Skip to main content
Log in

Graph-based visualization of sensitive medical data

  • 1191: Sentient Multimedia Systems
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

With the increasing amounts of electronic health data being constantly generated in medical examinations and by sensors and mobile applications, data visualization methods can assist medical professionals and researchers in exploring and making sense of the data. Two important challenges faced by data visualization are large data volume and protection of sensitive data. In this paper, we propose a graph-based method that allows the exploration of a patient dataset, while also naturally allowing the summarization of large amounts of data, making it applicable to large datasets and sensitive data. A graph is constructed from the raw data, encoding local similarities among patients, and is visualized on the screen, producing a visual map of the patient distribution. Multidimensional glyphs are put in place of the nodes, revealing the properties that characterize each graph area. The graph construction method is extended to an incremental scheme, allowing federated graph formation. The proposed method is demonstrated in three use cases, regarding frailty in older adults, Sjögren’s Syndrome patients, and a large-size diabetes dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://nodejs.org/

  2. https://d3js.org/

  3. https://www.kaggle.com/brandao/diabetes

References

  1. Beck F, Burch M, Diehl S, Weiskopf D (2017) A taxonomy and survey of dynamic graph visualization. In: Computer graphics forum, vol 36, pp 133–159. Wiley Online Library

  2. Bhavnani SK, Drake J, Divekar R (2014) The role of visual analytics in asthma phenotyping and biomarker discovery

  3. Borgo R, Kehrer J, Chung David HS, Maguire E, Laramee RS, Hauser H, Ward M, Chen M (2013) Glyph-based visualization: Foundations, design guidelines, techniques and applications. In: Eurographics (STARs), pp 39–63

  4. Cao N, Lin Y-R, Gotz D, Du F (2018) Z-glyph: Visualizing outliers in multivariate data. Inf Vis 17(1):22–40

    Article  Google Scholar 

  5. Dix A, Ellis G (1998) Starting simple: adding value to static visualisation through simple interaction. In: Proceedings of the working conference on advanced visual interfaces, pp 124–134

  6. Drosou A, Kalamaras I, Stavros P, Dimitrios T (2016) An enhanced graph analytics platform (gap) providing insight in big network data. J Innov Digit Ecosyst 3(2):83–97

    Article  Google Scholar 

  7. EU H2020 (2018) European project FrailSafe: Sensing and predictive treatment of frailty and associated co-morbidities using advanced personalized patient models and advanced interventions. https://frailsafe-project.eu/

  8. EU H2020 (2020) European project HarmonicSS: Harmonization and integrative analysis of regional, national and international Cohorts on primary Sjögren’s Syndrome (pSS) towards improved stratification, treatment and health policy making. https://www.harmonicss.eu/

  9. Fried LP, Tangen CM, Jeremy W, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Med Sci 56(3):M146–M157

    Article  Google Scholar 

  10. Fuchs J, Isenberg P, Bezerianos A, Keim D (2016) A systematic review of experimental studies on data glyphs. IEEE Trans Visual Comput Graph 23(7):1863–1879

    Article  Google Scholar 

  11. Hachul S, Jünger M. (2005) Large-graph layout with the fast multipole multilevel method, Spring, V, (December), 1–27

  12. Jeffrey H, Danah B (2005) Vizster: Visualizing online social networks. In: IEEE symposium on information visualization, 2005. INFOVIS 2005., pp 32–39. IEEE

  13. Kalamaras I, Drosou A, Tzovaras D (2014) Multi-objective optimization for multimodal visualization. IEEE Trans Multimed 16(5):1460–1472

    Article  Google Scholar 

  14. Kwon O-H, Muelder C, Kyungwon L, Kwan-Lium M (2016) A study of layout, rendering, and interaction methods for immersive graph visualization. IEEE Trans Visual Comput Graph 22(7):1802–1815

    Article  Google Scholar 

  15. Li L, Wei-Yi C, Glicksberg BS, Gottesman O, Tamler R, Chen R, Bottinger EP, Dudley JT (2015) Sci Transl Med. In: Identification of type 2 diabetes subgroups through topological analysis of patient similarity, vol 7, pp 311ra174–311ra174

  16. Linhares CDG, Travençolo BAN, Paiva JGS, Rocha LEC (2017) Dynetvis: a system for visualization of dynamic networks. In: Proceedings of the symposium on applied computing, pp 187–194

  17. Liu J, Bier E, Wilson A, Guerra-Gomez JA, Honda T, Sricharan K, Gilpin L, Davies D (2016) Graph analysis for detecting fraud, waste, and abuse in healthcare data. AI Mag 37(2):33–46

    Google Scholar 

  18. William JRL (2012) Combing the hairball with biofabric: a new approach for visualization of large networks. BMC Bioinform 13(1):1–16

    Article  Google Scholar 

  19. Jiawei L, Si YW (2020) Clustering-based force-directed algorithms for 3d graph visualization. J Supercomput 76(12):9654–9715

    Article  Google Scholar 

  20. Opach T, Popelka S, Dolezalova J, Ketil JR (2018) Star and polyline glyphs in a grid plot and on a map display: which perform better. Cart Geogr Inf Sci 45(5):400–419

    Article  Google Scholar 

  21. Pai S, Bader GD (2018) Patient similarity networks for precision medicine. J Molec Biol 430(18):2924–2938

    Article  Google Scholar 

  22. Polychronidou E, Kalamaras I, Votis K, Tzovaras D (2018) Towards visualizing primary sjögren’s syndrome data from heterogeneous cohorts. In: Proceedings of the 10th hellenic conference on artificial intelligence, pp 1–4

  23. Polychronidou E, Kalamaras I, Votis K, Tzovaras D (2019) Health vision: An interactive web based platform for healthcare data analysis and visualisation. In: 2019 IEEE Conference on computational intelligence in bioinformatics and computational biology (CIBCB), pp 1–8. IEE

  24. Polychronidou E, Xochelli A, Moschonas P, Papadopoulos S, Hatzidimitriou A, Vlamos P, Stamatopoulos K, Tzovaras D (2017) Chronic lymphocytic leukemia patient clustering based on somatic hypermutation (shm) analysis. In: GeNeDis 2016, pp 127–138. Springer

  25. Ribassin-Majed L, Marguet S, Lee Anne WM, Ng WT, Ma J, Chan Anthony TC, Huang P-Y, Zhu G, Chua DTT, Chen Y et al (2017) What is the best treatment of locally advanced nasopharyngeal carcinoma? an individual patient data network meta-analysis. J Clin Oncol 35(5):498

    Article  Google Scholar 

  26. Ropinski T, Oeltze S, Preim B (2011) Survey of glyph-based visualization techniques for spatial multivariate medical data. Comput Graph 35 (2):392–401

    Article  Google Scholar 

  27. Strack B, DeShazo JP, Gennings C, Olmo JL, Ventura S, Cios KJ, Clore JN (2014) Impact of hba1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records. BioMed research international 2014

  28. Valdivia P, Buono P, Plaisant C, Dufournaud N, Fekete J-D (2020) Analyzing dynamic hypergraphs with parallel aggregated ordered hypergraph visualization. IEEE transactions on visualization and computer graphics

  29. Ward M (2008) Multivariate data glyphs: Principles and practice. In: Handbook of data visualization, pp 179–198. Springer

  30. Widanagamaachchi W, Livnat Y, Bremer P-T, Duvall S, Pascucci V (2017) Interactive visualization and exploration of patient progression in a hospital setting. In: AMIA annual symposium proceedings, vol 2017, pp 1773. American Medical Informatics Association

  31. Zacharaki EI, Deltouzos K, Kalogiannis S, Kalamaras I, Bianconi L, Degano C, Orselli R, Montesa J, Moustakas K, Votis K et al (2020), An ict platform for unobtrusive sensing of multi-domain frailty for personalized interventions. IEEE Journal of Biomedical and Health Informatics, Frailsafe

  32. Zhou Y, Saad Y (2007) A chebyshev–davidson algorithm for large symmetric eigenproblems. SIAM J Matr Anal Appl 29(3):954–971

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the EU H2020 projects FrailSafe (H2020-PHC-21-2015, grant agreement no. 690140) and HarmonicSS (H2020-SC1-2016-RTD, grant agreement no. 731944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilias Kalamaras.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalamaras, I., Glykos, K., Megalooikonomou, V. et al. Graph-based visualization of sensitive medical data. Multimed Tools Appl 81, 209–236 (2022). https://doi.org/10.1007/s11042-021-10990-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10990-1

Keywords

Navigation