Skip to main content
Log in

DPV: a taxonomy for utilizing deep learning as a prediction technique for various types of cancers detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Deep learning (DL) is a type of machine learning capable of processing large quantities of data to provide analytic results based on a particular framework’s parameters and aims. DL is widely used in a variety of fields, including medicine. Currently, there are various DL-based prediction models for predicting cancer probability and survival. However, the specific problem is that no integrated system can predict cancer survival, probability, and presence in the medical patient’s samples. Therefore, this research investigates the latest literature in the field of DL-based cancer prediction models for predicting the cancer probability and the patient survival rate. The name of this proposed model is Multimodal Incremental Recurrent Deep Neural Network; it can perform the analysis, prediction, and diagnosis of cancer using multi-dimensional data processing. It can also predict the cancer possibility and survival using incremental recurrent neural networks. The components of the proposed taxonomy are Data, Prediction technique, and View (DPV). This research’s contribution is the critical analysis of the latest literature on the DL-based systems that can predict cancer and its outcomes. It provides a theoretical model that can predict the possibility, presence, and survival of cancer by processing multi-dimensional medical samples of the patient to make accurate predictions. We also highlight the importance of the proposed taxonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alakwaa FM, Chaudhary K, Garmire LX (2017) Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. J Proteome Res 17(1):337–347. https://doi.org/10.1021/acs.jproteome.7b00595

    Article  Google Scholar 

  2. Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N (2016) Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging 35(5):1313–1321

    Article  Google Scholar 

  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. https://doi.org/10.1186/gb-2010-11-10-r106

    Article  Google Scholar 

  4. Burkey H, Goodman P, Rosen D, Henson D, Weinstein J, Harrell F, Marks J, Winchester D, Bostwick D (2007) Artificial neural networks improve the accuracy of cancer survival prediction. Cancer. 79(4):857–862

    Article  Google Scholar 

  5. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, Walliander M, Lundin M, Haglund C, Lundin J (2018) Deep learning-based tissue analysis predicts outcome in colorectal cancer. Sci Rep 8(1):3395. https://doi.org/10.1038/s41598-018-21758-3

    Article  Google Scholar 

  6. Chen D, Qian G, Shi C, Pan Q (2017) Breast cancer malignancy prediction using incremental combination of multiple recurrent neural networks. In international conference on neural information processing, 10635, 43–52. https://doi.org/10.1007/978-3-319-70096-0_5

  7. Choi H, Na KJ (2018) A risk stratification model for lung Cancer based on gene Coexpression network and deep learning. BioMed research international, 2018, 11, doi: https://doi.org/10.1155/2018/2914280

  8. Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih NN, … Madabhushi A (2017) Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep 7:46450. https://doi.org/10.1038/srep46450

    Article  Google Scholar 

  9. Echaniz O, Graña M (2017) Ongoing work on deep learning for lung Cancer prediction. In international work-conference on the interplay between natural and artificial computation (pp. 42-48). Springer, Cham.Doi : https://doi.org/10.1007/978-3-319-59773-7

  10. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks [published correction appears in nature. 2017 Jun 28;546(7660):686]. Nature. 542(7639):115–118. https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  11. Fernandes K, Chicco D, Cardoso JS, Fernandes J (2018) Supervised deep learning embeddings for the prediction of cervical cancer diagnosis. PeerJ Computer Science 4:e154. http://dx.doi.org.ezproxy.csu.edu.au/10.7717/peerj-cs.154

    Article  Google Scholar 

  12. Fu M, Wu W, Hong X, Liu Q, Jiang J, Ou Y, Zhao Y, Gong X (2018) Hierarchical combinatorial deep learning architecture for pancreas segmentation of medical computed tomography cancer images. BMC Syst Biol 12(4):56. https://doi.org/10.1186/s12918-018-0572-z

    Article  Google Scholar 

  13. Hareendran SA, Vinod Chandra SS, Prasad SR, Dhanya S (2020) Deep Learning Strategies for Survival Prediction in Prophylactic Resection Patients. In: Tan Y., Shi Y., Tuba M. (eds) Advances in Swarm Intelligence. ICSI 2020. Lecture notes in computer science, vol 12145. Springer, Cham https://doi.org/10.1007/978-3-030-53956-6_53

  14. Hashimoto Y, Ohno I, Imaoka H, Takahashi H, Mitsunaga S, Sasaki M, … Kan M (2018) Mo1296 RELIMINARY RESULT OF COMPUTER AIDED DIAGNOSIS (CAD) PERFORMANCE USING DEEP LEARNING IN EUS-FNA CYTOLOGY OF PANCREATIC CANCER. Gastrointest Endosc 87(6):AB434 Retrieved from: https://www.giejournal.org/article/S0016-5107(18)32221-1/pdf

    Article  Google Scholar 

  15. Islam MM, Ajwad R, Chi C, Domaratzki M, Wang Y, Hu P (2017) Somatic copy number alteration-based prediction of molecular subtypes of breast Cancer using deep learning model. In Canadian conference on artificial intelligence (pp. 57-63). Springer, Cham. Retrieved from:https://www.tib.eu/en/search/id/TIBKAT%3A887495818/

  16. Kadir T, Gleeson F (2018) Lung cancer prediction using machine learning and advanced imaging techniques. Trans Lung Cancer res 7(3):304–312. https://doi.org/10.21037/tlcr.2018.05.15

    Article  Google Scholar 

  17. Khan A, Rajpoot N, Treanor D, Magee D (2014) A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color Deconvolution. IEEE Trans Biomed Eng 61(6):1729–1738. https://doi.org/10.1109/TBME.2014.2303294

    Article  Google Scholar 

  18. Kim BJ, Kim SH (2018) Prediction of inherited genomic susceptibility to 20 common cancer types by a supervised machine-learning method. Proc Natl Acad Sci U S A 115(6):1322–1327. https://doi.org/10.1073/pnas.1717960115

    Article  Google Scholar 

  19. Kim S, Lee H, Kim K, Kang J (2018) Mut2Vec: distributed representation of cancerous mutations. BMC Med Genet 11(2):33. https://doi.org/10.1186/s12920-018-0349-7

    Article  Google Scholar 

  20. Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, den Heeten A, Karssemeijer N (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312. https://doi.org/10.1016/j.media.2016.07.007

    Article  Google Scholar 

  21. Labaki WW, Han MK (2018) (2018). Artificial intelligence and chest imaging. Will deep learning make us smarter? Am J Respir Crit Care Med 197(2):148–150. https://doi.org/10.1164/rccm.201709-1879ED

    Article  Google Scholar 

  22. Matsuo K, Purushotham S, Moeini A, Li G, Machida H, Liu Y, Roman LD (2017) A pilot study in using deep learning to predict limited life expectancy in women with recurrent cervical cancer. Am J Obstetrics Gynecol 217(6):703–705. https://doi.org/10.1016/j.ajog.2017.08.012

    Article  Google Scholar 

  23. Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Vega JEV ... Cooper LA (2018) Predicting cancer outcomes from histology and genomics using convolutional networks. Proceedings of the National Academy of Sciences, 201717139. 115(13), E2970-E2979 Retrieved from: https://doi.org/10.1073/pnas.1717139115

  24. Preuer K, Lewis RP, Hochreiter S, Bender A, Bulusu KC, Klambauer G (2017) DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 34(9):1538–1546. https://doi.org/10.1093/bioinformatics/btx806

    Article  Google Scholar 

  25. Sharma H, Zerbe N, Klempert I, Hellwich O, Hufnagl P (2017) Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Comput Med Imaging Graph 61:2–13. https://doi.org/10.1016/j.compmedimag.2017.06.001

    Article  Google Scholar 

  26. Sirinukunwattana K, Raza SEA, Tsang YW, Snead DR, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35(5):1196–1206. https://doi.org/10.1109/TMI.2016.2525803

    Article  Google Scholar 

  27. Song Y, Zhang Yu, Yan, X, Liu, H, Zhou, M, Hu, B, Yang, G (2018) Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. 48(6):1570-1577. Doi: https://doi.org/10.1002/jmri.26047

  28. Sun D, Wang M, Li A (2018) A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Trans Comput Biol Bioinform 16(3):841–850. https://doi.org/10.1109/TCBB.2018.2806438

    Article  Google Scholar 

  29. Sun Y, Zhu S, Ma K, Liu W, Yue Y, Hu G, Lu H, Chen W (2019) Identification of 12 cancer types through genome deep learning. Sci Rep 9:17256. https://doi.org/10.1038/s41598-019-53989-3

    Article  Google Scholar 

  30. Urban G, Bache KM, Phan D, Sobrino A, Shmakov AK, Hachey SJ, Baldi P (2018) Deep Learning for Drug Discovery and Cancer Research: Automated Analysis of Vascularisation Images. IEEE/ACM Transactions on Computational Biology and Bioinformatics. vol. 16, no. 3, pp. 1029–1035, 1 May–June 2019 DOI: https://doi.org/10.1109/TCBB.2018.2841396

  31. Velazquez ER, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O, … Gillies R (2017) Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 77(14):3922–3930. https://doi.org/10.1158/0008-5472.CAN-17-0122

    Article  Google Scholar 

  32. Xiao Y, Wu J, Lin Z, Zhao X (2018) A deep learning-based multi-model ensemble method for cancer prediction. Comput Methods Prog Biomed 153:1–9. https://doi.org/10.1016/j.cmpb.2017.09.005

    Article  Google Scholar 

  33. Yousefi S, Amrollahi F, Amgad M, Dong C, Lewis JE, Song C, Gutman DA, Halani SH, Velazquez Vega JE, Brat DJ, Cooper LA (2017) Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Sci Rep 7(1):11707. https://doi.org/10.1038/s41598-017-11817-6

    Article  Google Scholar 

  34. Yuan X, Xie L, Abouelenien M (2018) A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data. Pattern Recogn 77:160–172

    Article  Google Scholar 

  35. Zhu W, Xie L, Han J, Guo X (2020) The application of deep learning in Cancer prognosis prediction. Cancers 12(3):603. https://doi.org/10.3390/cancers12030603

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers of this manuscript submitted for consideration for publication in this journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer Alsadoon.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, B., Alsadoon, A., Prasad, P. et al. DPV: a taxonomy for utilizing deep learning as a prediction technique for various types of cancers detection. Multimed Tools Appl 80, 21339–21361 (2021). https://doi.org/10.1007/s11042-021-10769-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10769-4

Keywords

Navigation