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Abstract
This paper considers the area of digital forensics (DF). One of the problem in DF is the
issue of identification of digital cameras based on images. This aspect has been attractive
in recent years due to popularity of social media platforms like Facebook, Twitter etc.,
where lots of photographs are shared. Although many algorithms and methods for digital
camera identification have been proposed, there is lack of research about their robustness.
Therefore, in this paper the robustness of digital camera identification with the use of con-
volutional neural network is discussed. It is assumed that images may be of poor quality, for
example, degraded by Poisson noise, Gaussian blur, random noise or removing pixels’ least
significant bit. Experimental evaluation conducted on two large image datasets (including
Dresden Image Database) confirms usefulness of proposed method, where noised images
are recognized with almost the same high accuracy as normal images.

Keywords Digital forensics · Privacy · Hardwaremetry · Camera recognition ·
Camera fingerprint · Convolutional neural networks · Robustness

1 Introduction

Digital forensics is a popular area that attracts many scientific attention. Problems like iden-
tification of imaging sensors are especially interesting. One of the most challenging issue in
digital forensics (and also in image processing) is identification of camera based on images
and considering it as a “digital fingerprint” or a proof of presence. This domain is called by
a term hardwaremetry [13]. Camera identification may be realized in two aspects. First is
called the individual source camera identification (ISCI) which distinguishes a certain cam-
era among cameras of both the same and the different camera models. The second aspect
is called the source camera model identification (SCMI) that distinguishes a certain camera
model among the different models but not distinguishes a certain copy of camera among
other cameras of the same model. As example, for the following cameras: Sony A7 (0),
Sony A7 (1), ... Sony A7 (n), Nikon D750 (0), Nikon D750 (1), ... , Nikon D750 (n),
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the ISCI distinguishes all cameras as different (Sony A7 (0), Sony A7 (1), ...), while the
SCMI distinguishes only the general model (Sony A7, Nikon D750). Therefore, the ISCI
is much stronger than SCMI aspect, therefore much research has been conducted in this
domain [16–18, 22–24, 27]. One of the most popular algorithm for individual source camera
identification is proposed by Lukás et al. [27]. This algorithm aims to identify cameras on
so called Photo-Response Nonuniformity Noise (PRNU) which is also called sensor pattern
noise or noise residual. The goal is to calculate N = I − F(I) where N is a noise residual,
I is an input image and F is a denoising filter [21]. The N is unique for every camera and
may be used for identification. Experimental evaluation confirmed very high camera identi-
fication accuracy. Recent years have shown another interest in field of camera identification
thanks to convolutional neural networks (CNN) [4, 11, 31, 38, 40, 43]. Due to their nature,
CNNs offer almost perfect classification accuracy in different subjects, as text or image
classification and pattern recognition.

In this paper the robustness of digital camera identification with the use of a proposed
convolutional neural network is discussed. The robustness is understood as a recognition
of a camera based on visually affected images. More precisely, the network is learned by
“normal” images of some camera and tested by applying to it images of the same camera
degraded by Poisson noise, Gaussian blur, random noise and removing least significant
bit (LSB) of pixel intensities. Results indicate that network successfully identifies even
strongly affected images as coming from a particular camera. Discussed CNN may be also
used for a digital camera identification. For evaluation, two large image datasets are used.
First dataset includes modern cameras including latest digital single lens reflex/mirrorless,
compact cameras and smartphones; second one is a Dresden Image Database [14] that is
often used for benchmarking.

This paper is a continuation of research presented in [3] and in [2]. In [3] there have been
proposed two algorithms called PSNR-CT and DEPECHE. The PSNR-CT algorithm is
used for an ultra-fast camera identification (compared to Lukás et al. [27]). The DEPECHE
algorithm is used for prevention of camera identification based on the analysis of image
histogram. In [2] the robustness of camera identification in terms of Lukás et al. [27] by
analysing degraded images has been checked. The degradation techniques included nois-
ing, blurring, removing least significant bit; also an algorithm to bypass the identification
of Lukás et al.’s algorithm has been proposed. However, in [2] the impact of image degradation
techniques to camera identification of other than Lukás et al.’s algorithm – for example convo-
lutional neural networks was not examined. Therefore this is the motivation for this paper.

1.1 Contribution

The primary contribution of this paper is a study of robustness of digital camera identifica-
tion with a convolutional neural network (CNN). This analysis covers an interference with
the image quality by applying strategies like Poisson noise, Gaussian blur, random noise
and removing pixels’ least significant bit (LSB). It is showed that even strongly degraded
images are still recognized by a CNN, therefore the identification of the original camera
that produced the image is possible. Experiments are performed with the use of a proposed
CNN that also might be used for a digital camera identification on not degraded images.

1.2 Organization of the paper

In next section the previous and related work are recalled. Section 3 depicts proposed con-
volutional neural network architecture. In Section 4 the experimental evaluation of proposed
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method is described. Finally, the last section concludes this work. In the Appendix there
is presented the code for implementation of proposed convolutional neural network under
Python programming language. Everywhere in the paper, bold font denotes matrices or
vectors.

2 Previous work

One of the most popular algorithm for digital camera fingerprinting was proposed by Lukás
et al. [27]. This algorithm utilizes a Photo-Response Nonuniformity Noise (PRNU) which
is unique for each camera and may serve as a fingerprint. The PRNU is also called as
sensor pattern noise or noise residual. The PRNU is calculated as N = I − F(I) where
N is a noise residual, I is an input image and F is a denoising filter. This method was
further researched in [16–18, 22, 29]. In Marra et al. [29] image residuals were utilized
for camera identification. The co-occurrence matrices of selected neighbors were used for
features extraction. Residual images were calculated simply as the difference between the
input image I and its denoised version F(I); F was the denoising filter. Obtained features
were applied as input of SVM classifier.

In Morshedi et al. [20] an algorithm for recognizing camera’s sensor from High Dynamic
Range (HDR) images was described. It was proposed to invert geometric transformations
for enabling proper PRNU detection. Considered were reversal of upsampling and the patch-
work. Experiments held on the UNIFI dataset [35] of HDR images from number of modern
smartphones confirmed high accuracy of camera identification which was at least of 95%.

Agarwal et al. [1] described an algorithm for iris sensor identification. Image fea-
ture selections were collected by a Block Image Statistical Measure (BISM), High Order
Wavelet Entropy (HOWE), Texture Measure (TM), Single-level Multi-orientation Wavelet
Texture (SlMoWT) and image quality measures.

In Li et al.’s [26] investigation of camera identification by compact representation of fin-
gerprints was discussed. Proposed algorithm generates compact representation of camera’s
fingerprints with the use of random projections strategy. Experiments showed that such
approach may be practical and efficient, however robustness of proposed method was not
checked.

Goljan et al. [15] discussed the effect of compression on camera identification using
sensor fingerprint. Results indicated that the JPEG compression both increased the variance
of the normalized correlation and the variance of peak-to-correlation energy (PCE).

Taspinar et al. [36] considered seam-carved images. Seam-carving is understood as
removing some parts of the image. Results pointed that sensor recognition could be realized
if the image block was even less than 50×50px. Another strategy includes the analysis of the
generalized noise in natural images [37]. Proposed model utilizes parameters of the image
that may be used as camera fingerprint. Tuama et al. [39] proposed training a machine learn-
ing classifier on the concatenation of the co-occurrences of color band noise residuals with
features computed with a Markovian model in discrete cosine transform (DCT) domain.
These features include also conditional probability statistics. Such model gives high order
statistics which supplement and enhance the identification rate.

Vulnerability of deep learning approach to adversarial attacks was examined in Marra
et al. [28]. It was discussed whether it is possible to deceive a CNN-based classifier in order
to make camera classification incorrect. Attacking a CNN-based classifier was performed
by the following methods: The Fast Gradient Sign Method (FGSM) [19], DeepFool [32] and
Jacobian-based Saliency Map Attack (JSMA) [33]. The goal of FGSM was very simple and
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relied on adding to images an additive noise. DeepFool is relied on a local linearization of
the classifier. The JSMA was a greedy iterative procedure that detecting and replacing the
pixels that contribute most to the correct classification of the image.

Obregon et al. [12] presented a fully connected network. Feature maps were obtained
as a convolution of image I and kernel K. The network utilized two convolutional layers,
a max pooling layer and three fully connected layers with ReLU function used for activa-
tion. Experiments held on MICHE dataset [7] with used hardware nVidia Tesla K80 (24GB)
confirmed high accuracy of classification. Convolutional Neural Networks were also dis-
cussed in [5, 8, 25, 30, 34, 41]. In Yang et al. [42] a concept of using content-adaptive
fusion residual networks was proposed. Images were divided into three categories: sat-
uration, smoothness and others. For each image category a fusion residual network was
trained by transform learning approach. Chen et al. [6] proposed a residual neural network
(ResNet). The properties of camera’s lens system were used for training the network. Dis-
cussed method was evaluated of individual source camera’s identification in Dresden Image
Database [14]. However, none of listed papers investigate the aspect of robustness of digital
camera identification. Thus if the image was degraded by for example an adversarial attack
in order to fool the classifier, the response of the classifier is not known.

3 Proposed CNN for individual source camera identification

3.1 Convolutional Neural Networks (CNN) – the background

Convolutional neural networks (CNN) are recently very popular in many fields. They are
used for natural language processing, object/pattern recognition, different classification
tasks including text or image classification. The general structure of a convolutional neural
network includes layers containing the neurons. A neuron simply takes some value as input,
does computations and returns the results to the next layer. Let us shortly recall the idea of
CNNs. In contrary to traditional multilayer perceptron architecture, it uses two operations
called convolution and pooling to reduce an image into essential features for further under-
standing and classifying the image. The general blocks of CNNs are convolution, activation,
pooling and fully connected layers. The convolution layer (also named a filter) is passed
over the image, viewing a few pixels at a time (for instance, 3×3 or 5×5). The convolution
operation is a dot product of the input pixel values with weights defined in the filter. The
results are summed up into one number that represents all the pixels observed by the filter.
The result of convolution layer processing is passed to the activation layer. The activation
layer takes as input the result of the convolution layer to find non-linearity in order to train
the network itself using backpropagation. The most common activation function is Recti-
fied Linear Units (ReLU) function, defined as f (x) = max(0, x). The activation function
is applied to each value of the input image. The pooling layer stands for downsampling and
reducing the size of the matrix. A filter is passed over the results of the previous layer and
takes one number of each group, usually the maximum (often named a max-pooling layer),
but in some cases the average. The goal of this operation is to focus on the most impor-
tant information in each feature of the image, what allows to train the network much faster.
Finally, the fully connected layers stand for a traditional multilayer perceptron architec-
ture which input is a one dimensional vector representing the output of the previous layers.
The output of the fully connected layer is a list of probabilities for different possible labels
assigned to the image, usually calculated by the softmax function. The label with highest
probability is the classification decision. The idea of CNN is presented in Fig. 1.
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Fig. 1 The concept of Convolutional Neural Networks (CNN)

3.2 Proposed CNN

The digital camera identification can be realize with a following convolutional neural net-
work. In contrary to [38], where the network is learned with N = I − F(I) (N is a noise
residual, I is an input image and F is a denoising filter), proposed network may be learned
directly with JPEG images without any additional procedures. The proposed network has
three convolutional and two fully connected layers. As may be found in papers by Bondi
et al.’s [4] and Yao et al.’s [43], we propose taking patches of size 64 × 64 × 3 as input. The
network structure is depicted below, full Keras implementation source code (under Python
programming language) is presented in the Appendix.

1. First convolutional layer of 32 filters with kernel 5 × 5 and stride 1 with ReLU as an
activation method;

2. A max-pooling layer with pool size of 2 × 2 and stride 2;
3. A second convolutional layer of 64 filters with kernel 5 × 5 with ReLU as an activation

method;
4. A max-pooling layer with pool size 2 × 2;
5. A third convolutional layer of 128 filters with kernel 5 × 5 with ReLU as an activation

method;
6. A max-pooling layer with pool size 2 × 2;
7. Two fully connection layers for classification: first fully connected layer with 4096

neurons with ReLU as an activation function and second fully connected layer with the
output followed by the softmax function.

An input image I is passed to the first convolutional layer, consisting of 32 filters with
kernel 5 × 5 with stride 1. Then, ReLU function is used as an activation method and a max-
pooling layer with a pool size of 2 × 2 and stride 2 is applied. The second convolutional
layer consists of 64 filters with kernel 5 × 5. Also the ReLU is used as an activation method
and the max-pooling layer with pool size of 2 × 2. The third convolutional layer consist of
128 filters of kernel 5 × 5 with ReLU as activation function and max-pooling of size 2 × 2.
Results are passed to the fully connected layers to obtain the final classification. First fully
connected layer consists of 4096 neurons and ReLU is applied as an activation function to
its output. Second fully connected layer activated with the softmax function provides the
final classification.

4 Experimental evaluation

The proposed CNN has been evaluated in two experiments. Firstly (Experiment I), the
robustness of the proposed CNN in terms of image degradation was examined. The network
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was learned by normal images. For the classification, the Poisson noised, Gaussian blurred,
random noised and least significant bit-removed images were applied to check whether the
network will correctly identify the devices. Secondly (Experiment II), an experiment for typ-
ical individual source camera identification (ISCI) was conducted. Both experiments were
performed on two image datasets which are described in next subsection. Images are repre-
sented in the RGB model, where pixel values for each color channel R (red), G (green) and
B (blue) take values from [0, 255]. Scripts for image noising were implemented in Matlab,
using the imnoise function.

As evaluation, the standard accuracy (ACC) and true positive rate (TPR) measures are
used, defined as:

ACC = TP + TN

TP + TN + FP + FN
, TPR = TP

TP + FN

where TP/TN denotes “true positive/true negative”; FP/FN stands for “false positive/false
negative”. TP denotes number of cases correctly classified to a specific class; TN are
instances that are correctly rejected. FP denotes cases incorrectly classified to the specific
class; FN are cases incorrectly rejected. As hardware, a notebook with Intel Core i5-
7300HQ@2.5-3.1GHz CPU with 24 gigabytes of RAM (DDR4-2400) and nVidia GeForce
GTX1050 GPU with 4 gigabytes of video memory has been used.

Experiments were held with 100 epochs for training and batch size of size 32. The num-
ber of training epochs and batch size was defined experimentally. Experiments showed that
the number of 100 epochs is sufficient to successfully train the CNN and obtain the sat-
isfactory classification accuracy. Due to large number of tested devices, the full results of
camera model identification are not presented for clarity – instead of this there are presented
confusion matrices only for brand recognition. In all tables serving as confusion matrices,
rows denote the actual classes, columns denote the prediction results.

4.1 Image datasets

Dataset I First dataset contains images of modern devices such as smartphones, compact
cameras or digital single lens reflex/mirrorless (DSLRs/DSLMs). This dataset includes the
following models: Apple iPhone 8 (main and tele camera) (A1 and A2), Apple iPhone Xr
(A3), Canon 1D X Mark II (C1), Canon 5D Mark IV (C2), Canon 90D (C3), Canon G9X
Mark II (C4), Canon M6 Mark II (C5), Canon M10 (C6), Canon M100 (C7), Canon R
(C8), Canon RP (C9), Huawei P9 Plus (H1), Huawei P20 Pro (H2), Huawei P20 Pro artifi-
cial intelligence-based camera (H3), Nikon D3X (N1), Nikon D5 (N2), Nikon D500 (N3),
Nikon D610 (N4), Nikon D750 (N5), Nikon D810 (N6), Nikon D850 (N7), Nikon D7200
(N8), Nikon D7500 (N9), Nikon Z6 (N10), Nikon Z7 (N11), Panasonic Lumix GX800 (P1),
Panasonic Lumix S1 (P2), Samsung S9 Plus (main – S1 and tele camera – S2), Samsung
S10 Plus (main – S3, tele – S4 and ultrawide – S5 camera), Sony A7R III (S6), Sony A7S
(S7), Sony A7S II (S8), Sony A9 (S9), Sony A6500 (S10), Sony RX100 II (S11), Sony Xpe-
ria 1 (main – S12 and ultrawide – S13 camera), Sony Xperia XZ1 (S14), Xiaomi Mi 9 (tele
– X1, ultrawide – X2 and wide – X3) camera. At least 30 images per device were utilized,
therefore total number of images is 1919 from 46 devices.

Dataset II – Dresden Image Database Also the Dresden Image Database [14] which is a
popular set of JPG images has been used. This database consists of thousands of images
made by plenty of cameras. There have been used 11787 images from 48 cameras, therefore
at least 200 images from each device were used. The utilized cameras include: Agfa DC
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733s (Ag1), Agfa DC 830i (Ag2), Agfa Sensor 505 (Ag3), Agfa Sensor 530s (Ag4), Canon
Ixus 55 (Ca1), Canon Ixus 70 (3 devices - Ca2, Ca3, Ca4), Casio EX Z150 (5 devices - Ca5,
Ca6, Ca7, Ca8, Ca9), Kodak M1063 (5 devices - Ko1, Ko2, Ko3, Ko4, Ko5), Nikon CoolPix
S710 (5 devices - Ni1, Ni2, Ni3, Ni4, Ni5), Nikon D70 (2 devices - Ni6, Ni7), Nikon D70s
(2 devices - Ni8, Ni9), Nikon D200 (2 devices - Ni10, Ni11), Olympus 1050SW (5 devices
- Ol1, Ol2, Ol3, Ol4, Ol5), Praktica DCZ5 (5 devices - Pr1, Pr2, Pr3, Pr4, Pr5), Rollei
RCP 7325XS (3 devices - Ro1, Ro2, Ro3), Samsung L74 (3 devices - Sa1, Sa2, Sa3) and
Samsung NV15 (3 devices - Sa4, Sa5, Sa6).

As mentioned in previous sections, proposed CNN is tested in the aspect of individ-
ual source camera identification (ISCI), therefore the different copies of the same camera
model, for example Nikon D200 (Ni10) and Nikon D200 (Ni11), etc are distinguished. The
CNN was trained twofold, for each dataset independently. The relation between the number
of images used for training and testing is the following: 80% of images used for training
and 20% of images for testing.

4.2 Experiment I – Robustness of proposed CNN to image degradation operations

The analysis of robustness of proposed CNN to image degradation operations such as Pois-
son noising, Gaussian blurring, adding random noise and removing pixels’ least significant
bit (LSB) was conducted. In this experiment, the network was learned by normal images and
for evaluation, was given images degraded with aforementioned methods. Some examples
of image degradation can be seen in Figs. 2, 3, 4 and 5.

Poisson noise Poisson noise (also called quantum noise) is a signal-dependent noise
that can be seen on images. Pixels x are generated discretely according to the Poisson
distribution P (1):

P(x) = e−kkx

x! (1)

where k is the mean parameter which in case of RGB images takes the same values as
processed pixel [9]. A sample Poisson-blurred image can be seen as Fig. 2. Results of
identification for Poisson noised images are presented in Tables 1 and 2.

Analysis of classification confirms that Poisson noising cannot be considered as a strat-
egy for ensuring the unlinkability between the camera and the image. The accuracy of 99%
for both datasets is the same as identification of normal (not blurred) images.

Fig. 2 Normal image I (left); Poisson noised image I′ (right), Canon G9 X Mark II. The mean/standard
deviation/median of |I − I′| is 5/4/3
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Fig. 3 Normal image I (left); Gaussian blurred image I′ with σ = 0.5 (right), Nikon D7200. The
mean/standard deviation/median of |I − I′| is 62/46/53

Gaussian blur Gaussian blurring is a commonly used filter that is based on the normal dis-
tribution function (also named Gaussian kernel) with variance σ and mean equal 0. The σ

defines the strength of blurring [10]. The filter decreases the contrast between pixels, there-
fore images are visually more “soft”. The experiments were conducted with σ parameter
equal 0.001, 0.01, 0.1, 0.2, 0.3 and 0.5. Values of σ parameter close to 0 stand for slight
decrease of image quality; values of σ exceeding 0.3 denote strong image quality reduc-
tion, what can be seen as Fig. 3. Results of identification for σ = 0.5 (strongest quality
degradation) are collected in Tables 3 and 4.

Results clearly indicate that network recognizes particular models with 99% accuracy
for both tested image datasets, which can be considered as almost perfect. This means that
even strong image degradation obtained during Gaussian blurring does not prevent from
linking the image with the camera. Also the image quality of Gaussian blurred images is
not satisfactory, because images (espiecially for high σ values), are strongly blurred.

Random noise Random noise is a technique of image noising, where some pixels are set
to distinguishing values (usually 0 or 255 which in RGB model stand for black or white).
We propose to replace k pixels in the image, in a manner that k/2 pixels in the picture will
be set to 0 and k/2 pixels to 255 in a random way, where k includes 50% of image pixels.
An example of such operation is described as Fig. 4. One may assume that replacing such
number of pixels will be enough to claim that the image is visually degraded. Results of
ISCI identification based on random noised images are presented as Tables 5 and 6.

Fig. 4 Normal image I (left); random noised image I′ (k = 50%), Nikon D7200. The mean/standard
deviation/median of |I − I′| is 55/42/46
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Fig. 5 Normal image I (left); LSB-removed image I′ (right), Canon G9 X Mark II. The mean/standard
deviation/median of |I − I′| is 41/33/36

Table 1 Accuracy ACC = 99% of brand recognition for Dataset I [%], images degraded with Poisson noise

Ap Ca Hu Ni Pa Sa So Xi

Apple (Ap) 99 * * * * * * *

Canon (Ca) * 99 * * * * * *

Huawei (Hu) * * 99 * * * * *

Nikon (Ni) * * * 99 * * * *

Panasonic (Pa) * * * * 99 * * *

Samsung (Sa) * * * * * 99 * *

Sony (So) * * * * * * 99 *

Xiaomi (Xi) * * * * * * * 99

The symbol * denotes values smaller than 1%

Table 2 Accuracy ACC = 99% of brand recognition for Dataset II (Dresden Image Database) [%], images
degraded with Poisson noise

Ag C1 C2 Ko Ni Ol Pr Ro Sa

Agfa (Ag) 99 * * * * * * * *

Canon (C1) * 99 * * * * * * *

Casio (C2) * * 99 * * * * * *

Kodak (Ko) * * * 99 * * * * *

Nikon (Ni) * * * * 99 * * * *

Olympus (Ol) * * * * * 99 * * *

Praktica (Pr) * * * * * * 99 * *

Rollei (Ro) * * * * * * * 99 *

Samsung (Sa) * * * * * * * * 99

The symbol * denotes values smaller than 1%
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Table 3 Accuracy ACC = 99% of brand recognition for Dataset I [%], images degraded with Gaussian blur

Ap Ca Hu Ni Pa Sa So Xi

Apple (Ap) 99 * * * * * * *

Canon (Ca) * 99 * * * * * *

Huawei (Hu) * * 99 * * * * *

Nikon (Ni) * * * 99 * * * *

Panasonic (Pa) * * * * 99 * * *

Samsung (Sa) * * * * * 99 * *

Sony (So) * * * * * * 99 *

Xiaomi (Xi) * * * * * * * 99

The symbol * denotes values smaller than 1%

Table 4 Accuracy ACC = 99% of brand recognition for Dataset II (Dresden Image Database) [%], images
degraded with Gaussian blur

Ag C1 C2 Ko Ni Ol Pr Ro Sa

Agfa (Ag) 99 * * * * * * * *

Canon (C1) * 99 * * * * * * *

Casio (C2) * * 99 * * * * * *

Kodak (Ko) * * * 99 * * * * *

Nikon (Ni) * * * * 99 * * * *

Olympus (Ol) * * * * * 99 * * *

Praktica (Pr) * * * * * * 99 * *

Rollei (Ro) * * * * * * * 99 *

Samsung (Sa) * * * * * * * * 99

The symbol * denotes values smaller than 1%

Table 5 Accuracy ACC = 99% of brand recognition for Dataset I [%], adding random noise

Ap Ca Hu Ni Pa Sa So Xi

Apple (Ap) 99 * * * * * * *

Canon (Ca) * 99 * * * * * *

Huawei (Hu) * * 99 * * * * *

Nikon (Ni) * * * 99 * * * *

Panasonic (Pa) * * * * 99 * * *

Samsung (Sa) * * * * * 99 * *

Sony (So) * * * * * * 99 *

Xiaomi (Xi) * * * * * * * 99

The symbol * denotes values smaller than 1%
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Table 6 Accuracy ACC = 99% of brand recognition for Dataset II (Dresden Image Database) [%], adding
random noise

Ag C1 C2 Ko Ni Ol Pr Ro Sa

Agfa (Ag) 99 * * * * * * * *

Canon (C1) * 99 * * * * * * *

Casio (C2) * * 99 * * * * * *

Kodak (Ko) * * * 99 * * * * *

Nikon (Ni) * * * * 99 * * * *

Olympus (Ol) * * * * * 99 * * *

Praktica (Pr) * * * * * * 99 * *

Rollei (Ro) * * * * * * * 99 *

Samsung (Sa) * * * * * * * * 99

The symbol * denotes values smaller than 1%

Similarly as in case of Poisson noising and Gaussian blurring, the proposed CNN recog-
nizes the devices with high accuracy, even in strong image quality degradation. Therefore,
the strategy of randomly noising images cannot be considered as a stable solution to ensure
unlinkability between the camera and the image. What is more, the quality of random noised
images cannot be considered as satisfactory.

Removing pixels’ least significant bit (LSB) Another technique is removing pixels’ least
significant bit (LSB). More precisely, this denotes setting the least significant bit of pixel
intensities for each color channel to 0. We propose to remove the LSB with probability
p = 1.0. This denotes that all the pixels in the image will be LSB-removed. The sample
image obtained during such operation is presented in Fig. 5. Results of brand recognition of
LSB-removed images are presented in Tables 7 and 8.

Same as in previous degrading techniques, removing LSB also does not prevent from
linking the image with the camera. The classification accuracy of 99% for both image

Table 7 Accuracy ACC = 99% of brand recognition for Dataset I [%], removing LSB

Ap Ca Hu Ni Pa Sa So Xi

Apple (Ap) 99 * * * * * * *

Canon (Ca) * 99 * * * * * *

Huawei (Hu) * * 99 * * * * *

Nikon (Ni) * * * 99 * * * *

Panasonic (Pa) * * * * 99 * * *

Samsung (Sa) * * * * * 99 * *

Sony (So) * * * * * * 99 *

Xiaomi (Xi) * * * * * * * 99

The symbol * denotes values smaller than 1%
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Table 8 Accuracy ACC = 97% of brand recognition for Dataset II (Dresden Image Database) [%], removing
LSB

Ag C1 C2 Ko Ni Ol Pr Ro Sa

Agfa (Ag) 99 * * * * * * * *

Canon (C1) * 99 * * * * * * *

Casio (C2) * * 99 * * * 2 * *

Kodak (Ko) * * * 99 * * * * *

Nikon (Ni) * * * * 99 * * * *

Olympus (Ol) * * * * * 99 * * *

Praktica (Pr) * * * * * * 99 * *

Rollei (Ro) * * * * * * * 99 *

Samsung (Sa) * * * * * * * * 99

The symbol * denotes values smaller than 1%

datasets is still high for both datasets, what is not desired. Moreover, the visual quality of the
images is strongly affected, since removing LSB results in reduction of the image luminance
by a half.

4.3 Experiment II – Results of individual source camera identification

In this experiment, the results on ISCI identification based on normal JPEG images from
tested cameras of both datasets are presented. As mentioned before, in Tables 9 and 10 we
present results only on brand recognition.

The accuracy of brand and individual source camera identification is almost perfect for
both datasets. The TPRs for all tested cameras are equal 99%.

Table 9 Accuracy ACC = 99% of brand recognition for Dataset I [%]

Ap Ca Hu Ni Pa Sa So Xi

Apple (Ap) 99 * * * * * * *

Canon (Ca) * 99 * * * * * *

Huawei (Hu) * * 99 * * * * *

Nikon (Ni) * * * 99 * * * *

Panasonic (Pa) * * * * 99 * * *

Samsung (Sa) * * * * * 99 * *

Sony (So) * * * * * * 99 *

Xiaomi (Xi) * * * * * * * 99

The symbol * denotes values smaller than 1%
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Table 10 Accuracy ACC = 99% of brand recognition for Dataset II (Dresden Image Database) [%]

Ag C1 C2 Ko Ni Ol Pr Ro Sa

Agfa (Ag) 99 * * * * * * * *

Canon (C1) * 99 * * * * * * *

Casio (C2) * * 99 * * * * * *

Kodak (Ko) * * * 99 * * * * *

Nikon (Ni) * * * * 99 * * * *

Olympus (Ol) * * * * * 99 * * *

Praktica (Pr) * * * * * * 99 * *

Rollei (Ro) * * * * * * * 99 *

Samsung (Sa) * * * * * * * * 99

The symbol * denotes values smaller than 1%

Summary Experiments revealed that proposed convolutional neural network almost per-
fectly recognizes cameras based on images in terms of individual source camera identifica-
tion (ISCI) aspect. All tested strategies for image quality decreasing which include Poisson
noising, Gaussian blurring, adding random noise or removing pixels’ least significant bit
are not sufficient for breaking the link between the camera and the image, despite signifi-
cant deterioration of image quality. Analysis of image degradation showed that the proposed
network still recognizes devices with high accuracy. Nevertheless, the image quality in all
cases of image noising/LSB-removing cannot be considered as satisfactory, what confirms
robustness of the proposed CNN to image degrading strategies.

5 Conclusions and future work

In this paper the robustness of digital camera identification with the use of a convolutional
neural network (CNN) was discussed. Proposed CNN successfully identifies dozens of cam-
eras based on produced images, as well is robust against image degrading strategies like
Poisson noise, Gaussian blur, adding random noise and removing pixels’ least significant
bit. Extensive experiments conducted on two large image datasets including modern cam-
eras confirmed that camera identification is possible both for normal images as well as for
images with quality strongly degraded.

As future work, it is planned to propose an ultra fast method for camera identification,
since methods based on convolutional neural networks require high hardware capabili-
ties. Moreover, proposed method should be robust against more sophisticated methods for
affecting image quality.

Appendix

We present the Python code (under Keras) for proposed convolutional neural network.
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