. 9 compares system behavior with different revenue

models regarding spectator QoE. With the constant

model spectators deliver a set revenue so long as they

remain online, while with the linear and sigmoid models

spectators with good QoE generate more revenue than

ones with bad QoE. This makes good QoE more impor-

tant, as it impacts revenue both directly and indirectly

(by affecting quitting probability). With the linear and

sigmoid models revenue models the advantage of Smart

over Naive is less pronounced since it tends to maximize

QoE similarly to Naive.

6.2.5 GPU node cost

As mentioned before, to the best of our knowledge there

is currently no commercial option to rent GPU nodes
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Fig. 7: Total session revenue, costs and profit (on the left vertical axis) and average difference from the maximum

possible QoE (on the right vertical axis) for the different (constant) rates of revenue per active spectator and per

time step.

Fig. 8: Total session revenue, costs and profit (on the left vertical axis) and average difference from the maximum

possible QoE (on the right vertical axis) when different numbers of GPUs are available for the transcoding of

streams to video in real time.

for FaaS processing. However, it is entirely possible that

such options will be available in the near future, espe-

cially if demand for it rises. GPU processing will cer-

tainly cost more than CPU processing. This set of ex-

periments examines the impact of the price ration be-

tween GPU and CPU nodes. As seen on Fig. 10, as GPU

processing becomes more expensive, Smart becomes

more frugal with GPU-dependent profiles, letting spec-

tator QoE drop away from the optimal. Hence, it can

keep running costs manageable and generate a profit

even when GPU utilization is priced high, with a small

decrease in QoE. It can be noted that although at low

GPU pricing optimization offers a relatively small ben-

efit, this becomes much more emphasized when GPU

usage is more expensive. Also note how Smart’s traffic

costs get higher as GPU cost increases and still-image

CPU profiles, which have a lower compression rate and

thus higher bitrate, are preferred.
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Fig. 9: Total session revenue, costs and profit (on the left vertical axis) and average difference from the maximum

possible QoE (on the right vertical axis) is we assume a constant revenue rate (regardless of QoE) or a revenue

rate that is a linear or sigmoid function of QoE, rewarding better QoE with higher revenue.

Fig. 10: Total session revenue, costs and profit (on the left vertical axis) and average difference from the maximum

possible QoE (on the right vertical axis) if we assume different ratios in the prices of GPU nodes to CPU nodes.

Ratios of x5 - x20 seem reasonable, based on current VM rental prices.

6.2.6 Spectator population

Fig. 11 regards experiments with different spectator

populations. Although all experiments contain all types

of spectators, in this set we examine the impact of hav-

ing different dominant spectator types. Smart holds a

steady advantage across all cases. The two right-most

sets of bars, corresponding to a greater percentage of

faster connections, shows a marked decrease in node

costs, offset by an increase in traffic costs, as many of

those spectators can consume the high-bitrate produc-

tion stream, obviating the need for (and cost of) trans-

coding.

6.2.7 Quitting probability

This set of experiments considers how quitting prob-

ability impacts Smart’s decisions. Fig. 12 shows mea-

surements for standard boring and interesting sessions,

in which quitting probability is respectively higher or

lower; and also how more demanding spectators (in

which case QoE dissatisfaction weighs more in their
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Fig. 11: Total session revenue, costs and profit (on the left vertical axis) and total aggregate QoE (on the right

vertical axis) for spectator populations where different types are more frequent.

Fig. 12: Total session revenue, costs and profit (on the left vertical axis) and average difference from the maximum

possible QoE (on the right vertical axis) when different factors affect spectator quitting probability, including how

interesting or boring the session is and how demanding the spectators.

probability of quitting) affect the process. In a boring

session, Smart increases spending in an effort to keep

spectators from quitting via providing a better QoE.

On the contrary, in the interesting session Smart re-

duces costs and allows QoE to drop, as spectators are

less likely to leave anyway. With more demanding spec-

tators, Smart targets higher QoE to keep them engaged,

resulting in higher transcoding node costs.

6.2.8 Summary of the results

Having conducted experiments with parameters span-

ning numerous different assumptions and cases, some

overall conclusions may be reached. Smart QoE-cost

optimization can reduce transcoding costs by up to

60% and traffic costs by about 20%, while keeping rev-

enue and QoE very close to the optimum. Optimiza-

tion’s benefits are especially pronounced in cases with

few spectators, low revenue and high GPU costs. When

GPUs become available for FaaS, possibly in the near

future, they can be expected to start at higher prices,
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gradually dropping as their use becomes more common.

Live streaming platforms, especially those dealing in

emerging media, will likely need to start with a small

spectator base before gaining momentum and scaling.

Hence, smart QoE-cost optimization will be indispens-

able in the live media streaming landscape of the near

future.

7 Conclusion

5G networks will disrupt the way media intensive ser-

vices are being developed and operated by unlocking

a plethora of opportunities to both service developer

and service operator. In this work, we studied one such

capability that integrates modern serverless technology

with real-time adaptive media streaming in 5G MEC.

To the best of our knowledge, this is the first work that

does this.

Apart from the conceptual, architectural and tech-

nical contributions, our work further examined the po-

tential of this option in terms of network-centric service

cost optimization. Our findings indicate that for small

user populations and finite duration sessions, serverless

adaptive streaming can offer reduced operating expen-

diture (OPEX) while preserving the service’s QoE.

Also, through our extensive modelling and analy-

sis we concluded that naively applying serverless will

not necessarily offer these gains. We hope that our

work will inspire further research and development to-

wards adapting services not originally suited for lighter-

weight virtualization to serverless architectures, and

unify them with the advanced capabilities that 5G net-

works offer to capitalize on its advantages in novel ways.

Finally, taking into account the recent introduction and

the emerging availability of GPUs specifically designed

for data centers our work can be extended to accom-

modate these developments. Specifically for media ser-

vices, GPU slicing can allow for even finer-grained cost

optimization, something that was not possible before.

One interesting future work direction is to explore

more sophisticated placement schemes for transcoders

and other components, in which they can be spread

across the full compute spectrum across cloud and edge

to leverage differentiated pricing for compute, storage

and network resources to meet demanding KPIs at

lower price points.
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