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Abstract Due to the automatic feature extraction procedure via multi-layer
nonlinear transformations, the deep learning-based visual trackers have re-
cently achieved a great success in challenging scenarios for visual tracking
purposes. Although many of those trackers utilize the feature maps from pre-
trained convolutional neural networks (CNNs), the effects of selecting different
models and exploiting various combinations of their feature maps are still not
compared completely. To the best of our knowledge, all those methods use
a fixed number of convolutional feature maps without considering the scene
attributes (e.g., occlusion, deformation, and fast motion) that might occur dur-
ing tracking. As a pre-requisition, this paper proposes adaptive discriminative
correlation filters (DCF) based on the methods that can exploit CNN models
with different topologies. First, the paper provides a comprehensive analysis
of four commonly used CNN models to determine the best feature maps of
each model. Second, with the aid of analysis results as attribute dictionaries,
an adaptive exploitation of deep features is proposed to improve the accuracy
and robustness of visual trackers regarding video characteristics. Third, the
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generalization of proposed method is validated on various tracking datasets as
well as CNN models with similar architectures. Finally, extensive experimental
results demonstrate the effectiveness of proposed adaptive method compared
with the state-of-the-art visual tracking methods.

Keywords Discriminative correlation filters · deep convolutional neural
networks · robust visual tracking

1 Introduction

Generic visual tracking is a fundamental task in computer vision, which aims
to estimate the motion trajectory of an unknown target over time [40, 30].
It is included in various practical applications such as automated surveillance
and navigation systems, autonomous robots, and self-driving cars [3, 42, 4].
In recent years, discriminative correlation filters (DCF) based trackers (e.g.,
[12, 11, 17, 41]) have achieved great attention considering their robustness to
the photometric/geometric variations and significant computational efficiency.
The primary purpose of these trackers is to increase the discriminative power
of correlation filters to distinguish a target from its background. However,
their performance can be dramatically affected by practical scene attributes
such severe occlusion, background clutter, deformation, viewpoint change, low
resolution, fast camera motion, and heavy illumination variation.

It is undeniable that feature extraction is a critical component of visual
trackers to meaningfully represent an visual object or a part of it. Besides,
the effective selection of features, considering scene information, plays a cru-
cial role in the performance of the DCF-based trackers. Although some visual
tracking methods typically use hand-crafted features (e.g., histogram of ori-
ented gradients (HOG), histogram of local intensities (HOI), global color his-
togram (GCH), and Color-Names (CN)), deep features have been successfully
employed for visual tracking purposes [40, 30]. To provide unique features of
a target and strength the robustness, recent visual tracking methods (e.g.,
[55, 67, 27, 28, 11, 31]) generally exploit fixed number of feature maps ex-
tracted from CNNs. However, these trackers have not considered that adaptive
utilization of high-dimensional deep features may result in higher learning ac-
curacy (by removing redundant or noisy features), lower computational cost,
and better model interpretation. By doing so, deep features can simultane-
ously provide descriptiveness and flexibility against challenging attributes.

Roughly speaking, deep learning-based visual trackers can be categorized
into the feature extraction networks (FENs) and end-to-end networks (EENs)
[30]. The FENs are referred to the trackers that employ deep features ex-
tracted by pre-trained CNN models into the traditional frameworks such as
DCFs. In contrast, the EENs directly evaluate target candidates by the fine-
tuned/trained networks on visual tracking datasets. This work will be focused
on the exploitation of FENs in the DCF framework. Although most of the
recent DCF-based trackers have used deep features, they still utilize various
CNN models and different layers of each model. For instance, these trackers
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Fig. 1 A brief overview of this work for adaptive exploitation of deep features in DCF
framework.

widely employ AlexNet [26] (e.g., [23, 51, 68]) and VGG-Net [5, 49] models,
while deeper CNN models are not exhaustively investigated yet. Table 1 lists
the most popular CNN models, which have been pre-trained on the ImageNet
dataset [47]. Coming to this end, the motivations of this work is to figure out
about: 1) the best CNN model as well as the best feature maps of four models
for visual tracking purposes, 2) the best combinations of deep features, 3) the
robustness of feature maps related to scene attributes, and 4) the adaptive
exploitation of best feature maps. Fig. 1 shows a brief overview of this work
for DCF-based visual trackers, which employ FENs for feature extraction.

The main contributions are as follows. First, as a pre-requisition to exploit
various CNN models with different topologies, a modified efficient convolution
operators tracker is proposed. Second, a comprehensive analysis of four pop-
ular pre-trained CNN models (namely, VGG-M [5], VGG-16 [49], GoogLeNet
[53], and ResNet-50 [21], which have perceptible differences in terms of error
rates) is provided. It ranks the best exploitations of features maps for vi-
sual tracking purposes. By the achieved results of the comprehensive analysis,
attribute dictionaries are proposed for each model to exploit the best feature
maps related to different situations of challenging scenarios. Hence, the first to
the third aforementioned motivations are answered by a comprehensive anal-
ysis, appropriately. Then, based on the attribute dictionaries of each model,
an adaptive exploitation method of deep features is proposed for answering
to the fourth motivation. Furthermore, generalization of the proposed method
into other DCF-based visual trackers is validated by the aid of the proposed
deep background-aware correlation filters (DeepBACF) method. Moreover, the
generalization of attribute dictionaries is extensively investigated on the pre-
trained ResNeXt-50 [65], SE-ResNet-50 [24], and SE-ResNeXt-50 [24] models,
which have similar architectures as the ResNet-50 model. Finally, the perfor-
mance of the best proposed adaptive method is extensively evaluated with the
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Table 1 Most popular CNN models, number of layers, and corresponding error rates for
the classification task.

CNN Model Year Number of Layers Top-1 Error Top-5 Error

AlexNet [26] 2012 8 41.8 19.2
VGG-M [5] 2013 8 37.1 15.8

VGG-16 (config. D) [49] 2014 16 28.5 9.9
VGG-19 [49] 2014 19 28.7 9.9

GoogLeNet [53] 2014 22 34.2 12.9
ResNet-50 [21] 2015 50 24.6 7.7

state-of-the-art trackers on well-known visual tracking datasets. To the best
of our knowledge, this is the first work that comprehensively evaluates CNN
models and their feature maps for visual tracking purposes. Moreover, this is
the first proposed method that investigate adaptive exploitation of different
convolutional layers depending on possible challenging attributes of video se-
quences for visual tracking.

The rest of the paper is organized as follows. The overview of related work
is described in Section 2. In Section 3, the four CNN models are compre-
hensively analyzed, and then the proposed adaptive method for using the best
CNN feature maps is presented. Extensive experimental results on visual track-
ing datasets are given in Section 4. Finally, the conclusion and future work are
summarized in Section 5.

2 Related Work

In this section, the diverse exploitation of CNN models and corresponding
layers in recent visual trackers are highlighted. In fact, this brief review of the
related work reveals the necessity of comprehensive analysis (Sec. 3.1) to use
these CNN models in visual tracking. Related works are classified according
to various CNN models. Moreover, the details of the employment of models,
layers, and datasets are listed in Table 2.

VGG-M Model: Spatially regularized discriminative correlation filters
tracker (DeepSRDCF) [9] aims to learn more discriminative appearance mod-
els on larger search regions. By introducing spatial regularization weights,
its formulation penalizes unwanted boundary effects of standard DCF-based
methods. To learn a target model in the continuous spatial domain, continu-
ous convolution operator tracker (C-COT) [10] employs multi-resolution deep
feature maps and an implicit interpolation model for accurate sub-pixel lo-
calization of target. Also, efficient convolution operators tracker (ECO) [11]
tackles the computational complexity and over-fitting problem of the C-COT
by factorized convolutions, a compact model of training sample distribution,
and conservative update strategy. Based on ECO, two trackers weighted ECO
(WECO) [22] and VDSR-SRT [34] have been proposed. While the WECO
tracker introduces a weighted sum operation and feature normalization, the
VDSR-SRT tracker addresses the tracking in low-resolution images by a super-
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Table 2 Exploited FENS in some visual tracking methods.

Visual Tracking Method Model Pre-training Dataset Name of Exploited Layer(s)

DeepSRDCF [9] VGG-M ImageNet Conv1
C-COT [10] VGG-M ImageNet Conv1, Conv5
ECO [11] VGG-M ImageNet Conv1, Conv5

WECO [22] VGG-M ImageNet Conv1, Conv5
VDSR-SRT [34] VGG-M ImageNet Conv1, Conv5
DeepSTRCF [28] VGG-M ImageNet Conv3

WAEF [46] VGG-M ImageNet Conv1, Conv5
RPCF [52] VGG-M ImageNet Conv1, Conv5

DeepTACF [27] VGG-M ImageNet Conv1
ETDL [67] VGG-16 ImageNet Conv1-2
FCNT [58] VGG-16 ImageNet Conv4-3, Conv5-3
DNT [7] VGG-16 ImageNet Conv4-3, Conv5-3

CREST [50] VGG-16 ImageNet Conv4-3
CPT [6] VGG-16 ImageNet Conv5-1, Conv5-3

DeepFWDCF [14] VGG-16 ImageNet Conv4-3
DTO [62] VGG-16, SSD ImageNet Conv3-3, Conv4-3, Conv5-3

HCFT [37] VGG-19 ImageNet Conv3-4, Conv4-4, Conv5-4
HCFTs [38] VGG-19 ImageNet Conv3-4, Conv4-4, Conv5-4

LCTdeep [39] VGG-19 ImageNet Conv5-4
HDT [45] VGG-19 ImageNet Conv4-2, Conv4-3, Conv4-4, Conv5-2, Conv5-3, Conv5-4

IBCCF [29] VGG-19 ImageNet Conv3-4, Conv4-4, Conv5-4
DCPF [43] VGG-19 ImageNet Conv3-4, Conv4-4, Conv5-4
MCPF [69] VGG-19 ImageNet Conv3-4, Conv4-4, Conv5-4
MCCT [59] VGG-19 ImageNet Conv4-4, Conv5-4
ORHF [36] VGG-19 ImageNet Conv3-4, Conv4-4, Conv5-4

IMM-DFT [55] VGG-19 ImageNet Conv3-4, Conv4-4, Conv5-4
DeepHPFT [31] VGG-16, VGG-19, and GoogLeNet ImageNet Conv5-3, Conv5-4, and icp6-out

resolution algorithm. To exploit temporal information, spatial-temporal regu-
larized correlation filters tracker (STRCF) [28] utilizes a temporal regulariza-
tion term as well as a spatial one to iteratively optimize its filters by the alter-
nating direction method of multipliers algorithm (ADMM) [2]. Also, weighted
aggregation with enhancement filter tracker (WAEF) [46] employs temporal
Tikhonov regularization to provide better features and suppress unrelated
frames. Region of interest (ROI) pooled correlation filters tracker (RPCF) [52]
aims to compress model size by utilizing smaller feature maps. Finally, target-
aware correlation filters tracker (TACF) [27] learns guided filters to prevent
from background and distractors.

VGG-16 Models: Enhanced tracking and detection learning method (ET
-DL) [67] consists of adaptive multi-scale DCFs and a re-detection module
to robustly track a target and find it after failures. To separate category
detection and distraction determination, deep fully convolutional networks
tracker (FCNT) [58] uses distinct convolutional layers and a feature map
selection method. Thereby, the computational burden can be reduced, and
irrelevant features can be discarded. Dual network-based tracker (DNT) [7]
embeds boundary and shape information into deep features to enjoy more ef-
fective features for visual tracking. Also, CREST tracker [50] integrates the
processes of learning DCFs with feature extraction to provide more appro-
priate features for visual tracking. Moreover, adaptive feature weighted DCF
tracker (FWDCF) [14] weights deep features by a segmentation model to sup-
press the background and distractors. To adaptively leverage low-dimensional
features, channel pruning tracker (CPT) [6] provides a channel pruned VGG-
16 model, average feature energy ratio method, and adaptive iterative strategy
for target localization. In contrast to mentioned trackers, deep tracking with
objectness method [62] assumes that the tracker is aware of object categories
to investigate its effect on tracking performance.

VGG-19 Models: Hierarchical correlation feature-based tracker (HCFT)
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[37] learns multi-level correlation response maps on multiple convolutional lay-
ers to simultaneously alleviate appearance variation and precisely localize the
target. Also, the modified HCFT (called HCFTs or HCFT*) [38] partially
compares the performance of three CNN models (i.e., AlexNet, VGG-19, and
ResNet-152) and adds two region proposals and a classifier to HCFT for long-
term visual tracking purposes. However, insufficient exploration of ResNet’s
feature maps results in imperfect visual tracking. Deep long-term correlation
tracker (LCTdeep) [39] consists of distinctive DCFs, pyramidal features, short-
term & and long-term learning rates, and an incrementally learned detector to
improve the tracking robustness in presence of significant appearance change
and scale variation. By using an online decision-theoretical Hedge algorithm,
hedged deep tracker (HDT) [45] aggregates weak CNN-based trackers for ex-
ploring advantages of hierarchical feature maps. To handle aspect ratio vari-
ation, 1D Boundary and 2D Center CFs tracker (IBCCF) provides a family
of boundary CFs and optimizes the boundary and center correlation filters.
By exploiting particle filters, the DCPF [43] tracker strengthens deep features
to discriminate the target from its background. Multi-task correlation parti-
cle filter tracker (MCPF) considers inter-dependencies among deep features
to cover multiple modes in the posterior density of the target state. Besides,
DeepHPFT tracker [31] exploits hand-crafted and deep features in particle fil-
ter framework to improve the visual tracking performance. To decide based on
reliable localization, MCCT tracker [59] constructs various DCFs that employ
different features to learn different target models. To preserve computational
complexity, ORHF tracker [36] validates the estimated confidence scores and
selects effective deep features. Lastly, IMM-DFT tracker [55] considers insuffi-
ciency of linear combination of deep features and provides adaptive hierarchical
features for visual tracking.

In contrast to existing FEN-based visual trackers, this work reviews all
possible exploration of four widely used CNN models for visual tracking. By
doing a comprehensive analysis, two attribute dictionaries for the CNN mod-
els are provided. These dictionaries do not follow concrete rules to employ
into visual trackers. Thus, the dictionaries are considered as the keys to effec-
tively select the most appropriate features regarding video characteristics or
an estimation of them. To validate the analysis results, the generalization of
the dictionaries are assessed on different visual tracking datasets, CNN mod-
els with similar architectures, and another DCF-based tracker. Owing to the
analyses and dictionaries, effective adaptive exploitation of deep features will
be possible. Therefore, an adaptive method is proposed, which can simply in-
tegrate into the DCF-based trackers to improve discrimination ability of target
modeling.

3 Proposed Visual Tracking Method

In this section, the architecture of the four most popular CNN models and the
reason for choosing them in the comprehensive analysis is briefly mentioned.
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Then, the comprehensive analysis and main results of the CNN models are
presented. By this analysis, the best features of each model related to the
challenging attributes are provided. Finally, a method for adaptive exploitation
of these models is proposed.

3.1 Comprehensive Analysis of Pre-trained CNN Models

As shown in Table 1, the most popular CNN models have just a slight differ-
ence in performance (e.g., the VGG-16 and VGG-19). As such, in this work, the
model with lower complexity is selected. Also, the AlexNet has considerably
less performance than others. Thus, four commonly used CNN models, namely
VGG-M, VGG-16, GoogLeNet, and ResNet-50 are selected (for more details,
see [5, 49, 53, 21]). Table 3 shows the the configuration of models and test
layers (denoted by D1 to D5) in this work. Regarding the topologies of these
models, the architectures include either a simple multi-layer stack of non-linear
layers (i.e., VGG-M and VGG-Net) or a directed acyclic graph topology (i.e.,
GoogLeNet and ResNet), which allows designing more complex designs with
multiple inputs/outputs for layers. As a pre-requisition to compare the models,
this paper proposes a modified ECO tracker which can exploit different CNN
models using advanced deep learning modules (i.e., modifying the feature ex-
traction process of ECO tracker by employing AutoNN, and McnExtraLayers
modules in MatConvNet toolbox [57]). The ECO tracker [11] fuses CNN and
hand-crafted features, while it reduces the dimension of deep features by the
principal component analysis (PCA) and a down-sampling strategy. However,
in order to have fair and meaningful comparisons, the modified ECO tracker
(Sec. 3.1.1) and the proposed adaptive method (Sec. 3.2) do not fuse CNN
features with hand-crafted ones and also do not apply down-sampling or di-
mensional reduction processes.

The comprehensive analyses of convolutional layers for each model are
listed in Table 4 and Table 5. To improve the evaluation speeds, all subse-
quent layers after the last test layers (i.e., the D3 or D5 output) are removed.
In contrast to other works, all of the single layers and also all possible com-
binations of layers of the models are investigated in this paper. Also, the best
(First to third) and the worst feature maps for visual tracking purposes are
ranked in these tables. Furthermore, the challenging attributes are categorized
based on the factors related to object, camera, and environment. This catego-
rization facilitates exploring these results for the proposed adaptive method
(Sec. 3.2).

In this paper, all evaluations are based on the well-known precision and
success metrics. The overlap success metric is the percentage of frames that
their overlap score of estimated and ground-truth bounding boxes is more than
a specific threshold while the distance precision metric is defined as the per-
centage of frames that their estimated location error with the ground-truth
location is smaller than a particular threshold. Note that the default thresh-
olds of standard benchmarks (i.e., 50% overlap and 20 pixels) are used for
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Table 3 Configuration of pre-trained CNN models. [Convolutional layers are denoted as
“Conv<filter size>-<filter depth>”.]

VGG-Medium (8-layers) VGG-Net (16-layers, configuration D) GoogLeNet (22-layers) ResNet-50 (50-layers)
Test Output Layers Test Output Layers Test Output Layers Test Output Layers

D1 Conv7-96
Conv3-64

D1 Conv7-64 D1 Conv7-64
D1 Conv3-64

LRN max pool max pool
max pool

max pool
Conv3-128

D2 Conv3-192
D2 Conv3-128 Conv1-64

×3
D2 Conv5-256

max pool max pool Conv3-64
Inception (3a) D2 Conv1-256

max pool
Conv3-256 D3 Inception (3b) Conv1-128

×4
Conv3-256 max pool Conv3-128

Conv3-512 D3 Conv3-256
D3 Conv1-512

Conv3-512 max pool

D3 Conv3-512
Conv3-512 Inception (4a) Conv1-256

×6
Conv3-512 Inception (4b) Conv3-256

max pool
D4 Conv3-512

Inception (4c)
D4 Conv1-1024

Inception (4d)
max pool Conv1-512

×3
FC-4096

D4 Inception (4e) Conv3-512
Conv3-512 max pool

D5 Conv1-2048
Conv3-512 Inception (5a)

FC-4096
D5 Inception (5b)

average poolD5 Conv3-512
average pool

max pool

FC-1000
FC-4096 Dropout (40%)

FC-1000
FC-4096 FC-1000

Soft-max
FC-1000

Soft-max Soft-max
Soft-max

the evaluations [64]. The success and precision results of the comprehensive
analyses of the CNN models on the OTB-2013 dataset [63], their resolution,
and the number of feature maps are listed in Table 4 and Table 5. These ta-
bles present the results on more than 29000 frames for each evaluated case
of CNN models. In this work, visual tracking datasets [63, 64, 33] have com-
mon challenging attributes including illumination variation (IV), out-of-plane
rotation (OPR), scale variation (SV), occlusion (OCC), deformation (DEF),
motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-view
(OV), background clutter (BC), and low resolution (LR). Note that due to
extensive evaluations, only the best and worst CNN layers are presented (see
Appendix A for more details). These tables provide an excellent perspective
to use these CNN models and their features for visual tracking. Besides, the
pros and cons of the models, layers, and combinations regarding each attribute
are clarified. These analyses encourage other visual trackers to propose more
sophisticated adaptive methods but also employ precise CNN layers for im-
proving their performance in the presence of specific destructive attributes.

3.1.1 Comprehensive Analysis Results

In the following, the fundamental remarks of comprehensive analysis are pre-
sented.

Remark 1: It is evident from the results that the last convolutional layer
of CNN models has the worst tracking performance. The reason is that these
models have been trained to classify objects in the last layer. Due to strategies
of dimension reduction (e.g., pooling layers), the last convolutional layers have
a low spatial resolution such that the accurate localization of the target is not
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Table 4 Success analysis results for pre-trained CNN models on OTB-2013 dataset. [The
first to third best layers and the worst layer in each case are shown with green, blue, yellow,
and red color, respectively. The multi-resolution feature maps are abbreviated by “MR”.]

Model Layers Features: Resolution/Depth Overall
Attributes

Object Camera Environment
SV DEF OPR IPR FM MB LR OV BC OCC IV

VGG-M

D1 109x109 / 96 0.797 0.727 0.831 0.759 0.713 0.741 0.754 0.598 0.840 0.719 0.807 0.752
D2 26x26 / 256 0.827 0.752 0.891 0.798 0.727 0.787 0.799 0.659 0.901 0.752 0.856 0.752
D3 13x13 / 512 0.661 0.645 0.643 0.644 0.610 0.639 0.687 0.383 0.599 0.620 0.700 0.591

D1, D2 MR / 352 0.802 0.737 0.879 0.774 0.697 0.797 0.824 0.694 0.858 0.728 0.844 0.763
D1, D3 MR / 608 0.813 0.756 0.841 0.780 0.732 0.801 0.829 0.701 0.931 0.749 0.840 0.783
D2, D3 MR / 768 0.816 0.766 0.826 0.784 0.718 0.799 0.807 0.672 0.913 0.746 0.831 0.742

D1, D2, D3 MR / 864 0.823 0.751 0.866 0.793 0.729 0.787 0.806 0.660 0.905 0.736 0.871 0.738

VGG-16

D4 28x28 / 512 0.849 0.792 0.893 0.836 0.778 0.822 0.818 0.671 0.924 0.775 0.889 0.772
D5 14x14 / 512 0.649 0.637 0.609 0.639 0.619 0.653 0.635 0.398 0.609 0.542 0.647 0.668

D1, D2 MR / 192 0.754 0.679 0.789 0.705 0.647 0.685 0.680 0.560 0.743 0.652 0.779 0.663
D2, D5 MR / 640 0.741 0.700 0.747 0.691 0.612 0.688 0.685 0.591 0.734 0.678 0.756 0.677
D3, D4 MR / 768 0.801 0.730 0.854 0.764 0.723 0.739 0.795 0.710 0.775 0.744 0.818 0.715
D3, D5 MR / 768 0.791 0.739 0.824 0.755 0.689 0.760 0.769 0.673 0.824 0.716 0.830 0.731
D4, D5 MR / 1024 0.833 0.793 0.846 0.816 0.779 0.822 0.807 0.644 0.913 0.731 0.869 0.739

D1, D4, D5 MR / 1078 0.825 0.766 0.845 0.796 0.733 0.805 0.797 0.704 0.894 0.752 0.886 0.762
D2, D3, D4 MR / 896 0.798 0.747 0.836 0.760 0.706 0.772 0.778 0.713 0.886 0.707 0.830 0.730
D3, D4, D5 MR / 1280 0.821 0.755 0.856 0.790 0.735 0.770 0.770 0.713 0.875 0.743 0.856 0.747

D2, D3, D4, D5 MR / 1408 0.804 0.759 0.803 0.756 0.686 0.790 0.791 0.711 0.878 0.741 0.830 0.763
D1, D2, D3, D4, D5 MR / 1472 0.792 0.757 0.795 0.752 0.689 0.788 0.788 0.714 0.871 0.735 0.821 0.757

GoogLeNet

D3 28x28 / 256 0.818 0.767 0.879 0.786 0.711 0.762 0.756 0.526 0.778 0.715 0.843 0.732
D4 14x14 / 528 0.774 0.730 0.875 0.779 0.704 0.732 0.691 0.519 0.799 0.785 0.831 0.726
D5 7x7 / 832 0.395 0.333 0.332 0.395 0.419 0.398 0.362 0.299 0.354 0.404 0.373 0.422

D2, D3 MR / 448 0.822 0.764 0.865 0.792 0.726 0.785 0.811 0.705 0.889 0.761 0.856 0.752
D2, D4 MR / 720 0.811 0.745 0.864 0.778 0.710 0.764 0.785 0.702 0.881 0.748 0.839 0.737
D3, D4 MR / 784 0.822 0.765 0.875 0.792 0.746 0.744 0.791 0.701 0.774 0.762 0.855 0.716
D3, D5 MR / 1088 0.820 0.770 0.876 0.789 0.718 0.761 0.737 0.539 0.790 0.712 0.845 0.730
D4, D5 MR / 1360 0.791 0.759 0.877 0.791 0.760 0.759 0.713 0.621 0.758 0.858 0.809 0.781

D1, D2, D3 MR / 512 0.819 0.760 0.866 0.788 0.720 0.784 0.804 0.693 0.874 0.761 0.854 0.754
D1, D2, D4 MR / 784 0.801 0.747 0.860 0.764 0.694 0.752 0.773 0.705 0.873 0.723 0.837 0.737
D1, D3, D4 MR / 848 0.774 0.750 0.768 0.730 0.660 0.763 0.778 0.707 0.840 0.725 0.809 0.716
D2, D3, D4 MR / 976 0.798 0.754 0.816 0.761 0.686 0.769 0.785 0.711 0.885 0.753 0.812 0.742
D2, D3, D5 MR / 1280 0.827 0.771 0.870 0.798 0.731 0.784 0.807 0.693 0.878 0.764 0.869 0.753
D3, D4, D5 MR / 1616 0.840 0.793 0.876 0.815 0.752 0.789 0.798 0.676 0.870 0.766 0.881 0.745

ResNet-50

D1 112x112 / 64 0.789 0.741 0.799 0.759 0.719 0.704 0.707 0.597 0.707 0.691 0.787 0.725
D3 28x28 / 512 0.825 0.760 0.874 0.796 0.726 0.807 0.823 0.696 0.918 0.775 0.871 0.766
D4 14x14 / 1024 0.734 0.709 0.767 0.736 0.681 0.732 0.696 0.389 0.711 0.700 0.761 0.605
D5 7x7 / 2048 0.478 0.453 0.380 0.502 0.500 0.423 0.451 0.178 0.356 0.322 0.465 0.432

D1, D3 MR / 576 0.811 0.765 0.858 0.778 0.712 0.765 0.783 0.676 0.816 0.727 0.856 0.746
D3, D4 MR / 1536 0.811 0.766 0.833 0.777 0.706 0.818 0.822 0.691 0.904 0.764 0.839 0.766
D3, D5 MR / 2560 0.829 0.766 0.883 0.801 0.735 0.816 0.830 0.704 0.930 0.762 0.871 0.763

D1, D3, D4 MR / 1600 0.815 0.762 0.864 0.783 0.717 0.777 0.771 0.688 0.848 0.723 0.864 0.751
D1, D3, D5 MR / 2624 0.814 0.756 0.862 0.782 0.716 0.781 0.789 0.708 0.858 0.733 0.864 0.754
D3, D4, D5 MR / 3584 0.815 0.769 0.837 0.782 0.710 0.829 0.843 0.708 0.940 0.772 0.847 0.777

D1, D3, D4, D5 MR / 3648 0.810 0.754 0.850 0.777 0.719 0.780 0.777 0.714 0.860 0.707 0.856 0.742

possible. This observation has already been demonstrated by [10, 58, 37, 38]
as the last convolutional layer captures the semantic object category while
suffering from a coarse resolution for accurate localization.

Remark 2: Most of deep learning-based trackers [58, 19, 7, 38, 30, 40]
have mentioned that the multi-level feature maps (shallow & deep convolu-
tional layers) enhances the performance of visual trackers. For example, these
multi-level features mostly improve scale estimation process of visual trackers.
However, there is not any specific rule on how to combine the CNN feature
maps to achieve the best visual tracking performance. For example, deep vi-
sual trackers in [58, 7] utilize the combination of D4 and D5 layers from the
VGG-16 model. This combination provides 1024 feature maps and leads to
the second rank in performance evaluation while the single D4 layer from this
model has 512 feature maps and achieves the best performance regarding the
success and precision metrics. Depending on the desired precision, success,
and computational complexity (more feature maps, more complexity), Table 4
and Table 5 indicate the most reasonable features and combinations for visual
tracking.

Remark 3: The increase in the number of feature maps does not always
improve the tracking performance but also considerably increases the compu-
tational complexity. However, it may enhance the performance in the presence
of specific attributes. For instance, the combination of D3, D4, and D5 of



10 Seyed Mojtaba Marvasti-Zadeh et al.

Table 5 Precision analysis results for pre-trained CNN models on OTB-2013 dataset. [The
first to third best layers and the worst layer in each case are shown with green, blue, yellow,
and red color, respectively. The multi-resolution feature maps are abbreviated by “MR”.]

Model Layers Features: Resolution/Depth Overall
Attributes

Object Camera Environment
SV DEF OPR IPR FM MB LR OV BC OCC IV

VGG-M

D1 109x109 / 96 0.895 0.860 0.903 0.891 0.846 0.804 0.808 0.594 0.848 0.815 0.898 0.837
D2 26x26 / 256 0.884 0.841 0.916 0.874 0.814 0.816 0.783 0.673 0.894 0.785 0.913 0.812
D3 13x13 / 512 0.752 0.738 0.724 0.764 0.734 0.677 0.731 0.377 0.561 0.697 0.762 0.705

D1, D2 MR / 352 0.897 0.874 0.919 0.901 0.837 0.855 0.847 0.702 0.860 0.827 0.939 0.845
D1, D3 MR / 608 0.906 0.884 0.905 0.905 0.862 0.855 0.855 0.711 0.927 0.850 0.928 0.872
D2, D3 MR / 768 0.870 0.848 0.871 0.856 0.789 0.823 0.792 0.669 0.897 0.788 0.884 0.813

D1, D2, D3 MR / 864 0.873 0.818 0.872 0.861 0.797 0.814 0.788 0.670 0.896 0.793 0.924 0.778

VGG-16

D3 56x56 / 256 0.886 0.861 0.886 0.879 0.819 0.817 0.788 0.676 0.842 0.824 0.915 0.822
D4 28x28 / 512 0.905 0.877 0.921 0.905 0.853 0.861 0.855 0.729 0.934 0.833 0.944 0.850
D5 14x14 / 512 0.746 0.752 0.701 0.750 0.715 0.710 0.691 0.453 0.593 0.608 0.731 0.665

D1, D2 MR. / 192 0.835 0.772 0.826 0.813 0.747 0.761 0.685 0.559 0.750 0.754 0.863 0.727
D1, D4 MR / 576 0.894 0.862 0.904 0.887 0.851 0.808 0.829 0.723 0.772 0.839 0.927 0.816
D3, D4 MR / 768 0.885 0.849 0.906 0.879 0.841 0.796 0.815 0.732 0.783 0.824 0.917 0.808
D4, D5 MR / 1024 0.898 0.879 0.898 0.895 0.855 0.855 0.839 0.704 0.921 0.808 0.932 0.829

D1, D3, D4 MR / 832 0.891 0.859 0.905 0.886 0828 0.812 0.780 0.720 0.882 0.806 0.925 0.819
D1, D4, D5 MR / 1078 0.889 0.853 0.861 0.881 0.822 0.853 0.838 0.725 0.899 0.835 0.954 0.809
D2, D3, D4 MR / 896 0.893 0.862 0.904 0.888 0.831 0.813 0.781 0.731 0.888 0.808 0.928 0.820

D2, D3, D4, D5 MR / 1408 0.884 0.882 0.851 0.877 0.817 0.846 0.830 0.726 0.877 0.837 0.913 0.843
D1, D2, D3, D4, D5 MR / 1472 0.886 0.886 0.851 0.878 0.819 0.849 0.832 0.728 0.879 0.841 0.915 0.844

GoogLeNet

D2 56x56 / 192 0.890 0.861 0.901 0.885 0.827 0.838 0.824 0.702 0.876 0.829 0.927 0.836
D3 28x28 / 256 0.870 0.857 0.903 0.858 0.793 0.803 0.768 0.521 0.755 0.759 0.888 0.805
D5 7x7 / 832 0.556 0.474 0.539 0.559 0.553 0.445 0.443 0.367 0.383 0.539 0.511 0.565

D2, D3 MR / 448 0.904 0.886 0.901 0.903 0.850 0.847 0.830 0.715 0.885 0.837 0.947 0.842
D2, D4 MR / 720 0.891 0.860 0.901 0.885 0.828 0.805 0.773 0.717 0.879 0.803 0.923 0.814
D2, D5 MR / 1024 0.870 0.823 0.859 0.859 0.794 0.800 0.769 0.700 0.876 0.798 0.920 0.779
D3, D4 MR / 784 0.879 0.841 0.904 0.868 0.827 0.769 0.781 0.719 0.774 0.805 0.898 0.783
D3, D5 MR / 1088 0.861 0.840 0.903 0.845 0.777 0.768 0.717 0.538 0.770 0.731 0.868 0.781
D4, D5 MR / 1360 0.866 0.859 0.895 0.887 0.879 0.841 0.807 0.787 0.791 0.914 0.846 0.855

D1, D2, D3 MR / 512 0.903 0.884 0.898 0.901 0.847 0.841 0.821 0.706 0.870 0.837 0.944 0.838
D1, D3, D4 MR / 848 0.848 0.830 0.786 0.826 0.755 0.831 0.808 0.719 0.848 0.841 0.884 0.789
D2, D3, D4 MR / 976 0.872 0.861 0.848 0.861 0.797 0.808 0.773 0.728 0.885 0.807 0.891 0.816
D2, D3, D5 MR / 1280 0.902 0.882 0.900 0.900 0.846 0.845 0.827 0.706 0.876 0.836 0.946 0.841
D3, D4, D5 MR / 1616 0.906 0.888 0.907 0.902 0.849 0.849 0.834 0.699 0.876 0.833 0.945 0.835

D1, D3, D4, D5 MR / 1680 0.843 0.820 0.787 0.820 0.747 0.813 0.789 0.725 0.854 0.825 0.874 0.776

ResNet-50

D3 28x28 / 512 0.900 0.869 0.913 0.896 0.839 0.863 0.847 0.716 0.925 0.835 0.943 0.851
D5 7x7 / 2048 0.606 0.621 0.565 0.623 0.593 0.408 0.447 0.217 0.307 0.466 0.586 0.551

D3, D4 MR / 1536 0.885 0.876 0.867 0.876 0.813 0.874 0.852 0.700 0.921 0.836 0.914 0.851
D3, D5 MR / 2560 0.901 0.870 0.918 0.897 0.840 0.866 0.852 0.719 0.933 0.829 0.941 0.846

D1, D3, D4 MR / 1600 0.884 0.848 0.903 0.874 0.814 0.815 0.781 0.720 0.879 0.811 0.913 0.816
D1, D3, D5 MR / 2624 0.886 0.851 0.899 0.877 0.819 0.827 0.834 0.734 0.887 0.819 0.918 0.823
D2, D3, D5 MR / 2816 0.865 0.862 0.832 0.850 0.787 0.827 0.804 0.708 0.849 0.835 0.881 0.821
D3, D4, D5 MR / 3584 0.893 0.889 0.870 0.887 0.827 0.879 0.866 0.731 0.951 0.836 0.929 0.854

D1, D3, D4, D5 MR / 3648 0.878 0.837 0.888 0.866 0.813 0.812 0.782 0.732 0.885 0.794 0.901 0.803

ResNet-50 improves the tracking performance against the SV, FM, MB, OV,
and IV attributes. Note that it generally adds redundant feature maps that are
not properly involving to discriminate the target from its background. Hence,
blindly increase the number of feature maps may significantly reduce both the
tracking speed and the performance. For example, this observation has been
employed in FCNT tracker [58] such that a feature map selection process is
performed on the D4 and D5 layers of the VGG-16 model to avoid over-fitting
on noisy feature maps.

Remark 4: The most destructive impact on performance is related to the
LR. This problem is originated from the limited number of pixels that repre-
sent target information. Recently, this issues has been investigated in various
computer vision tasks [56, 66, 42]. According to the achieved results, employ-
ing shallow and deep convolutional layers could alleviate this deficiency.

Remark 5: Although the use of a fixed number of layers brings simplic-
ity, adaptive exploitation of deep features grants flexibility to visual tracking
methods. Considering analysis results, deep features provide distinct responses
to the attributes. Thereby, fixed features possibly reduce the tracking per-
formance in challenging scenarios and also limits the robustness of trackers.
Therefore, visual trackers can select different CNN layers based on their ap-
plication or aims to enhance the accuracy, robustness, or a trade-off between
accuracy and robustness. Moreover, the feature maps do not equally respond
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to the attributes (each layer might be sensitive to some of them) due to differ-
ent parameters and architectures of CNN models. For instance, the D4 layer
in the VGG-16 model has the most acceptable results against the most at-
tributes while low-resolution targets dramatically impact on its performance.
Moreover, the efficiency level for each layer is related to the objective of each
visual tracker. As such, based on the precision, success, or both, the layer(s)
selection options may differ. This important property was in fact the primary
motivation of this paper to adaptively exploit the CNN feature maps for visual
tracking.

To integrate all the benefits into an adaptive visual tracking method, the
following proposed adaptive method exploits the results of the comprehen-
sive analysis (i.e., Table 4 and Table 5) as the attribute dictionaries of the
CNN models, referred as precision and success dictionaries. These attribute
dictionaries include apparent and latent characteristics of models, which are
effective for visual tracking.

3.2 Proposed Adaptive Exploitation of Deep Features

The proposed method composed of determination of an attribute vector, in-
tegration of attribute dictionaries into the DCF formulations, and a DCF-
based tracker. Furthermore, the proposed method can be more sophistically
incorporated into other DCF-based tracking methods considering their specific
characteristics.

3.2.1 Attribute Vector Determination

Visual attributes can be roughly categorized according to the related charac-
teristics of object, camera, and environment. As a result, visual trackers can use
such categorized attributes to create an attribute vector for their applications.
Some of these attributes can be effortlessly specified from the initial bounding
box of a target in the first frame. For instance, an object recognition process
can specify whether the object is rigid or non-rigid; Or, target resolution can
be determined by counting its number of pixels. Moreover, visual tracking
methods can achieve valuable information about visual attributes based on
specific applications; as an example, different options that can be adjusted by
a user. Visual attribute detection methods [35, 48, 20, 54] also can be incor-
porated with visual trackers for estimating an attribute vector for each frame.
Moreover, the visual tracking methods can estimate visual attributes based on
their definitions in visual tracking datasets; For instance, the definition of IV,
SV, BC, MB, DEF, object motion, camera motion, aspect-ratio change, scene
complexity, and absolute motion in [25]. However, this section focuses on the
investigation of adaptive exploitation of deep features and its effects on track-
ing performance. Thus, employing approaches for visual attribute detection
are beyond the objectives of this section and will be studied in future works.
But, the per-frame estimation of attribute vectors is still an open problem in
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visual tracking.
It is assumed that an attribute vector (i.e., a full or incomplete vector) is

provided for the visual tracker hereafter. For each application, the attribute
vector will be an eleven-component vector such that each component is spec-
ified by zero or one (binary values). If there is a probability of occurring each
attribute, the corresponding component will be set to one. Hence, the proposed
method can adaptively select the best features according to the specified at-
tribute vector, which can represent all the joint combinations of challenging
attributes. It is evident that the proposed method selects the best overall fea-
ture layers if all components of the attribute vector are zero or one. In this
work, the attribute vector of each video sequence is exploited which is provided
by visual tracking datasets to figure out the effect of the proposed adaptive
method. Also, the generalization of attribute dictionaries will be validated re-
garding different attribute vectors of the UAV-123 dataset [44], which can be
considered as imprecise attribute vectors.

3.2.2 Revisited Formulation of DCF-based Visual Trackers

Generally, DCF-based visual tracking methods aim to learn a set of convolution
filters by minimizing the objective function as

argmin
h

1

2

∥∥∥∥∥
K∑
k=1

xkj ∗ hk − y

∥∥∥∥∥
2

2

+
1

2

K∑
k=1

∥∥w · hk∥∥2
2

(1)

in which xj , h, y, and w are the jth training sample, multi-channel convolution
filters, desired Gaussian response, spatial regularization matrix, respectively.
Also, K, and ∗ represent a fixed number of feature channels and convolution
operator, respectively. By defining additional terms, DCF-based trackers form
various expressions such that the filters will have been learned via closed-form
solutions or iterative algorithms (e.g., [8, 28, 17]).

The proposed method can integrate into any form of current DCF-based
trackers that use CNN models. It adaptively selects the best convolutional
layers for visual tracking applications. Given attribute dictionaries of CNN
models and attribute vector of tracking, the proposed method selects the best
trade-off between the precision and success metrics, which ensure the best
accuracy and robustness for tracking. The proposed method defines an or-
dered multi-label set S = {ζ1, ζ2, · · · , ζN} , in which ζi =

{
Li1,Li2, · · · ,LiL

}
indicates the available configurations of models in Table 4 and Table 5. The
configurations can be defined by Lij ∈ {D1, D2, · · · , D5}. Also, N and L are
the maximum number of configurations (i.e., number of single and combined
layers) and the maximum number of test output for each model, respectively.
For instance, ζ1 and ζ7 comprises {D1} and {D1, D2, D3} for the success dic-
tionary of VGG-M model, respectively.

For each CNN model, the proposed method defines an ordered pair C =
{{a1, b1}, {a2, b2}, · · · , {aL, bL}} , in which ai and bi indicate the test output
(according to Table 3, and corresponding feature channels, respectively. For
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example, we have C = {{a1, b1} = {D1, 96}, {a2, b2} = {D2, 256}, {a3, b3} =
{D3, 512}} for the VGG-M model. The attribute vector is denoted as z with
the length of M = 11 (i.e., the number of attributes). The proposed objective
function is defined as

ζi:=argmax
S

(
1

2
(
(
zT .P1

)
+
(
zT .P2

)
)

)
(2)

where the precision and success dictionaries are indicated by P1 and P2 ma-
trices with M ×N dimension, respectively. As mentioned in Sec. 3.1, Table 4
and Table 5 just represent the best and worst feature maps, and the com-
pleted analyses are provided in Appendix A. Note that to provide consistency
to select network configurations, all the precision and success results of best
settings are used in experimental evaluations. It means that for each dictionary
there are 51 configurations, which 36 configurations are common in Table 4
& Table 5, and the others are completed by the corresponding ones in Ap-
pendix A. Based on the objective function, the proposed method selects the
best convolutional feature maps, which result in the best trade-off between the
accuracy and robustness for a tracking application. Then, it computes

K =

L∑
n=1

bn s.t.
(
Lin, bn

)
∈ C (3)

to adaptively determine the number of feature channels for DCF-based visual
tracking methods. In fact, thanks to having the attribute dictionaries from
comprehensive analysis and also the attribute vector for each application, the
proposed method can automatically and quickly select the best CNN feature
maps which are robust to realistic challenges and are applicable in DCF-based
visual tracking methods.

To demonstrate the effectiveness, the proposed method is integrated into
two well-known DCF-based trackers, namely ECO [11] and BACF [17], which
are properly modified to exploit deep features extracted by CNN models with
various topologies. Since the dimension reduction of deep features has been re-
moved for fair comparisons, the proposed ECO-based tracker aims to minimize
the following loss function [11]

E (h) = E


∥∥∥∥∥

κ∑
n=1

(hn ∗ Vk{xn})− y

∥∥∥∥∥
2

2

+

K∑
k=1

∥∥w · hk∥∥2
2

 (4)

in which E, Gh{x} = hk ∗ Vk{xk}, and κ represent the mathematical expec-
tation (i.e., expected value), detection score of the target, and the number of
training samples, respectively. Also, it performs convolutions in the continuous
domain as well as directly predicts detection scores by the interpolation opera-
tor V . The loss function (4) presents a quadratic problem with the closed-form

solution (ΛHΦΛ+WHW )ĥ = ΛHΦŷ, which ĥ and ŷ are the vectorized Fourier
coefficients of h and y, respectively. Also, the Hermitian operator is denoted
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by H ; and Λ, Φ, and W represent the matrices of interpolated target sam-
ples, sample weights, and regularization, respectively. At last, it is iteratively
optimized by the Gauss-Newton and Conjugate Gradient methods to achieve
convolution filters h (for more details, see [11]).

Furthermore, the generalization of proposed method is investigated by the
proposed DeepBACF tracker that aims to model foreground and background
of target by the following objective function [17]

E (h) =
1

2

κ∑
n=1

∥∥∥∥∥y(n)−
K∑
k=1

hTkΠxk[∆τj ]
2

2

∥∥∥∥∥
2

2

+
λ

2

K∑
k=1

∥∥hk∥∥2
2

(5)

where Π, [∆τj ], λ, and T are cropping operator, circular shift operator, reg-
ularization term, and conjugate transpose operator, respectively. The corre-
sponding filters in frequency domain can be expressed as

E (h, ĝ) =
1

2

∥∥∥ŷ − X̂ĝ
∥∥∥2
2

+
λ

2
‖h‖22

s.t. ĝ =
√
T (FΠT ⊗ IK)h

(6)

in which ĝ, F, IK , and ⊗ indicate an auxiliary variable, orthonormal matrix
of complex Fourier basis vectors, identity matrix, and Kronecker product, re-
spectively. Finally, the loss function (6) is iteratively optimized following the
alternating direction method of multipliers (ADMM) [2], which breaks the aug-
mented Lagrangian form of Eq. (6) into three sub-problems and optimizes one
at each step (see [17] for more details). Algorithm 1 shows the the process of
proposed method, which is integrated into DCF-based trackers for adaptive
exploitation of deep features.

4 Experimental Results

In this section, the implementation details and experimental analysis are pre-
sented. For the experiments, first, the proposed method is validated with the
baseline trackers, which employ a fixed number of feature channels. Then, the
generalization of proposed method and analysis results are investigated by
another DCF-based tracker and the models with similar architectures, respec-
tively. Finally, the proposed method is extensively evaluated compared the
state-of-the-art visual tracking methods.

4.1 Implementation Details

For fair and meaningful comparisons, in baseline comparison, the proposed
adaptive method is compared with the baseline trackers (i.e., modified ECO,
and modified BACF trackers), which exploit a fixed number of deep features
from any CNN models. Note that the number of ADMM’s iterations for the
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Algorithm 1 Proposed Adaptive Exploitation of Deep Features for DCF
Framework
Input: Pre-trained CNN models (VGG-M [5], VGG-16 [49], GoogLeNet [53], ResNet-50
[21]), A DCF-based tracker, Sequence frames, Initial bounding box (BB) of target (i.e.,
target region), Attribute vector of sequence

Prerequisite: Comprehensive analysis of FENs on OTB-2013 dataset
- Specify configurations of models
for each CNN model do

Evaluate the tracker on the single layers, independently
Evaluate the tracker on all combination of layers

end
- Validate generalization of results on another DCF-based tracker
- Validate generalization of model dictionaries on other models with similar architecture
Analysis Output: Attribute dictionaries of CNN models (P1: Precision dictionary, P2:
Success dictionary)

for A Video sequence & CNN model do
Define ordered multi-label set S
Define ordered pair C
Select the best feature maps (ζi) by Eq. (2)
Compute the number of channels (K) by Eq. (3)
Output: Best feature maps (single or combined convolutional layers), Number of chan-
nels
Set ζi & K for a DCF-based tracker
for Sequence frames do

Extract deep features
Model target appearance by Eq. (4) or Eq. (6)
Optimize correlation/convolution filters by iterative algorithms
Tracking-by-detection
Update target model

end

end
Output: Location and scale of a visual target

modified BACF is set to 15, such that it can efficiently learn the background-
aware correlation filters. However, all other parameters of these trackers are
set the same as the baseline ones [11, 17], and kept fixed through all exper-
iments. Although different settings could provide a better performance, the
reported results demonstrate the effectiveness of the proposed method even
without any hyper-parameter tuning. The implementations are performed on
an Intel I7-6800K 3.40 GHz CPU with 64 GB RAM with the aid of advanced
MatConvNet toolbox, which uses an NVIDIA GeForce GTX 1080 GPU for
its computations. The qualitative evaluations are conducted as the one-pass
evaluations (OPEs) on the OTB-2015 [64], TC-128 [33], and UAV-123 [44]
datasets. Slightly different from previously mentioned attributes, the videos
of the UAV-123 dataset also have been labeled by aspect ratio change (ARC),
camera motion (CM), full occlusion (FOC), partial occlusion (POC), simi-
lar object (SOB), and viewpoint change (VC). Table 6 illustrates the details
of tracking datasets that are used in this work. In addition to the VGG-M,
VGG-16, GoogLeNet, and ResNet-50 models in Sec. 3.1, the generalization of
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Table 6 Exploited visual tracking datasets in this work [NoV: number of videos, NoF:
number of frames].

Dataset NoV NoF
NoV Per Attribute

IV OPR SV OCC DEF MB FM IPR OV BC LR

OTB-2013 [63] 51 29491 25 39 28 29 19 12 17 31 6 21 4
OTB-2015 [64] 100 59040 38 63 65 49 44 31 40 53 14 31 10

TC-128 [33] 129 55346 37 73 66 64 38 35 53 59 16 46 21

UAV-123 [44] 123 112578
IV CM SV POC FOC SOB ARC FM VC OV BC LR
31 70 109 73 33 39 68 28 60 30 21 48

attribute dictionaries of the ResNet-50 model is explored by the ResNeXt-50
[65], SE-ResNet-50 [24], and SE-ResNeXt-50 [24].

4.2 Baseline Comparison

The baseline comparison supports five main aims as follows. First, it confirms
the effectiveness of the proposed adaptive method compared with näıve fea-
ture selection for visual tracking purposes. Second, the best CNN model for
the adaptive selection of feature maps is selected. Third, the generalization
of the proposed method is investigated on different visual tracking datasets.
Fourth, the generalization of the proposed method is explored by integrating it
into another DCF-based visual tracker. Finally, the generalization of attribute
dictionaries is evaluated by other CNN models with similar architectures.

The baseline comparisons are performed on the OTB-2013 and TC-128
datasets. Fig. 2 presents the achieved results by the modified ECO-based
tracker, which either employs a fixed number of CNN features or uses the
proposed method to utilize adaptive deep features. Note that the proposed
adaptive method exploits the results of Table 4 and Table 5 corresponding to
video characteristics, while the best average result (i.e., the average of precision
& success metrics) for each model is considered for setting the fixed features.
For instance, the D3 and D5 layers are selected as the fixed configuration of the
ResNet-50 model. Based on the results on the OTB-2015 and TC-128 datasets
(see Fig. 2 (top & middle rows)), the proposed method outperforms the av-
erage precision and success rates up to 2.7% and 2.9% compared with the
näıve feature selection methods, respectively. Moreover, based on these results
and generalization of the results on TC-128 dataset, the ResNet-50 is the best
model for visual tracking purposes. It provides more representational power of
in the primary and middle layers, which is beneficial for visual tracking. The
achieved considerable margin of performances indicates the advantages of the
performed comprehensive analysis and adaptive exploitation of deep features.

To investigate the generalization ability of the proposed method, it is inte-
grated into another well-known DCF-based tracker, namely BACF [17]. The
experiments are conducted on the proposed DeepBACF tracker, which is able
to employ deep features from various CNN models. Fig. 2 (top row) shows
the results of the DeepBACF with either fixed features or adaptive features of
the ResNet-50 model on the OTB-2015 dataset. According to it, the proposed
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Fig. 2 Overall precision and success evaluations on the OTB-2015 and TC-128 visual track-
ing datasets. (top row:) Baseline comparison of proposed adaptive method with näıve feature
selection and its generalization into the DeepBACF method. (middle row:) Generalization of
the baseline comparison on different visual tracking dataset. (bottom row:) Generalization
of attribute dictionaries on ResNeXt-50, SE-ResNet-50, and SE-ResNeXt-50 models which
have the same architecture with ResNet-50 model.

method improves the average precision and success rates of the DeepBACF
up to 4.5% and 1.9%, respectively.

The generalization of the attribute dictionaries of the ResNet-50 is exten-
sively evaluated by the pre-trained ResNet-50, ResNeXt-50, SE-ResNet-50,
and SE-ResNeXt-50 models which have similar architectures. As shown in
Fig. 2 (bottom row), the proposed method has gained up to 1.6%, 3%, and
1.4% in average precision rate, and 0.4%, 2.2%, and 1.2% in average success



18 Seyed Mojtaba Marvasti-Zadeh et al.

rate compared with the näıve feature selection of ResNeXt-50, SE-ResNet-50,
and SE-ResNeXt-50 models, respectively. However, these models have been
trained differently (for more details, please refer to [65, 24]). For instance, these
models utilize various building blocks (e.g., split-transform-merge paradigm)
to facilitate the training procedure under the restricted complexity.

Finally, the generalization of the proposed adaptive method has evaluated
by the DeepBACF tracker with the ResNet-50 model on the OTB-2015 dataset
(see Fig. 1(a)). The results clearly show that the proposed adaptive method
improves the average precision and success rates of the DeepBACF up to 4.5%
and 1.9%, respectively.

4.3 Performance Comparison

To quantitatively compare the proposed method with the state-of-the-art track-
ers, the proposed ResNet-based tracker is selected. It is compared with 14,
8, and 6 state-of-the-art visual trackers (which their benchmark results have
been publicly available) on the OTB-2015 [64], TC-128 [33], and UAV-123 [44]
datasets, respectively. Note that the several attributes of the UAV-123 dataset
do not exist in attribute dictionaries. Thus, the experiments on the UAV-123
dataset will indicate the effectiveness of the proposed tracker when the at-
tribute vector is an incomplete or erroneous vector. The proposed tracker is
compared with ECO [11], DeepSTRCF [28], MCPF [69], TADT [32], CRPN
[16], DeepSRDCF [9], UCT [70], CREST [50], PTAV [15], HCFTs [38], DCFNet-
2 [61], SiamTri [13], GCT [18], LCTdeep [39], BACF [17], UDT [60], UDT+
[60], DSST [12], and Staple [1]. In addition to the visual trackers that exploit
FENs, the proposed method is also compared with the EEN-based trackers,
which have been extensively trained on various datasets. Fig. 3 shows the over-
all performance comparisons of visual trackers.

According to the results in Fig. 3, the proposed adaptive method outper-
forms the baseline tracker [11] up to 1.9% and 2.7% in average of precision
and success rates on all datasets. To compare tracking speed, the proposed and
baseline [11] trackers run at ∼6 & ∼10 frame-per-second (FPS) on the ma-
chine, as mentioned in Sec. 4.1. It means the effective selection of deep features
not only improves the tracking performance but also provides an acceptable
speed. Since the DeepSTRCF tracker employs the combination of hand-crated
and deep features, it has achieved the best success rates on the OTB-2015
and TC-128 dataset. However, the proposed method has gained up to 1.6%
improvement in average precision rate compared with the DeepSTRCF on
all datasets. Also, the proposed method can provide more flexibility to an-
other tracking applications compared with other DCF-based trackers such as
[9, 28, 11, 17]. For example, the average value of precision & success rates of the
proposed method gains up to 1.3%, 1.4%, and 3.1% compared with the GCT,
ECO, and DeepSTRCF, respectively. Furthermore, the proposed method has
achieved better performances in challenging scenarios comparing with EEN-
based trackers [32, 16, 18, 13, 60, 70]. As an instance, the proposed tracker
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Fig. 3 Overall precision and success evaluations on OTB-2015, TC-128, and UAV-123
datasets. [Proposed adaptive method using pre-trained ResNet-50 model is compared with
the state-of-the-art visual trackers.]

outperforms the TADT [32], GCT [18], and UCT [70] up to 1.2%, 4.2%, and
8.9% in terms of average precision and success rates on the OTB-2015 dataset,
respectively.

To investigate the strengths and limitations of the proposed method, the
attribute-based comparisons of DCF-based trackers are shown in Fig. 4. Ac-
cording to this figure, the proposed method has improved the baseline tracker
[11] up to 2.3%, 3.1%, 1.8%, 4.2%, 5.1%, 1%, 1.2%, 0.5%, 1.1%, 5.9%, and
1.8% on the IV, OPR, SV, OCC, DEF, MB, FM, IPR, OV, BC, and LR,
respectively. These results demonstrate the proposed method can provide con-
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Fig. 4 Attribute-based comparison of the proposed method with DCF-based trackers in
terms of success rates on OTB-2015 dataset.

siderable improvements to the performance of DCF-based trackers. While the
proposed tracker has moderately alleviated the baseline tracker [11] on the
IPR, MB, and OV attributes (from 0.5% to 1.1%), it considerably improves
tracking performance against the challenging OCC, DEF, and BC attributes
(from 4.2% to 5.9%). Compared to other DCF-based trackers, the proposed
method has achieved the best performance in the presence of the challenging
attributes of OCC, BC, OV, MB, and LR. For instance, the proposed method
outperforms the DeepSTRCF up to 2.2%, 0.7%, 0.2%, 1.2%, and 0.2% on the
BC, OV, LR, MB, and OCC attributes, respectively. Although the proposed
method significantly outperforms the baseline tracker, its performance still can
be improved on the IV, OPR, SV, DEF, and FM attributes. These deficiencies
comes from the inherent limitations of baseline tracker. For example, the pro-
posed method and baseline tracker [11] could not handle the IPR attribute and
provide close results. However, they can be addressed by better representation
of target through the video sequences by exploring temporal information or
feature fusion strategies.

The excellent performance of the proposed method arises from three pri-
mary reasons. First, a deeper insight into the knowledge about the efficient
deep features for visual tracking by the comprehensive analysis. Second, si-
multaneous utilization of both dictionaries motives the method to improve
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ECO DeepSRDCF UCT DeepSTRCF HCFTs Proposed Method  
 

Fig. 5 Qualitative evaluations of ECO, DeepSRDCF, UCT, HCFTs, DeepSTRCF track-
ers, and proposed adaptive tracker using pre-trained ResNet-50 on four challenging video
sequences on the OTB-2015 dataset (namely: Soccer, Ironman, Skiing, and Skating1; from
top to bottom row, respectively).

the robustness in presence of challenging attributes but also provide an ac-
curate localization of the target. Third, the adaptive exploitation of feature
maps helps the visual tracker to have a better perception of the target and
possible conditions. Hence, the appearance model of a target can be adaptively
modeled by different combinations of features. It can considerably improve the
dicriminative power of DCF-based methods for visual tracking.

Finally, qualitative comparisons on four challenging video sequences of
the OTB-2015 dataset are shown in Fig. 5. These videos include broad range
of challenging attributes including the SV, OCC, FM, IPR, OPR, BC, OV,
MB, IV, and LR. Also, the proposed method is compared with various visual
trackers, namely ECO [11], DeepSTRCF [28], DeepSRDCF [9], HCFTs [38],
and UCT [70]. As shown in Fig. 3, the proposed adaptive method can provide
both robustness and accuracy to the DCF tracking framework in the pres-
ence of real-world scenarios. However, it still can be improved by estimation
of frame-based attributes and providing an approach to exploit various deep
features during online tracking.

5 Conclusion and Future Work

The performance of four state-of-the-art pre-trained CNN models for visual
tracking was analyzed. The comprehensive analysis was performed for all single
and combined CNN feature maps of the CNN-based models on the well-known
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OTB-2013 dataset. The analysis results were used as the attribute dictionaries
to adaptively select the best feature maps of CNN models in challenging sce-
narios. Extensive quantitative and qualitative experiments on the OTB-2015
and TC-128 visual tracking datasets demonstrated the effectiveness and gen-
eralization of the proposed method on different trackers, datasets, and models
(with similar architectures) to employ the best set of deep features.

In future work, to estimate a per-frame attribute vector, the integration
of visual attribute detection methods will be explored, which can efficiently
improve the robustness of visual trackers in an online manner. Although the
proposed method adaptively selects the best feature maps (based on possible
challenging applications), it employs a fixed set of feature maps throughout a
video sequence. At the subsequent research, the proposed method will be ex-
tended on the deep learning-based methods that exploit variable deep features
to construct robust appearance models of the target. This idea can effectively
prevent the drift problem of visual trackers, which is caused by the contami-
nation of a target model with background information.
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Appendix A Comprehensive analyses of VGG-M, VGG-16,
GoogLeNet, and ResNet-50 models on the OTB-2013 dataset

In the following, the results of proposed comprehensive analysis of four pre-
trained CNN models are presented. In fact, Table 4 and Table 5 are summa-
rized the best overall and attribute-based analyses of the ones in this appendix.
In the following, Fig. 6 compares the overall precision and success rates of mod-
ified ECO tracker, which employs the VGG-M [5], VGG-16 [49], GoogLeNet
[53], and ResNet-50 [21] for feature extraction. According to Fig. 1, two at-
tribute dictionaries are formed, which allow the DCF-based trackers to exploit
deep features, adaptively.

  

  

  

  
 

Fig. 6 Overall precision & success plots of VGG-M, VGG-16, GoogLeNet, and ResNet-50
models on the OTB-2013 dataset.
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Fig. 7 Attribute-based success plots of VGG-M model on OTB-2013 dataset.

Table 7 Success analysis results for pre-trained VGG-M model on OTB-2013 dataset.

Layers Features: Resolution/Depth
Attributes

Object Camera Environment
SV DEF OPR IPR FM MB LR OV BC OCC IV

D1 109x109 / 96 0.727 0.831 0.759 0.713 0.741 0.754 0.598 0.840 0.719 0.807 0.752
D2 26x26 / 256 0.752 0.891 0.798 0.727 0.787 0.799 0.659 0.901 0.752 0.856 0.752
D3 13x13 / 512 0.645 0.643 0.644 0.610 0.639 0.687 0.383 0.599 0.620 0.700 0.591

D1, D2 MR / 352 0.737 0.879 0.774 0.697 0.797 0.824 0.694 0.858 0.728 0.844 0.763
D1, D3 MR / 608 0.756 0.841 0.780 0.732 0.801 0.829 0.701 0.931 0.749 0.840 0.783
D2, D3 MR / 768 0.766 0.826 0.784 0.718 0.799 0.807 0.672 0.913 0.746 0.831 0.742

D1, D2, D3 MR / 864 0.751 0.866 0.793 0.729 0.787 0.806 0.660 0.905 0.736 0.871 0.738
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Fig. 8 Attribute-based precision plots of VGG-M model on OTB-2013 dataset.

Table 8 Precision analysis results for pre-trained VGG-M model on OTB-2013 dataset.

Layers Features: Resolution/Depth
Attributes

Object Camera Environment
SV DEF OPR IPR FM MB LR OV BC OCC IV

D1 109x109 / 96 0.860 0.903 0.891 0.846 0.804 0.808 0.594 0.848 0.815 0.898 0.837
D2 26x26 / 256 0.841 0.916 0.874 0.814 0.816 0.783 0.673 0.894 0.785 0.913 0.812
D3 13x13 / 512 0.738 0.724 0.764 0.734 0.677 0.731 0.377 0.561 0.697 0.762 0.705

D1, D2 MR / 352 0.874 0.919 0.901 0.837 0.855 0.847 0.702 0.860 0.827 0.939 0.845
D1, D3 MR / 608 0.884 0.905 0.905 0.862 0.855 0.855 0.711 0.927 0.850 0.928 0.872
D2, D3 MR / 768 0.848 0.871 0.856 0.789 0.823 0.792 0.669 0.897 0.788 0.884 0.813

D1, D2, D3 MR / 864 0.818 0.872 0.861 0.797 0.814 0.788 0.670 0.896 0.793 0.924 0.778
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Fig. 9 Attribute-based success plots of VGG-16 model on OTB-2013 dataset.

Table 9 Success analysis results for pre-trained VGG-16 model on OTB-2013 dataset.

Layers Features: Resolution/Depth
Attributes

Object Camera Environment
SV DEF OPR IPR FM MB LR OV BC OCC IV

D1 224x224 / 64 0.735 0.769 0.751 0.699 0.688 0.687 0.567 0.736 0.691 0.785 0.714
D2 112x112 / 128 0.711 0.709 0.684 0.634 0.719 0.733 0.667 0.837 0.665 0.751 0.668
D3 56x56 / 256 0.742 0.841 0.756 0.689 0.755 0.766 0.678 0.858 0.721 0.830 0.727
D4 28x28 / 512 0.792 0.893 0.836 0.778 0.822 0.818 0.671 0.924 0.775 0.889 0.772
D5 14x14 / 512 0.637 0.609 0.639 0.619 0.653 0.635 0.398 0.609 0.542 0.647 0.668

D1, D2 MR / 192 0.679 0.789 0.705 0.647 0.685 0.680 0.560 0.743 0.652 0.779 0.663
D1, D3 MR / 320 0.731 0.827 0.747 0.684 0.735 0.737 0.687 0.855 0.703 0.819 0.717
D1, D4 MR / 576 0.736 0.852 0.766 0.722 0.741 0.778 0.700 0.759 0.738 0.835 0.728
D1, D5 MR / 576 0.732 0.765 0.733 0.660 0.701 0.725 0.597 0.776 0.726 0.780 0.724
D2, D3 MR / 384 0.725 0.820 0.742 0.678 0.730 0.731 0.687 0.863 0.706 0.819 0.713
D2, D4 MR / 640 0.733 0.831 0.764 0.702 0.770 0.771 0.705 0.880 0.722 0.843 0.732
D2, D5 MR / 640 0.700 0.747 0.691 0.612 0.688 0.685 0.591 0.734 0.678 0.756 0.677
D3, D4 MR / 768 0.730 0.854 0.764 0.723 0.739 0.795 0.710 0.775 0.744 0.818 0.715
D3, D5 MR / 768 0.739 0.824 0.755 0.689 0.760 0.769 0.673 0.824 0.716 0.830 0.731
D4, D5 MR / 1024 0.793 0.846 0.816 0.779 0.822 0.807 0.644 0.913 0.731 0.869 0.739

D1, D2, D3 MR / 448 0.739 0.828 0.757 0.694 0.752 0.754 0.691 0.865 0.723 0.833 0.732
D1, D2, D4 MR / 704 0.733 0.841 0.762 0.695 0.758 0.762 0.702 0.865 0.727 0.841 0.732
D1, D2, D5 MR / 704 0.709 0.764 0.705 0.618 0.707 0.707 0.628 0.784 0.705 0.773 0.699
D1, D3, D4 MR / 832 0.741 0.849 0.764 0.701 0.762 0.772 0.705 0.884 0.721 0.839 0.736
D1, D3, D5 MR / 832 0.730 0.779 0.725 0.650 0.749 0.756 0.701 0.839 0.708 0.787 0.724
D1, D4, D5 MR / 1078 0.766 0.845 0.796 0.733 0.805 0.797 0.704 0.894 0.752 0.886 0.762
D2, D3, D4 MR / 896 0.747 0.836 0.760 0.706 0.772 0.778 0.713 0.886 0.707 0.830 0.730
D2, D3, D5 MR / 896 0.727 0.764 0.720 0.641 0.750 0.757 0.669 0.771 0.708 0.776 0.721
D3, D4, D5 MR / 1280 0.755 0.856 0.790 0.735 0.770 0.770 0.713 0.875 0.743 0.856 0.747

D1, D2, D3, D4 MR / 960 0.735 0.839 0.763 0.698 0.762 0.758 0.710 0.884 0.723 0.840 0.744
D1, D2, D3, D5 MR / 960 0.720 0.771 0.717 0.647 0.731 0.731 0.672 0.846 0.703 0.785 0.716
D2, D3, D4, D5 MR / 1408 0.759 0.803 0.756 0.686 0.790 0.791 0.711 0.878 0.741 0.830 0.763
D1, D3, D4, D5 MR / 1344 0.756 0.812 0.767 0.730 0.775 0.777 0.707 0.865 0.702 0.828 0.710

D1, D2, D3, D4, D5 MR / 1472 0.757 0.795 0.752 0.689 0.788 0.788 0.714 0.871 0.735 0.821 0.757
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Fig. 10 Attribute-based precision plots of VGG-16 model on OTB-2013 dataset.

Table 10 Precision analysis results for pre-trained VGG-16 model on OTB-2013 dataset.

Layers Features: Resolution/Depth
Attributes

Object Camera Environment
SV DEF OPR IPR FM MB LR OV BC OCC IV

D1 224x224 / 64 0.807 0.810 0.835 0.775 0.747 0.704 0.560 0.757 0.760 0.847 0.771
D2 112x112 / 128 0.801 0.770 0.802 0.736 0.786 0.785 0.691 0.838 0.783 0.849 0.753
D3 56x56 / 256 0.861 0.886 0.879 0.819 0.817 0.788 0.676 0.842 0.824 0.915 0.822
D4 28x28 / 512 0.877 0.921 0.905 0.853 0.861 0.855 0.729 0.934 0.833 0.944 0.850
D5 14x14 / 512 0.752 0.701 0.750 0.715 0.710 0.691 0.453 0.593 0.608 0.731 0.665

D1, D2 MR / 192 0.772 0.826 0.813 0.747 0.761 0.685 0.559 0.750 0.754 0.863 0.727
D1, D3 MR / 320 0.842 0.885 0.865 0.801 0.783 0.745 0.703 0.857 0.799 0.895 0.799
D1, D4 MR / 576 0.862 0.904 0.887 0.851 0.808 0.829 0.723 0.772 0.839 0.927 0.816
D1, D5 MR / 576 0.780 0.784 0.794 0.719 0.732 0.729 0.598 0.762 0.768 0.814 0.754
D2, D3 MR / 384 0.844 0.885 0.867 0.804 0.784 0.747 0.702 0.857 0.799 0.907 0.800
D2, D4 MR / 640 0.829 0.856 0.864 0.802 0.812 0.777 0.722 0.881 0.809 0.928 0.782
D2, D5 MR / 640 0.813 0.785 0.812 0.731 0.759 0.736 0.607 0.746 0.784 0.853 0.750
D3, D4 MR / 768 0.849 0.906 0.879 0.841 0.796 0.815 0.732 0.783 0.824 0.917 0.808
D3, D5 MR / 768 0.862 0.887 0.880 0.815 0.819 0.787 0.670 0.808 0.827 0.913 0.824
D4, D5 MR / 1024 0.879 0.898 0.895 0.855 0.855 0.839 0.704 0.921 0.808 0.932 0.829

D1, D2, D3 MR / 448 0.862 0.885 0.879 0.819 0.819 0.797 0.706 0.859 0.829 0.917 0.823
D1, D2, D4 MR / 704 0.830 0.855 0.864 0.802 0.809 0.777 0.723 0.880 0.808 0.926 0.780
D1, D2, D5 MR / 704 0.806 0.787 0.809 0.728 0.761 0.717 0.649 0.780 0.784 0.847 0.751
D1, D3, D4 MR / 832 0.859 0.905 0.886 0828 0.812 0.780 0.720 0.882 0.806 0.925 0.819
D1, D3, D5 MR / 832 0.852 0.836 0.848 0.775 0.791 0.754 0.716 0.837 0.805 0.871 0.805
D1, D4, D5 MR / 1078 0.853 0.861 0.881 0.822 0.853 0.838 0.725 0.899 0.835 0.954 0.809
D2, D3, D4 MR / 896 0.862 0.904 0.888 0.831 0.813 0.781 0.731 0.888 0.808 0.928 0.820
D2, D3, D5 MR / 896 0.871 0.834 0.861 0.782 0.818 0.788 0.667 0.755 0.829 0.878 0.824
D3, D4, D5 MR / 1280 0.856 0.906 0.881 0.823 0.813 0.784 0.723 0.886 0.801 0.922 0.819

D1, D2, D3, D4 MR / 960 0.859 0.902 0.885 0.827 0.803 0.775 0.725 0.882 0.803 0.923 0.814
D1, D2, D3, D5 MR / 960 0.845 0.834 0.843 0.774 0.780 0.733 0.667 0.831 0.798 0.871 0.797
D2, D3, D4, D5 MR / 1408 0.882 0.851 0.877 0.817 0.846 0.830 0.726 0.877 0.837 0.913 0.843
D1, D3, D4, D5 MR / 1344 0.860 0.905 0.883 0.826 0.808 0.780 0.722 0.881 0.800 0.925 0.817

D1, D2, D3, D4, D5 MR / 1472 0.886 0.851 0.878 0.819 0.849 0.832 0.728 0.879 0.841 0.915 0.844
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Fig. 11 Attribute-based success plots of GoogLeNet model on OTB-2013 dataset.

Table 11 Success analysis results for pre-trained GoogLeNet model on OTB-2013 dataset.

Layers Features: Resolution/Depth
Attributes

Object Camera Environment
SV DEF OPR IPR FM MB LR OV BC OCC IV

D1 112x112 / 64 0.718 0.749 0.742 0.696 0.691 0.677 0.535 0.735 0.655 0.765 0.700
D2 56x56 / 192 0.735 0.859 0.772 0.711 0.769 0.787 0.685 0.858 0.744 0.839 0.738
D3 28x28 / 256 0.767 0.879 0.786 0.711 0.762 0.756 0.526 0.778 0.715 0.843 0.732
D4 14x14 / 528 0.730 0.875 0.779 0.704 0.732 0.691 0.519 0.799 0.785 0.831 0.726
D5 7x7 / 832 0.333 0.332 0.395 0.419 0.398 0.362 0.299 0.354 0.404 0.373 0.422

D1, D2 MR / 256 0.744 0.858 0.774 0.705 0.767 0.783 0.682 0.858 0.752 0.844 0.743
D1, D3 MR / 320 0.739 0.840 0.751 0.679 0.733 0.745 0.610 0.785 0.719 0.834 0.714
D1, D4 MR / 592 0.752 0.766 0.739 0.678 0.724 0.705 0.557 0.731 0.745 0.798 0.737
D1, D5 MR / 896 0.740 0.701 0.731 0.662 0.715 0.693 0.604 0.713 0.686 0.740 0.723
D2, D3 MR / 448 0.764 0.865 0.792 0.726 0.785 0.811 0.705 0.889 0.761 0.856 0.752
D2, D4 MR / 720 0.745 0.864 0.778 0.710 0.764 0.785 0.702 0.881 0.748 0.839 0.737
D2, D5 MR / 1024 0.722 0.850 0.762 0.693 0.755 0.773 0.691 0.865 0.738 0.835 0.723
D3, D4 MR / 784 0.765 0.875 0.792 0.746 0.744 0.791 0.701 0.774 0.762 0.855 0.716
D3, D5 MR / 1088 0.770 0.876 0.789 0.718 0.761 0.737 0.539 0.790 0.712 0.845 0.730
D4, D5 MR / 1360 0.759 0.877 0.791 0.760 0.759 0.713 0.621 0.758 0.858 0.809 0.781

D1, D2, D3 MR / 512 0.760 0.866 0.788 0.720 0.784 0.804 0.693 0.874 0.761 0.854 0.754
D1, D2, D4 MR / 784 0.747 0.860 0.764 0.694 0.752 0.773 0.705 0.873 0.723 0.837 0.737
D1, D2, D5 MR / 1088 0.738 0.856 0.769 0.701 0.758 0.771 0.694 0.866 0.745 0.837 0.737
D1, D3, D4 MR / 848 0.750 0.768 0.730 0.660 0.763 0.778 0.707 0.840 0.725 0.809 0.716
D1, D3, D5 MR / 1152 0.727 0.788 0.720 0.638 0.717 0.716 0.541 0.747 0.706 0.790 0.706
D1, D4, D5 MR / 1424 0.729 0.764 0.729 0.658 0.706 0.691 0.544 0.651 0.712 0.764 0.717
D2, D3, D4 MR / 976 0.754 0.816 0.761 0.686 0.769 0.785 0.711 0.885 0.753 0.812 0.742
D2, D3, D5 MR / 1280 0.771 0.870 0.798 0.731 0.784 0.807 0.693 0.878 0.764 0.869 0.753
D3, D4, D5 MR / 1616 0.793 0.876 0.815 0.752 0.789 0.798 0.676 0.870 0.766 0.881 0.745

D1, D2, D3, D4 MR / 1040 0.751 0.810 0.743 0.665 0.763 0.772 0.691 0.865 0.728 0.807 0.734
D1, D2, D3, D5 MR / 1344 0.748 0.812 0.756 0.679 0.767 0.778 0.694 0.871 0.753 0.816 0.737
D2, D3, D4, D5 MR / 1808 0.733 0.816 0.745 0.665 0.735 0.730 0.536 0.774 0.727 0.791 0.714
D1, D3, D4, D5 MR / 1680 0.746 0.782 0.736 0.658 0.756 0.759 0.702 0.852 0.728 0.815 0.721

D1, D2, D3, D4, D5 MR / 1872 0.751 0.810 0.745 0.667 0.766 0.775 0.699 0.872 0.730 0.808 0.740
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Fig. 12 Attribute-based precision plots of GoogLeNet model on OTB-2013 dataset.

Table 12 Precision analysis results for pre-trained GoogLeNet model on OTB-2013 dataset

Layers Features: Resolution/Depth
Attributes

Object Camera Environment
SV DEF OPR IPR FM MB LR OV BC OCC IV

D1 112x112 / 64 0.778 0.779 0.808 0.750 0.710 0.680 0.527 0.713 0.700 0.811 0.732
D2 56x56 / 192 0.861 0.901 0.885 0.827 0.838 0.824 0.702 0.876 0.829 0.927 0.836
D3 28x28 / 256 0.857 0.903 0.858 0.793 0.803 0.768 0.521 0.755 0.759 0.888 0.805
D4 14x14 / 528 0.799 0.890 0.862 0.797 0.757 0.703 0.574 0.815 0.836 0.869 0.797
D5 7x7 / 832 0.474 0.539 0.559 0.553 0.445 0.443 0.367 0.383 0.539 0.511 0.565

D1, D2 MR / 256 0.875 0.896 0.893 0.838 0.832 0.810 0.691 0.855 0.829 0.938 0.832
D1, D3 MR / 320 0.863 0.884 0.875 0.817 0.797 0.771 0.616 0.773 0.816 0.914 0.802
D1, D4 MR / 592 0.832 0.791 0.822 0.753 0.782 0.749 0.556 0.739 0.823 0.864 0.801
D1, D5 MR / 896 0.789 0.734 0.790 0.709 0.743 0.701 0.603 0.694 0.739 0.777 0.763
D2, D3 MR / 448 0.886 0.901 0.903 0.850 0.847 0.830 0.715 0.885 0.837 0.947 0.842
D2, D4 MR / 720 0.860 0.901 0.885 0.828 0.805 0.773 0.717 0.879 0.803 0.923 0.814
D2, D5 MR / 1024 0.823 0.859 0.859 0.794 0.800 0.769 0.700 0.876 0.798 0.920 0.779
D3, D4 MR / 784 0.841 0.904 0.868 0.827 0.769 0.781 0.719 0.774 0.805 0.898 0.783
D3, D5 MR / 1088 0.840 0.903 0.845 0.777 0.768 0.717 0.538 0.770 0.731 0.868 0.781
D4, D5 MR / 1360 0.859 0.895 0.887 0.879 0.841 0.807 0.787 0.791 0.914 0.846 0.855

D1, D2, D3 MR / 512 0.884 0.898 0.901 0.847 0.841 0.821 0.706 0.870 0.837 0.944 0.838
D1, D2, D4 MR / 784 0.847 0.897 0.874 0.813 0.796 0.768 0.722 0.874 0.801 0.909 0.809
D1, D2, D5 MR / 1088 0.836 0.896 0.866 0.803 0.793 0.761 0.708 0.865 0.797 0.901 0.806
D1, D3, D4 MR / 848 0.830 0.786 0.826 0.755 0.831 0.808 0.719 0.848 0.841 0.884 0.789
D1, D3, D5 MR / 1152 0.835 0.836 0.831 0.762 0.783 0.748 0.544 0.735 0.800 0.857 0.793
D1, D4, D5 MR / 1424 0.785 0.781 0.790 0.707 0.722 0.698 0.539 0.662 0.760 0.806 0.750
D2, D3, D4 MR / 976 0.861 0.848 0.861 0.797 0.808 0.773 0.728 0.885 0.807 0.891 0.816
D2, D3, D5 MR / 1280 0.882 0.900 0.900 0.846 0.845 0.827 0.706 0.876 0.836 0.946 0.841
D3, D4, D5 MR / 1616 0.888 0.907 0.902 0.849 0.849 0.834 0.699 0.876 0.833 0.945 0.835

D1, D2, D3, D4 MR / 1040 0.858 0.846 0.853 0.787 0.800 0.762 0.708 0.865 0.804 0.883 0.806
D1, D2, D3, D5 MR / 1344 0.854 0.845 0.854 0.788 0.797 0.767 0.719 0.872 0.802 0.885 0.809
D2, D3, D4, D5 MR / 1808 0.820 0.852 0.828 0.755 0.762 0.715 0.536 0.762 0.766 0.845 0.778
D1, D3, D4, D5 MR / 1680 0.820 0.787 0.820 0.747 0.813 0.789 0.725 0.854 0.825 0.874 0.776

D1, D2, D3, D4, D5 MR / 1872 0.847 0.846 0.845 0.778 0.799 0.765 0.712 0.870 0.802 0.871 0.806
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Fig. 13 Attribute-based success plots of ResNet-50 model on OTB-2013 dataset.

Table 13 Success analysis results for pre-trained ResNet-50 model on OTB-2013 dataset.

Layers Features: Resolution/Depth
Attributes

Object Camera Environment
SV DEF OPR IPR FM MB LR OV BC OCC IV

D1 112x112 / 64 0.741 0.799 0.759 0.719 0.704 0.707 0.597 0.707 0.691 0.787 0.725
D2 56x56 / 256 0.692 0.797 0.717 0.644 0.684 0.683 0.535 0.743 0.651 0.769 0.682
D3 28x28 / 512 0.760 0.874 0.796 0.726 0.807 0.823 0.696 0.918 0.775 0.871 0.766
D4 14x14 / 1024 0.709 0.767 0.736 0.681 0.732 0.696 0.389 0.711 0.700 0.761 0.605
D5 7x7 / 2048 0.453 0.380 0.502 0.500 0.423 0.451 0.178 0.356 0.322 0.465 0.432

D1, D2 MR / 320 0.706 0.800 0.727 0.659 0.699 0.712 0.597 0.767 0.664 0.779 0.693
D1, D3 MR / 576 0.765 0.858 0.778 0.712 0.765 0.783 0.676 0.816 0.727 0.856 0.746
D1, D4 MR / 1088 0.720 0.824 0.738 0.679 0.707 0.701 0.568 0.696 0.664 0.801 0.686
D1, D5 MR / 2112 0.667 0.811 0.698 0.671 0.629 0.678 0.530 0.527 0.631 0.750 0.625
D2, D3 MR / 768 0.748 0.807 0.735 0.655 0.749 0.762 0.667 0.830 0.723 0.799 0.727
D2, D4 MR / 1280 0.717 0.788 0.706 0.625 0.705 0.700 0.539 0.735 0.686 0.765 0.689
D2, D5 MR / 2304 0.710 0.752 0.703 0.628 0.723 0.733 0.600 0.785 0.669 0.747 0.697
D3, D4 MR / 1536 0.766 0.833 0.777 0.706 0.818 0.822 0.691 0.904 0.764 0.839 0.766
D3, D5 MR / 2560 0.766 0.883 0.801 0.735 0.816 0.830 0.704 0.930 0.762 0.871 0.763
D4, D5 MR / 3072 0.754 0.752 0.750 0.700 0.775 0.744 0.517 0.787 0.735 0.790 0.657

D1, D2, D3 MR / 832 0.745 0.853 0.757 0.686 0.748 0.760 0.673 0.834 0.718 0.828 0.726
D1, D2, D4 MR / 1344 0.716 0.792 0.705 0.624 0.700 0.701 0.536 0.725 0.689 0.763 0.687
D1, D2, D5 MR / 2368 0.716 0.783 0.711 0.630 0.718 0.708 0.600 0.785 0.701 0.772 0.705
D1, D3, D4 MR / 1600 0.762 0.864 0.783 0.717 0.777 0.771 0.688 0.848 0.723 0.864 0.751
D1, D3, D5 MR / 2624 0.756 0.862 0.782 0.716 0.781 0.789 0.708 0.858 0.733 0.864 0.754
D1, D4, D5 MR / 3136 0.735 0.708 0.709 0.672 0.716 0.721 0.613 0.719 0.667 0.736 0.685
D2, D3, D4 MR / 1792 0.725 0.786 0.721 0.648 0.739 0.739 0.551 0.753 0.690 0.780 0.708
D2, D3, D5 MR / 2816 0.753 0.804 0.741 0.663 0.758 0.782 0.679 0.843 0.745 0.810 0.740
D3, D4, D5 MR / 3584 0.769 0.837 0.782 0.710 0.829 0.843 0.708 0.940 0.772 0.847 0.777

D1, D2, D3, D4 MR / 1856 0.738 0.791 0.733 0.667 0.747 0.740 0.569 0.751 0.691 0.799 0.714
D1, D2, D3, D5 MR / 2880 0.759 0.801 0.742 0.665 0.758 0.765 0.630 0.812 0.725 0.813 0.729
D2, D3, D4, D5 MR / 3840 0.740 0.804 0.732 0.650 0.733 0.716 0.539 0.751 0.698 0.803 0.713
D1, D3, D4, D5 MR / 3648 0.754 0.850 0.777 0.719 0.780 0.777 0.714 0.860 0.707 0.856 0.742

D1, D2, D3, D4, D5 MR / 3904 0.742 0.808 0.733 0.656 0.736 0.726 0.536 0.725 0.703 0.802 0.720
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Fig. 14 Attribute-based precision plots of ResNet-50 model on OTB-2013 dataset.

Table 14 Precision analysis results for pre-trained ResNet-50 model on OTB-2013 dataset.

Layers Features: Resolution/Depth
Attributes

Object Camera Environment
SV DEF OPR IPR FM MB LR OV BC OCC IV

D1 112x112 / 64 0.815 0.836 0.840 0.800 0.738 0.714 0.579 0.730 0.736 0.839 0.790
D2 56x56 / 256 0.800 0.842 0.832 0.771 0.734 0.680 0.538 0.733 0.730 0.838 0.753
D3 28x28 / 512 0.869 0.913 0.896 0.839 0.863 0.847 0.716 0.925 0.835 0.943 0.851
D4 14x14 / 1024 0.798 0.821 0.829 0.767 0.764 0.726 0.381 0.681 0.773 0.827 0.711
D5 7x7 / 2048 0.621 0.565 0.623 0.593 0.408 0.447 0.217 0.307 0.466 0.586 0.551

D1, D2 MR / 320 0.817 0.842 0.838 0.781 0.752 0.742 0.601 0.763 0.737 0.853 0.765
D1, D3 MR / 576 0.859 0.898 0.880 0.823 0.827 0.814 0.682 0.835 0.828 0.920 0.826
D1, D4 MR / 1088 0.810 0.880 0.846 0.785 0.757 0.715 0.572 0.718 0.758 0.870 0.772
D1, D5 MR / 2112 0.736 0.851 0.774 0.744 0.671 0.688 0.524 0.558 0.686 0.805 0.702
D2, D3 MR / 768 0.837 0.835 0.833 0.763 0.778 0.743 0.685 0.826 0.797 0.854 0.792
D2, D4 MR / 1280 0.793 0.815 0.798 0.727 0.730 0.679 0.530 0.721 0.753 0.809 0.750
D2, D5 MR / 2304 0.802 0.788 0.805 0.737 0.760 0.748 0.597 0.771 0.751 0.810 0.768
D3, D4 MR / 1536 0.876 0.867 0.876 0.813 0.874 0.852 0.700 0.921 0.836 0.914 0.851
D3, D5 MR / 2560 0.870 0.918 0.897 0.840 0.866 0.852 0.719 0.933 0.829 0.941 0.846
D4, D5 MR / 3072 0.866 0.794 0.845 0.794 0.824 0.799 0.568 0.812 0.803 0.851 0.777

D1, D2, D3 MR / 832 0.836 0.887 0.858 0.795 0.778 0.745 0.700 0.838 0.798 0.888 0.791
D1, D2, D4 MR / 1344 0.816 0.820 0.815 0.749 0.732 0.681 0.536 0.718 0.758 0.834 0.754
D1, D2, D5 MR / 2368 0.799 0.819 0.804 0.735 0.754 0.704 0.601 0.770 0.769 0.823 0.764
D1, D3, D4 MR / 1600 0.848 0.903 0.874 0.814 0.815 0.781 0.720 0.879 0.811 0.913 0.816
D1, D3, D5 MR / 2624 0.851 0.899 0.877 0.819 0.827 0.834 0.734 0.887 0.819 0.918 0.823
D1, D4, D5 MR / 3136 0.811 0.754 0.808 0.757 0.760 0.735 0.615 0.740 0.772 0.816 0.761
D2, D3, D4 MR / 1792 0.830 0.822 0.829 0.767 0.785 0.753 0.547 0.738 0.790 0.849 0.785
D2, D3, D5 MR / 2816 0.862 0.832 0.850 0.787 0.827 0.804 0.708 0.849 0.835 0.881 0.821
D3, D4, D5 MR / 3584 0.889 0.870 0.887 0.827 0.879 0.866 0.731 0.951 0.836 0.929 0.854

D1, D2, D3, D4 MR / 1856 0.838 0.823 0.835 0.775 0.800 0.764 0.571 0.759 0.800 0.858 0.794
D1, D2, D3, D5 MR / 2880 0.851 0.832 0.843 0.778 0.807 0.780 0.642 0.806 0.817 0.870 0.807
D2, D3, D4, D5 MR / 3840 0.815 0.836 0.817 0.744 0.747 0.695 0.533 0.732 0.769 0.835 0.768
D1, D3, D4, D5 MR / 3648 0.837 0.888 0.866 0.813 0.812 0.782 0.732 0.885 0.794 0.901 0.803

D1, D2, D3, D4, D5 MR / 3904 0.837 0.835 0.833 0.764 0.788 0.748 0.530 0.732 0.802 0.859 0.795
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