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Abstract
The novel coronavirus outbreak has spread worldwide, causing respiratory infections in
humans, leading to a huge global pandemic COVID-19. According to World Health Orga-
nization, the only way to curb this spread is by increasing the testing and isolating the
infected. Meanwhile, the clinical testing currently being followed is not easily accessible
and requires much time to give the results. In this scenario, remote diagnostic systems could
become a handy solution. Some existing studies leverage the deep learning approach to pro-
vide an effective alternative to clinical diagnostic techniques. However, it is difficult to use
such complex networks in resource constraint environments. To address this problem, we
developed a fine-tuned deep learning model inspired by the architecture of the MobileNet
V2 model. Moreover, the developed model is further optimized in terms of its size and
complexity to make it compatible with mobile and edge devices. The results of extensive
experimentation performed on a real-world dataset consisting of 2482 chest Computerized
Tomography scan images strongly suggest the superiority of the developed fine-tuned deep
learning model in terms of high accuracy and faster diagnosis time. The proposed model
achieved a classification accuracy of 96.40%, with approximately ten times shorter response
time than prevailing deep learning models. Further, McNemar’s statistical test results also
prove the efficacy of the proposed model.
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1 Introduction

In December 2019, World Health Organization (WHO) received information about an
outbreak of novel coronavirus infectious disease among humans across China’s Hubei
province. WHO named the contagious disease as COVID-19, where ‘19’ represents the year
2019, when the virus was first identified [15]. Later, on 11th March 2020, this outbreak was
officially declared as a pandemic by the then director of WHO [14]. COVID-19 is induced
by a family of viruses called coronavirus that infects both humans and animals. A higher
percentage of the infected patients show symptoms like fever, dry cough, and tiredness.
Many other symptoms, such as loss of taste or smell, discoloration of fingers or toes, etc.,
are also noticed in a small percentage of patients [45]. Once this virus infects a person, it
takes an average time of 5-6 days (incubation period), ranging between 1 to 14 days after
exposure to develop symptoms. As of 11th September 2020, the WHO’s diagnostic guide-
lines include details of laboratory testing for the detection of the unique viral sequence by
Nucleic Acid Amplification Testing (NAAT), such as real-time reverse-transcription poly-
merase chain reaction (rRT-PCR) [17]. In these rRT-PCR tests, the samples of the throat or
nasal swabs of the symptomatic individual are taken and tested for the traces of the virus.
Several Rapid Diagnostic Tests (RDTs) are also developed to diagnose the infection within
30 minutes.

1.1 Motivation

Clinical diagnostic tests such as rRT-PCR are time-consuming and are not readily available
because of their low production and high cost. And these clinical tests also face several
criticism over false-negative predictions. While experts are engaged in managing COVID-
19 cases in metropolitan and major cities, a significant surge in the confirmed cases of the
infection is observed in remote and rural areas of developing countries like India and Brazil.
Figure 1 shows the shift of COVID-19 cases from cities to rural areas in India [9]. With
a lack of proper medical facilities and trained medical personnel, combating community
spread in remote and rural areas is quite challenging. Hence, there is a need for an easily
accessible computer-aided diagnostic system that can be used for the rapid diagnosis of the
virus.

Since the COVID-19 virus mainly targets the respiratory system of the human body,
chest radiography images are playing a significant role in COVID-19 diagnosis [28]. Usage
of chest CT images has been suggested over chest X-ray images as 3D representation in CT
images provide better localization of the infection. Three symptoms can primarily be used
to diagnose COVID-19 patients: Ground-Glass Opacities (GGO), consolidation, and pleural
effusion [54]. The chest CT scan of COVID-19 patients will have gray patches because of
the presence of ground-glass opacities. Pleural effusion is a health condition when fluid
gets accumulated around the lungs. With cases of COVID-19 increasing tremendously, it is
tedious for radiologists to manually analyze large numbers of CT scans with no scope of
errors.

Artificial Intelligence (AI) tools such as deep learning have immense potential to pro-
cess and draw insights from the massive amount of data [6]. Researchers have actively used
advanced computer vision techniques and artificial intelligence tools to assist clinicians [7,
36, 38]. Alzubi et al. [7] used an ensemble of weight optimized neural network for auto-
matic dignosis of lung cancer. Liang et al. [39] have used a residual convolutional neural
network to diagnose pediatric pneumonia using chest X-ray images. Inspired by the promis-
ing results, several studies have taken into account advanced AI technologies for diagnosing
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Fig. 1 Representation of newly registered cases of COVID-19 infection across India from April 2020 to
August 2020
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COVID-19 infection using chest radiographical images. Rahman et al. [48] have presented
an extensive comparison of several image enhancement techniques and the U-Net model to
detect COVID-19 infection. Gifani et al. [53] used an ensemble of five CNN architectures
for screening of COVID-19 disease using chest CT scan images. Recently, Basset et al.
[2] have investigated a semi-supervised learning approach for effective segmentation of
COVID-19 infection in chest CT scan images. It was observed in the study that the proposed
few shot learning based model generalizes well using a small number of training examples.
Although conventional AI strategies provide invaluable aid to clinicians, most sophisticated
deep learninig architectures are computationally quite expensive for real-time applications.

Internet of Things (IoT) is the next-generation technology that can provide apt solutions
to a broad spectrum of problems, be it traffic management, waste management, or health-
care services [31]. Several studies have leveraged IoT and cloud computing technologies to
develop remote health monitoring services in the past [4, 60]. However, these cloud-based
systems do not efficiently provide the required latency for healthcare applications because
of high time delay. Also, providing the sufficient bandwidth required to transfer a massive
amount of image data to the cloud in remote areas is not feasible. An extremely reliable and
low latency network configuration will be the prime requirement to efficiently train deep
learning algorithms using chest CT scan images over the cloud [47].

A collaborative edge-cloud computing framework can be used as an effective solution
for the issues mentioned above. Ali et al. [5] have used edge/fog computing architecture
for the real-time prediction of traffic flow. Rahman et al. [46] have presented the applica-
tion of edge computing framework for quality of life monitoring using deep learning. Kong
et al. [37] developed an edge computing-based deep learning framework for real-time face
mask detection. There have been few works to develop lightweight and efficient deep learn-
ing architectures for automatic screening of COVID-19 infection [35, 41]. However, these
studies failed in investigating the model complexity and latency for the application in edge
computing platforms.

The primary goal of this research work is to develop a compact yet sophisticated deep
learning framework for remote COVID-19 diagnosis using chest CT scan images with min-
imum latency. The proposed model being highly efficient in terms of size and performance,
can be easily deployed on low-power mobile and edge devices for a fast diagnosis process.
To the best of our knowledge, no such framework has been proposed yet for COVID-19
management. The major research contributions of this study can be summarized as:

– This study has introduced a MobileNet V2 based fine-tuned transfer learning model for
COVID-19 diagnosis using chest CT scan images.

– This study has introduced a collaborative edge-cloud framework for the management
of COVID-19 in remote and rural areas.

– The performance of the proposed model is evaluated using a benchmark chest CT scan
image dataset.

– The developed deep learning model takes approximately 43 msec to diagnose the chest
CT scan images making it highly suitable for real-time screening.

– The proposed model was further optimized in a flat buffer format leading to a
significant reduction in size without compromising the performance.

– The efficacy of the proposed model is compared with other state-of-the-art transfer
learning models using McNemar’s statistical test.

The rest of the paper is organized as follows: Section 2 summarizes the related state-
of-the-art studies focusing on COVID-19 diagnosis. Section 3 provides the background
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information related to the technologies used in this study. In Section 4, the proposed archi-
tecture for COVID-19 diagnosis is described. Section 5 presents the edge-cloud computing
platform for COVID-19 management in remote and rural areas. Section 6 includes the
results of the extensive experiments performed on the proposed model. Section 7 is the
concluding section. It discusses about possible future improvements of this study.

2 Related work

Towards the end of the year 2020, researchers have proposed a significant number of state-
of-the-art methods for COVID-19 diagnosis. In line with the objective of this research, we
have presented few state-of-the-art studies for COVID-19 diagnosis using artificial intelli-
gence tools in Table 1. It can be observed from Table 1 that most of the researchers have
used pre-trained models and proposed transfer learning models for feature extraction and
classification. Goldstein et al. [23] have used an ensemble of pre-trained ResNet 34, ResNet
50, ResNet 152, VGG 16 and CheXpert model for automatic diagnosis of COVID-19 using
chest X-ray images. Abbas et al. [1] employed a deep Convolutional neural network (CNN)
model called Decompose Transfer and Compose model for the classification of COVID-19
using chest X-ray images from multiple sources. ResNet 50 based transfer learning model
was used by Pathak et al. [44] for identification of COVID-19 using chest CT images.
Ardakani et al. [8] used an ensemble of machine learning classifiers, namely k-Nearest
Neighbor (KNN), Decision Tree (DT), Naive Bayes (NB), and Support Vector Machine
(SVM) for the diagnosis of coronavirus infection using twenty radiological features from
chest CT images.

Chen et al. [12] used a set of radiological and clinical features from chest CT scan images
for screening of COVID-19. But the study was performed on very limited data.

Due to the lack of benchmark datasets, researchers have used Generative Adversarial
Networks to augment the training data. Jiang et al. [34] generated synthetic chest CT scan
images using CGAN.

It can be observed from Table 1 that in most of the previous work, either the study is per-
formed on a small dataset or the artificial intelligence techniques developed are too complex
to be used in resource constraint environments; moreover they are relatively more time-
consuming. Thus, this study aims to develop a compact deep learning-based framework for
rapid diagnosis of COVID-19 infection, which is both efficient and performs on par with
other state-of-the-art methods.

3 Background technologies

3.1 Cloud and edge computing for healthcare solutions

The significant increase in the number of electronic devices and the use of internet and
web resources for various multiple reasons has posed a challenge to the infrastructure and
resource management of the IT industry. In addition to this, the huge data being generated
and the increased access of local servers has brought troubles to several service providers.
In such circumstances, the idea of shared virtual resources and servers has become a boon,
which is called ‘CLOUD’. The overwhelmed data is transferred to these virtual servers and
platforms. This sharing of data has made all the internet services accessible with ease to the
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users and less complicated to the providers. These cloud technologies even gave solutions
to problems of Big Data like data analytics, computing, and storage.

Cloud computing (CC) is one of the prominent emerging technologies in recent appli-
cations as it provides additional computational abilities and various services on shared and
virtual servers or hardware. These expanded computational capabilities have led to the
compatibility of complicated machine learning and deep learning algorithms. The raw or
unprocessed data is uploaded to the cloud, where further data processing and analytics are
performed, thereby extracting efficient information from the data.

Despite all these benefits, Cloud Technologies have a few drawbacks in terms of usage.
The latency is one issue where the delay is increased in uploading the data to the cloud
servers and getting back the results. Data security is also a significant concern as the
resources are shared among users, and there is lack of confidentiality. Information regarding
the processing operations of data by the cloud providers is not disclosed to the users. Com-
plete access to the data is not provided to the clients by the cloud service providers. Internet
access to obtain the services of CC needs to be better; a weak or inconsistent connection
may bring more trouble and hindrance to the clients.

With these drawbacks, there is the necessity to perform maximum possible computations
at the edge level closer to the user to make things easy and quick. Edge computing is a
new paradigm that can be used to limit the amount of data being sent over the network and
thereby improve the speed of the communication links [55]. Edge computing refers to the
empowering technologies that allow maximum possible computation in proximity to the
source of information.

Gaura et al. examined the benefits of data mining at the edge of the network for
three algorithms, namely: Linear Spanish Inquisition Protocol (L-SIP), ClassAct, and Bare
Necessities (BN) [20]. They found a significant reduction in the network’s energy require-
ments and hence extension of battery life because of reduced data packet transmission. The
comparison of edge and cloud computing on several metrics is shown in Fig. 2. Hence, we
can clearly understand the necessity of Edge computing in Healthcare applications where
the data is a matter of life and death and requires much faster and safer computations and
analytics. In the applications of edge computing, the placement of edge servers also play
a prominent role. Wang et al. addressed this in their study of edge server placement in
mobile edge computing networks for smart cities [59]. Assuming the edge severs to be
homogenous, they proposed a mixed integer programming (MIP) edge server placement
algorithm

With the advancements in information and communication technologies, several studies
are carried out to design a smart healthcare system. The general architecture of a connected
smart healthcare system is shown in Fig. 3. The smart healthcare systems generally con-
sist of IoT devices and collaborative edge-cloud computing with advanced AI technologies
deployed over them.

Muhammad et al. proposed a smart healthcare framework using edge and cloud comput-
ing for voice disorder assessment and treatment [43]. The proposed system was reported
to have over 99% sensitivity. Mamun et al. proposed a cloud-based framework for detec-
tion and monitoring patients with Parkinson’s disease [3]. The feedforward backpropagation
based artificial neural network model used in the framework gave an accuracy of 97.37%
in the diagnosis of patients. Sacco et al. developed an edge-computing based telepathology
system for real-time image processing of histological images [50]. In their experiments,
they found the latency of the system sufficiently less for real-time applications.
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Fig. 2 Radar plot comparing the edge and cloud computing technologies in terms of privacy, resources,
latency, storage, and reliability metrics

The above-discussed studies provided an efficient clinical diagnostic system that can
be used as a second opinion by healthcare professionals. There have been researches to
make the complex AI algorithms compatible with edge levels making the devices smarter
to avoid latencies and provide much better security with no access concerns. To deploy a
machine learning model on edge devices, it needs to be optimized to a comparable size and
complexity.

Fig. 3 Typical connected smart healthcare system architecture, which includes IoT devices, edge layer, and
cloud layer
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3.2 Deep learning

One of the most critical advancements in the field of computer science, which revolution-
ized the data mining industry, is undoubtedly deep learning. Deep learning took almost two
decades to become this mature with the rise in availability of publicly accessible data, pow-
erful parallelization of Graphic Processing units (GPUs), and development of deep learning
specific hardware such as Google’s Tensor Processing units (TPUs). Deep learning-based
frameworks are widely used in various pattern recognition and classification applications
such as image recognition [63], music recognition [21], and biomedical disease segmenta-
tion [58]. These frameworks have achieved state-of-the-art performance in majority of the
applications. The human nervous system inspires many of the deep learning algorithms.

CNNs are the default choice for vision-based applications thanks to their translational
invariance property. These networks consist of several convolutional and pooling layers
stacked together, which extract high-level features from the image. Finally, these features
are classified by one or more fully connected layers. The absence of high processing power
in edge devices is the major challenge faced while deploying deep learning frameworks on
edge computing platforms.

3.3 Transfer learning

Even though deep learning has gained immense success in various real-world applications,
it has several limitations restricting its usage in certain applications. One such limitation
is the need for a massive amount of labeled data for training of the parameters. But in the
fields such as biomedical imaging, creating such a large labeled dataset is often unrealistic.
Training a deep neural network from scratch using limited data indeed leads to the overfit-
ting problem. Transfer learning is the process of sharing the knowledge gained while doing
a particular task to solve different tasks, as shown in Fig. 4. Intuitively we can think of a
model that is trained to classify images of mangoes and apples; the knowledge of this model
can be used further to classify mangoes and pears. ImageNet dataset consisting of more
than 14 million images of real-life subjects has played a significant role in popularizing the
concept of transfer learning. [49].

Fig. 4 Knowledge transfer process in transfer learning
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There are two ways in which transfer learning is incorporated in convolutional neural
networks:

1. The pre-trained transfer learning model can be used as a feature extractor. And further,
a strong classifier can be trained to perform classification using the transfer learning
features.

2. The weights learned by the pre-trained network using source data can be updated by
employing target data and the backpropagation algorithm. As the pre-trained weights
were already optimized, the model converges very quickly. This process of updating
the weights is known as fine-tuning.

4 Proposed transfer learning framework

The proposed fine-tuned transfer learning framework consists of three main components:
pre-processing, fine-tuned MobileNet V2 [51] model, and finally, a classifier. Figure 5
describes the proposed framework. When a chest CT scan image is given input to the frame-
work, it pre-processes the image according to MobileNet V2 architecture requirements.
MobileNet V2 architecture only supports colored images of resolution 224 × 224.

In the second stage of the framework, the MobileNet V2 model pre-trained on the Ima-
geNet dataset is used. In this study, we have employed MobileNet V2 because of the
following reasons:

– The training process of the MobileNet V2 model is fast as it requires significantly fewer
parameters to train compared to other state-of-the-art models.

– MobileNet V2 is one of the very few deep learning models suggested to be used for
resource constraint applications on mobile and edge devices.

Finally, a fully connected dense layer with sigmoid activation is used for binary classifica-
tion.

4.1 MobileNet V2 architecture

Howard et al. [27] introduced a deep learning architecture MobileNet V1 for devices with
constrained computational power. This model strives to provide the user with state-of-
the-art performance while being computationally efficient. With MobileNet V1, depthwise
convolutions were introduced, which splits a standard convolution operation in two parts:
a) a depthwise convolution in which each channel of the input image is convolved by a

Fig. 5 The proposed transfer learning framework for screening of COVID-19 infection using chest CT scan
images

13Multimedia Tools and Applications (2022) 81:3–30



single filter, b) a pointwise convolution, which computes the weighted sum of each convo-
lution obtained. The pictorial representation of a depthwise separable convolution process is
shown in the Fig. 6. This splitting of the standard convolution results in significantly lesser
parameters to train.

The computational cost of any experiment is defined in terms of the number of multipli-
cations performed. Let F represent an input feature map of dimension DF ×DF ×M , where
M is the total input channel. In a standard convolution with N filters each of dimension
DK × DK × M , the computational cost is expressed as:

DK × DK × DF × DF × M × N (1)

While in the case of depthwise separable convolution, the cost of computation is the
addition of the individual computation cost of both depthwise convolution and pointwise
convolution.

In depthwise convolution with M filters each of dimension DK × DK × 1, the
computational cost is expressed as:

DK × DK × DF × DF × M (2)

In pointwise convolution with N filters each of dimension 1 × 1 × M , the computational
cost is expressed as:

DF × DF × M × N (3)

The total computational cost for the depthwise separable convolution is expressed as:

DK × DK × DF × DF × M + DF × DF × M × N (4)

Ratio of computational cost of depthwise separable convolution to the computational cost
of standard convolution can be given as:

M × D2
F × (N + D2

K)

D2
K × D2

F × M × N
= 1

N
+ 1

D2
K

(5)

Apart from depthwise convolution, Sandler et al. [51] introduced inverted residual connec-
tion in the MobileNet V2 architecture. The shortcut connections between the bottlenecks are
similar to the skip connections introduced in the architecture of residual networks, allowing
networks to go deep without affecting the overall performance by preserving the low-level
features [24]. The basic building block of MobileNet V2 architecture is shown in Fig. 7.

The building block consists of three convolutional layers: a 1×1 expansion layer, a 3×3
depthwise convolution, and a 1 × 1 projection layer. When a feature map is given as input
to the block, the expansion layer increases the dimension of the feature map according to
the value of expansion factor (default=6). The depthwise convolution applies a convolution

Fig. 6 Concept of Depthwise separable convolutions
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Fig. 7 Basic building block consisting of an expansion layer, a depthwise convolution, and a projection layer
in MobileNet V2 architecture

filter to each channel, as shown in Fig. 6. Finally, the projection layer projects the higher
dimensional data into a lower dimension, which is then passed to the next block.

The introduction of residual blocks in MobileNet V2 ensures that the feature maps flow-
ing across the blocks do not have a very high dimension. The higher the dimension of feature
maps flowing across the blocks, the higher will be the computational complexity. But to
extract more abstract features from the input using depthwise convolution, the feature maps
are expanded by the amount of expansion factor. In each block of MobileNet V2, the expan-
sion layer helps to learn more abstract features by increasing the dimension of input feature
map while the projection layer helps to reduce the computational complexity by reducing
the dimensions of the feature map again.

Fig. 8 The proposed MobileNet V2 based fine-tuned model. The figure depicts the transfer of knowledge
learnt from the ImageNet dataset for the application of COVID-19 diagnosis
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4.2 Fine-tuning MobileNet V2

In this study, considering the limited amount of image data and limited computational
resources, only the weights of the last convolutional block of the MobileNet V2 architec-
ture is fine-tuned. The final dense layer with a softmax activation function in the original
MobileNet V2 architecture is replaced with a dense layer with a sigmoid activation function
for binary classification. The sigmoid function is mathematically expressed as:

σ(x) = 1

1 + e−x
= ex

1 + ex
(6)

Figure 8 illustrates the fine-tuning process of MobileNet V2 architecture incorporated in
this study. The algorithm used to fine-tune the MobileNet V2 architecture is described in
Algorithm 1.

5 Proposed collaborative edge-cloud computing framework

The proposed deep learning-based, collaborative edge-cloud computing framework for
COVID-19 management is shown in Fig. 9. The proposed framework is a three-tier archi-
tecture consisting of the data generation layer, edge layer, and cloud layer. The data required
for predicting and managing the COVID-19 is generated in the bottom layer. The collected
data is then transferred to the edge layer consisting of edge devices with a pre-installed
deep learning framework. These devices are capable of alerting the concerned authorities if
any individual is diagnosed as COVID positive. A unique patient ID, along with the loca-
tion information, is sent to the cloud layer to track and manage the spread of the virus. The
subsequent subsections discuss each layer of the proposed framework.
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Fig. 9 Collaborative edge cloud computing framework

5.1 Data generation layer

This layer is where all the data used for COVID-19 management is generated. This study
considered chest CT scan images of patients as the data required to diagnose patients as
COVID positive or COVID negative. Furthermore, the patient’s location data is also taken
to facilitate government authorities in providing resources and services to the patient. These
datasets are then transmitted to the edge layer consisting of edge devices at the location of
the patient itself for further processing and classification.

5.2 Edge layer

The edge layer in this framework is used for processing and classifying the CT scan data
received from the bottom layer. It also acts as a bridge between the physical data layer and
the distant cloud layer. The edge layer provides low latency and reduced data traffic. The
edge layer consists of devices with low computational power, which can also act as IoT
devices installed with the proposed deep learning model. Separate hardware accelerators
can also be used along with the edge devices to make the computation faster.

If any patient’s chest CT image is diagnosed as COVID-19, an alert is sent to the con-
cerned officials. A unique patient ID consisting of patient information and the location
information is sent to the cloud layer for further operations.

5.3 Cloud layer

Due to limited data storage and computation power available on edge devices cloud layer
is used to store data and perform various centralized tasks. The centralized functions in
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the cloud layer are performed over multiple Virtual Machines (VMs). The data is stored
in a central data warehouse, which can be accessed only by authorized medical caregivers
and government authorities. In this proposed framework cloud layer is used to perform the
following functions:

1. COVID-19 Resource Management:With an exponential increase in the number of
cases, there is an acute shortage of critical medical tools worldwide. Medical devices
such as ventilators and respiratory devices play a vital role in treating this disease;
hence proper management of this equipment is required. There should be a right balance
between demand, supply, and production of these types of equipment. For example,
there are specific locations where there is an outbreak of COVID, and hospitals at these
locations require more supply. The cloud can help in tracking the outbreak location,
number of cases and optimizing the resources.

2. Patient Data Management: The cloud helps in storing the data regarding the number
of patients being infected, the number of active cases, the number of recoveries, and the
number of deaths due to the virus. This information needs to be continuously monitored
and analyzed to obtain regular situation updates supporting necessary advancements in
treating the patients and controlling the spread of the virus.

3. Outbreak Tracking: As the spread and infection rate of the virus is very high, it is
necessary to measure the intensity of the virus outbreak in every locality and identify
hotspots. The cloud data is regularly updated with the newly identified cases and their
location information. This information can be made publicly available, thereby alerting
the public and civic bodies.

4. Provide Model Updates: As the disease is novel, there is limited availability of data
to train the deep learning model. Training the model on edge is very complex; hence
the model can be updated on the cloud, and the updates can be downloaded on edge
devices. This provision of getting updated over-the-air makes the system future proof
for other health related applications.

Algorithm 2 Diagnosis of COVID-19 at Edge layer.

Input: Chest CT images and location data
Output: Classification result of input chest CT image
Step 1: Get the chest CT images from the data generation layer and generate a unique
patient ID.
Step 2: Pre-process the chest CT images obtained from data generation layer to match
with the size requirements of the deep learning model.
Step 3: Feed the image to the deep learning classifier and obtain classification result.
Step 4: if Predicted Result= COVID then

Step 4.1: Display the diagnosed result to the user along with the patient ID for
future reference.
Step 4.2: Immediately send the patient ID and location information to cloud and
alert the concerned authorities for followup with the patient.

else
Step 4.1: Display the diagnosed result to the user with a suggested re-diagnosis
date.
Step 4.2: Delete the generated patient ID and location information from the
memory.

end
Step 5: Exit
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The proposed framework diagnoses the patients as COVID positive or COVID negative,
taking input as their raw chest CT images using the process shown in Algorithm 2.

The proposed framework requires limited bandwidth as only the individual’s location
and identity information are uploaded to the cloud. Also, the delay in communication
is hugely reduced compared to cloud-dependent architectures, thereby providing much
quicker responses and results. The edge layer incorporated provides higher data security
as the personal health data is not shared with any other third parties as in the cloud archi-
tectures. The diagnosis of COVID-19 infection becomes much accessible in remote areas
without any significant network usage with the proposed framework.

6 Simulation results and discussion

The simulations presented in this article are performed on a HP personal computer with
Intel ® CoreTM i5-5200 CPU and 4GB of RAM using the Python environment provided by
Google Colaboratory. The TensorFlow platform is used to implement deep learning models,
which offer various Application Programming Interfaces (APIs) for data analysis and data
mining.

6.1 Dataset used

The chest CT images used in this study for experimentation are taken from the publicly
available SARS-CoV-2 CT-scan dataset [52]. This dataset includes 1252 chest CT images
of patients diagnosed as COVID positive and 1230 chest CT images of patients diagnosed
with other pulmonary diseases. Figure 10 shows sample chest CT images from the dataset.
We have selected the chest CT image as the dataset for diagnosing COVID-19 in this study
since CT scans have proved to be better than X-ray for detecting pneumonia, which is a
significant symptom of COVID-19 infection.

Fig. 10 Few sample images of chest CT scan from the dataset
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6.2 Pre-processing

The dataset was divided in three directories:

1. Training Data: Randomly selected 1580 images from the dataset are added in this
directory for the training of deep learning models.

2. Validation Data: Randomly selected 200 images from the dataset of each class are added
in this directory to validate the model after every epoch.

3. Testing Data: This is the data used to evaluate the performance of the deep learning
model. The model has never seen these images while training. Randomly selected 250
images of each class are added in this directory.

From Fig. 10, we can see that the images come in various sizes. All the images were brought
down to a resolution of 224×224×3 before feeding in the model.

6.3 Assesment metrics

Evaluation of deep learning models in healthcare applications cannot be done solely based
upon the accuracy score. The proposed deep learning models must reduce false negatives
and false positive events in the classification process. Diagnosing a COVID-19 infected
patient as a Non-COVID patient would be very detrimental to society. Hence in this study,
we compared all the transfer learning model based upon the following metrics:

1. Sensitivity (Se) : Sensitivity is the measure depicting the true positive rate of a classifier.
It shows the ability of a classifier to predict true positive events correctly. It is also
known as Recall. It is represented as:

Se = T P

T P + FN
× 100% (7)

2. Specificity (Sp) : Specificity is the measure depicting the true negative rate of a clas-
sifier. It shows the ability of a classifier to predict true negative events correctly. It is
represented as:

Sp = T N

T N + FP
× 100% (8)

3. Precision (P) : Precision is also known as Positive Predictive Value (PPV). It shows how
many positive predictions of the classifier were actually positive. It is represented as:

P = T P

T P + FP
× 100% (9)

4. F1-score : F1-score is the harmonic mean of both the precision and sensitivity. It can be
represented as:

F1 − score = 2 × Se × P

Se + P
(10)

5. Accuracy (Acc) : Accuracy is the fraction which the classifier can correctly predict. It
is given as:

Acc = T P + T N

T P + T N + FP + FN
× 100% (11)

6. Matthews correlation coefficient (MCC) : Being a Correlation coefficient MCC value
lies in the range of [-1,1]. It is the only statistical performance metric that can give high

20 Multimedia Tools and Applications (2022) 81:3–30



scores if the model correctly predicts most of the positive and negative samples from
the testing dataset [13].

MCC = (T P × T N) − (FP × FN)√
(T P + FP) × (T P + FN) × (T N + FP) × (T N + FN)

(12)

Where, TP, TN, FP, and FN denote true positive, true negative, false positive and false
negative events respectively.

6.4 Transfer-learning model evaluation

The deep learning model developed in this study is trained using the backpropagation algo-
rithm. For the convergence of the deep learning model, proper selection of optimizer is
essential. Many optimizers have previously been used in deep learning literature, such as
Stochastic Gradient Descent (SGD), RMSprop, and Adaptive Moment Estimation (Adam).
Considering the advantages of adaptive optimizers [61], we have selected Adam optimizer
with an initial learning rate of 10−4 in this work. The batch size was kept as twenty with
79 steps to facilitate the computer’s memory limitations. The model was trained for 100
epochs.
In the first experiment, a baseline model of MobileNet V2 was developed. All the convo-
lutional layers were set as non-trainable with weights learned from the ImageNet dataset.
This baseline model achieved an accuracy score of 85.6%.
In our second exploration, weights of the last convolutional block, i.e., block 16 of the
MobileNet V2 architecture is fine-tuned following the architecture shown in Fig. 8 in
Section 4. This MobileNet V2 based fine-tuned transfer learning model performed sig-
nificantly better than the baseline model by correctly predicting 96.40% of the test
images.

Further, the performance of the developed deep learning model is compared with three
other benchmark CNN architectures, namely VGG 16 [56], VGG 19 [56], and DenseNet
201 [29], based on the metrics mentioned above. There should be no biasing in the
performance comparison; hence we selected the models having the input resolution of
224 × 224 × 3.

The confusion matrices corresponding to each model are illustrated in Fig. 11. From
Fig. 11, it can be observed that the proposed model is able to correctly diagnose 246 (True
Positive) out of 250 COVID-19 cases giving an accuracy score of 98.4%. The DenseNet
201 [29] transfer learning model performed worst by correctly diagnosing only 230 (True
Positive) out of 250 COVID-19 cases with an accuracy score of 92%.

The overall performance of any classification model can be evaluated in terms of accu-
racy, F-1 score, precision, and Matthews correlation coefficient. A comparative analysis of
the overall performance achieved by all the developed transfer learning models is shown in
Fig. 12. Figure 12 clearly depicts the superior performance of the proposed model as com-
pared to other transfer learning models. The MCC value achieved by the proposed model is
0.929, which is the highest among all the models, which signifies that the predicted labels
of the proposed model are highly correlated to the actual labels.

The clinical diagnostic tests currently being employed suffer significantly in the aspect of
false negative rate. The false positive rate and false negative rate of a model can be visualized
using the specificity and sensitivity scores. In Fig. 13, the sensitivity and specificity scores
of all the transfer learning models are illustrated. Figure 13 shows that the proposed model
has a significantly higher sensitivity score than other models that signify the least false
negative rate.
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Fig. 11 Representation of confusion matrices of each transfer learning model for the prediction of COVID-19
infection on the test data

The Receiver Operating Characteristic (ROC) curve and respective Area Under Curve
(AUC) value of all the developed models are shown in Fig. 14. In the ROC curve, true posi-
tive rate (sensitivity) is represented along the X-axis while false positive rate (1-specificity)
is represented along the Y-axis. For an ideal classification model, the true positive rate
should be maximized, keeping the false positive rate as minimum as possible. Figure 14
shows that the ROC curve of the proposed model is closest to the top left corner signifying
superior performance.

The primary goal of this research work is to develop a deep learning model for edge
devices to reduce the diagnosis time. The time taken by the deep learning models to diagnose
500 chest CT images present in the testing dataset is shown in Fig. 15. From this figure it is
evident that the proposed model is approximately ten times faster than VGG 16 model and
fifteen times faster than VGG 19 model. The proposed model takes an average of 43 msec
to diagnose an input chest CT image as COVID-19 or Non-COVID.
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Fig. 12 Comparison of overall performance in terms of accuracy, precision, F-1 score, and MCC values
across VGG 16, VGG 19, DenseNet 201, and proposed model

6.5 Compatibility of proposed model on edge devices

To mitigate the storage issue associated with edge and mobile devices, the proposed model
is further optimized in a flat buffer format. This reduced the size of the proposed model
significantly, making it compatible with majority of edge and mobile devices having limited
computational capabilities. A comparative analysis of all the models based on their size is
shown in Fig. 16. In this study, we used the TensorFlow Lite API, which is provided by the
TensorFlow platform with its default options to optimize the proposed MobileNet V2 based
fine-tuned model in terms of its size and latency.

To perform inference using the model, we used Python Interpreter. The inferences
obtained by the optimized model are compared with the original proposed model. In
most cases, the confidence obtained by both models is similar to each other. Few sample

Fig. 13 Comparison of sensitivity and specificity scores of each transfer learning
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Fig. 14 Representation of performance in terms of ROC curve for all developed transfer learning models.
The plot is zoomed from the top left corner for better visualization

inferences with their respective input images are shown in Fig. 17. It is depicted by the
Fig. 17 that even after decreasing the size of the proposed model by more than 40% for edge
deployment, it still performs exceptionally well in classifying chest CT images. Having a
size of just about 8 MB, this model can be easily deployed on edge and mobile devices.

Fig. 15 Analysis of the time complexity for each transfer learning model in terms of average time taken for
classification of test data images
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Fig. 16 Analysis of the hardware complexity for each transfer learning model in terms of disk size taken by
the trained model

6.6 Statistical significance test

To statistically verify the superiority of the proposed model over other transfer learning
models, we used a paired test called McNemar’s test [19]. McNemar’s test is a paired
hypothesis test that initially assumes a null hypothesis (H0) that the error rates of two

Fig. 17 Few sample inferences obtained from the model using Python Interpreter
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different classification models are equal. This test is suggested primarily for the experiments
having computational limitations, and repeated training of models is not possible [18].

For the same testing dataset, after obtaining the classification results from two different
classification models, a contingency table is constructed as shown in Fig 18. In Fig. 18:
nAB is the numerical value corresponding to the number of test cases that both the models
correctly predict
nA′B is the numerical value corresponding to the number of test cases that are correctly
predicted by model B but is misclassified by model A.
nAB ′ is the numerical value corresponding to the number of test cases that are correctly
predicted by model A but is misclassified by model B.
nA′B ′ is the numerical value corresponding to the number of test cases that are misclassified
by both model A and model B.
The McNemar’s test statistic value is expressed as:

χ2 = (|nA′B − nAB ′ | − 1)2

nA′B + nAB ′
(13)

For 95% confidence interval and 1 degree of freedom, χ2
1,0.95 = 3.8158 or α = 0.05.

If the p-value obtained from McNemar’s test is greater than the threshold value α (p >

α), the test fails to reject the null hypothesis [30]. On the other hand, if the obtained p-value
is less than the desired threshold (p < α), the test rejects the null hypothesis hence proving
that there is a difference in the error rates of both the classification models

The McNemar’s test statistic value and the p-value of the comparision models are shown
in Table 2. From Table 2, it can be observed that McNemar’s test failed to reject the null
hypothesis in the comparison of the proposed model and VGG 16. This signifies that even
though the classification accuracy is different for both models, there is no significant dif-
ference in the error rates of the models statistically. But considering other factors such as
less diagnosis time, high sensitivity, and compact size, the proposed model, seems to be a
perfect candidate for remote diagnosis of COVID-19.

6.7 Comparison with state-of-the-art methodologies

Table 3 shows the comparison of the proposed model with other state-of-the-art studies con-
cerned with COVID-19 diagnosis. This study intends to propose a lightweight deep learning
model that can be deployed on edge devices. To encounter the computational limitations of

Fig. 18 Representation of
contingency matrix developed in
McNemars statistical test
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Table 2 Results of McNemar’s statistical test on the test data

Comparison nAB nAB ′ nA′B nA′B ′ χ2 p-value Remarks

Proposed Model vs. 459 23 14 4 1.73 0.188 Failed to reject

VGG 16 the null hypothesis

Proposed Model vs. 452 30 15 3 4.35 0.036 Reject the

VGG 19 null hypothesis

Proposed Model vs. 442 40 11 7 15.37 8.83 × 10−5 Reject the

DenseNet 201 null hypothesis

all the edge devices, it is necessary to validate the deep learning model in terms of its size
and diagnosis time. Hence, apart from comparing the models with their respective accu-
racy and sensitivity scores, we also considered a comparison based upon the diagnosis time
and the number of parameters in the original architecture, which signifies the model’s com-
plexity and size. Table 3 depicts the superior performance of the proposed transfer learning
model in terms of accuracy, sensitivity, and diagnosis time despite its compact size.

The proposed MobileNet V2 based fine-tuned transfer learning model has the following
advantages:

– The proposed model can itself extract relevant features from the chest CT scan images
for diagnosis.

– Once the model gets trained with the chest CT scan images, it can diagnose COVID-19
infection in a few milliseconds.

– The proposed model is highly efficient and can be easily deployed on mobile and edge
devices.

– The proposed model eliminates the need for subjective and time-consuming analysis of
chest CT scan images by clinicians.

Though the proposed deep learning model is performing reasonably well in COVID-19
diagnosis, the robustness of the proposed model can be improved further with the availabil-
ity of more chest CT image datasets. Also, by including other health-related data such as
body temperature and peripheral oxygen saturation, i.e., SpO2 can help the model in further
diagnosing the severity of COVID-19 infection.

Table 3 Comparison of proposed model with state-of-the-art methodologies

Study Images Model Acc. Se. Avg. time (s) Parameters

Azemin et al. [11] X-ray ResNet 101 0.72 0.77 0.132 44.71M

Jaiswal et al. [33] CT DenseNet 201 0.96 0.96 – 20.24M

Brunese et al. [10] X-ray VGG 16 0.97 0.91 2.5 138.35M

Song et al. [57] CT DRE-Net 0.86 0.96 – –

Mishra et al. [42] CT Fusion 0.88 0.88 0.136 –

Gianchandani et al. [22] X-ray Ensemble 0.96 0.96 – –

Hemdan et al. [26] X-ray VGG 19 0.90 0.90 4 143.67M

Pathak et al. [44] CT ResNet 50 0.93 0.95 – 25.64M

Proposed Model CT MobileNet V2 0.96 0.98 0.043 3.54M
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7 Conclusion

In this paper, a novel deep learning model is proposed for COVID-19 diagnosis that can be
easily deployed on edge devices. A MobileNet V2 based fine-tuned transfer learning model
is proposed and trained with chest CT scan images. The proposed model outperformed other
benchmark transfer learning models, achieving an accuracy, sensitivity, and MCC value of
96.4%, 98.4%, and 0.929, respectively, taking an average diagnosis time of 43 msec per
image. The proposed model is further optimized to a size of 8MB. Compared with the orig-
inal proposed model and other transfer learning models, the size of the optimized model is
the minimum and best suitable for edge deployment. The experimental results depict that
the proposed model is highly efficient for remote diagnosis of COVID-19 using collabora-
tive edge-cloud computing platforms and can be used as an effective alternative to the time
consuming clinical diagnostic tests. We intend to find the right set of hyperparameters using
genetic algorithm in the future. Also, we look forward to augmenting the training data using
GANs.
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