Skip to main content
Log in

Enhancing the wine tasting experience using greedy clustering wine recommender system

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Wine is not just about taste; it represents your class & overall personality. But tasting the same wine for a long time gets boring; sometimes, everyone needs something new, and for that, we usually get advice from friends. But it is not for sure that their taste will match yours and hence you might not like the wine they like. To resolve this issue, we propose the Greedy Clustering Wine Recommender System (GCWRS). This adaptive wine recommendation system uses principal component analysis (PCA) and K-Means clustering algorithms and a novel ranking algorithm using a greedy technique to recommend wines. Along with that, it also uses the elbow method, which helps find out the ideal number of clusters. Together with the clustering algorithm, the recommendation system is tailored in such a way to help all types of users (the first time tasters or regular wine drinkers) as well as the needs of the users (try something new or enhance their current preferences). The clustering model is trained on the wine dataset (with 6497 entries and 12 attributes) combined with the personal preferences of the user, results in an effective personalized recommendation system. The performance of the model is compared with other standard algorithms like K-means clustering, Agglomerative clustering, DBSCAN, Birch clustering algorithm, using performance evaluation functions like the Silhouette coefficient, Calinski-Harabasz Index, and Davies-Bouldin index. Results indicate that our Greedy Clustering Wine Recommender System (GCWRS) provides a better result than other standard algorithms with Silhouette coefficient=0.28, Calinski-Harabasz Index=2207.84, and Davies-Bouldin index=1.36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdi H, Williams LJ (2010) Principal component analysis, Wiley Interdiscip. Rev Comput Stat. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  2. Al-Hassan M, Lu H, Lu J (2015) A semantic enhanced hybrid recommendation approach: A case study of e-Government tourism service recommendation system. Decis Support Syst. https://doi.org/10.1016/j.dss.2015.02.001

    Article  Google Scholar 

  3. Al-Naymat G, Al-Kasassbeh M, Sober Z (2018) Pairs trading strategy: a recommendation system. Int J Comput Appl. https://doi.org/10.1080/1206212X.2018.1493074

    Article  Google Scholar 

  4. Asuncion A, Newman DJ (2007) {UCI} Machine Learning Repository, \emph{https://www.ics.uci.edu/$/sim$mlearn/MLRepository.html}. University of California, Irvine, School of Information and Computer Sciences

  5. Azaria A, Hassidim A, Kraus S, Eshkol A, Weintraub O, Netanely I (2013) Movie recommender system for profit maximization, in: AAAI Work. Tech Rep

  6. Basu S, Banerjee A, Mooney R (2002) Semi-supervised clustering by seeding. Proc 19th Int Conf Mach Learn

  7. Basu S, Bilenko M, Mooney RJ (2004) A probabilistic framework for semi-supervised clustering. KDD 2004 Proc Tenth ACM SIGKDD Int Conf Knowl Discov Data Min. https://doi.org/10.1145/1014052.1014062

  8. Bholowalia P, Kumar A (2014) EBK-means: A clustering technique based on elbow method and K-means in WSN

  9. Blackledget JM (2006) Eigenvalues and Eigenvectors. Digit Signal Process. https://doi.org/10.1533/9780857099457.2.255

    Article  Google Scholar 

  10. Boehmke B, Greenwell B, Boehmke B, Greenwell B (2020) K-means Clustering. Hands-On Mach Learn with R. https://doi.org/10.1201/9780367816377-20

    Article  Google Scholar 

  11. Brandes U, Gaertler M, Wagner D (2003) Experiments on graph clustering algorithms. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinform). https://doi.org/10.1007/978-3-540-39658-1_52

  12. Burke R (2002) Hybrid recommender systems: Survey and experiments. User Model User Adapt Interact. https://doi.org/10.1023/A:1021240730564

    Article  MATH  Google Scholar 

  13. Buşoniu L, Babuška R, De Schutter B (2010) Multi-agent reinforcement learning: An overview. Stud Comput Intell. https://doi.org/10.1007/978-3-642-14435-6_7

    Article  Google Scholar 

  14. Caron M, Bojanowski P, Joulin A, Douze M (2018) Deep clustering for unsupervised learning of visual features. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinform). https://doi.org/10.1007/978-3-030-01264-9_9

  15. Cengizler C, Kerem-Un M (2017) Evaluation of Calinski-Harabasz Criterion as Fitness Measure for Genetic Algorithm Based Segmentation of Cervical Cell Nuclei. Br J Math Comput Sci. https://doi.org/10.9734/bjmcs/2017/33729

    Article  Google Scholar 

  16. Chandak M, Girase S, Mukhopadhyay D (2015) Introducing hybrid technique for optimization of book recommender system. Procedia Comput Sci. https://doi.org/10.1016/j.procs.2015.03.075

    Article  Google Scholar 

  17. Choi SM, Ko SK, Han YS (2012) A movie recommendation algorithm based on genre correlations. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2012.01.132

    Article  Google Scholar 

  18. Contreras P, Murtagh F (2015) Hierarchical clustering. Handb Clust Anal. https://doi.org/10.1201/b19706

    Article  MATH  Google Scholar 

  19. Cortez P, Portelinha M, Rodrigues S, Cadavez V, Teixeira A (2006) Lamb meat quality assessment by Support Vector Machines. Neural Process Lett. 24:41–51. https://doi.org/10.1007/s11063-006-9009-6

    Article  Google Scholar 

  20. Cortez P, Cerdeira A, Almeida F, Matos T, Reis J (2009) Modeling wine preferences by data mining from physicochemical properties. Decis Support Syst 47:547–553. https://doi.org/10.1016/j.dss.2009.05.016

    Article  Google Scholar 

  21. Craw S (2017) Manhattan Distance. Encycl Mach Learn Data Min. https://doi.org/10.1007/978-1-4899-7687-1_511

    Article  Google Scholar 

  22. Danielsson PE (1980) Euclidean distance mapping. Comput Graph Image Process. https://doi.org/10.1016/0146-664X(80)90054-4

    Article  Google Scholar 

  23. De Maesschalck R, Jouan-Rimbaud D, Massart DL (2000) The Mahalanobis distance. Chemom Intell Lab Syst. https://doi.org/10.1016/S0169-7439(99)00047-7

    Article  Google Scholar 

  24. Eigenvalues and Eigenvectors (1973) Math Sci Eng. https://doi.org/10.1016/S0076-5392(08)60533-0

    Article  Google Scholar 

  25. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, pp 226–231

  26. Eyjolfsdottir E, Tilak G, Li N (2010) MovieGEN: A Movie Recommendation System. Comput Sci Dep

  27. Fasanghari M, Montazer GA (2010) Design and implementation of fuzzy expert system for Tehran Stock Exchange portfolio recommendation. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2010.02.114

    Article  Google Scholar 

  28. Feo TA, Resende MGC (1995) Greedy Randomized Adaptive Search Procedures. J Glob Optim. https://doi.org/10.1007/BF01096763

    Article  MathSciNet  MATH  Google Scholar 

  29. Gaffney S, Smyth P (1999) Trajectory clustering with mixtures of regression models. https://doi.org/10.1145/312129.312198

  30. Gokcekus O, Gokcekus S (2019) Empirical evidence of lumping and splitting: Expert ratings’ effect on wine prices. Wine Econ Policy 8:171–179. https://doi.org/10.1016/j.wep.2019.09.003

    Article  Google Scholar 

  31. Guo X, Lu J (2007) Intelligent e-Government services with personalized recommendation techniques. Int J Intell Syst. https://doi.org/10.1002/int.20206

    Article  Google Scholar 

  32. Hartigan A, Wong MA (1979) A K-Means Clustering Algorithm. J R Stat Soc. https://doi.org/10.2307/2346830

    Article  MATH  Google Scholar 

  33. Hartuv E, Shamir R (2000) Clustering algorithm based on graph connectivity. Inf Process Lett. https://doi.org/10.1016/S0020-0190(00)00142-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Haseeb S, Alexander B, Santi RL, Liprandi AS, Baranchuk A (2019) What’s in wine? A clinician’s perspective. Trends Cardiovasc Med 29:97–106. https://doi.org/10.1016/j.tcm.2018.06.010

    Article  Google Scholar 

  35. Hwangbo H, Kim YS, Cha KJ (2018) Recommendation system development for fashion retail e-commerce. Electron Commer Res Appl. https://doi.org/10.1016/j.elerap.2018.01.012

    Article  Google Scholar 

  36. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2009.09.011

    Article  Google Scholar 

  37. Jain E, Jain SK (2015) Using Mahout for clustering similar Twitter users: Performance evaluation of k-means and its comparison with fuzzy k-means. Proc 5th IEEE Int Conf Comput Commun Technol ICCCT 2014. https://doi.org/10.1109/ICCCT.2014.7001465

  38. Johnson H (1989) Vintage: The story of Wine. ISBN 10: 0671791826 / ISBN 13: 9780671791827, Simon & Schuster, NY

  39. Kabassi K (2010) Personalizing recommendations for tourists. Telemat Inform. https://doi.org/10.1016/j.tele.2009.05.003

    Article  Google Scholar 

  40. Karkkainen I, Franti P (2000) Minimization of the value of davies-bouldin index. Proc IASTED Int Conf Signal Process Commun

  41. Katarya R, Verma OP (2017) An effective collaborative movie recommender system with cuckoo search. Egypt Informatics J. https://doi.org/10.1016/j.eij.2016.10.002

    Article  Google Scholar 

  42. Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top. https://doi.org/10.1103/PhysRevE.69.066138

  43. Kurmashov N, Latuta K, Nussipbekov A (2016) Online book recommendation system. Proc 2015 12th Int Conf Electron Comput Comput ICECCO 2015. https://doi.org/10.1109/ICECCO.2015.7416895

  44. Kustos M, Goodman S, Jeffery DW, Bastian SEP (2019) Using consumer opinion to define New World fine wine: Insights for hospitality. Int J Hosp Manag 83:180–189. https://doi.org/10.1016/j.ijhm.2019.04.018

    Article  Google Scholar 

  45. Legin A, Rudnitskaya A, Lvova L, Vlasov Y, Di Natale C, D’Amico A (2003) Evaluation of Italian wine by the electronic tongue: Recognition, quantitative analysis and correlation with human sensory perception. Anal Chim Acta. https://doi.org/10.1016/S0003-2670(03)00301-5

    Article  Google Scholar 

  46. Lekakos G, Caravelas P (2008) A hybrid approach for movie recommendation. Multimed Tools Appl. https://doi.org/10.1007/s11042-006-0082-7

    Article  Google Scholar 

  47. Li H, He F, Chen Y (2020) Learning dynamic simultaneous clustering and classification via automatic differential evolution and firework algorithm. Appl Soft Comput 96:106593, ISSN 1568-4946. https://doi.org/10.1016/j.asoc.2020.106593

  48. Li H, He F, Chen Y, Luo J (2020) Multi-objective self-organizing optimization for constrained sparse array synthesis. Swarm Evol Comput 58:100743, ISSN 2210-6502. https://doi.org/10.1016/j.swevo.2020.100743

  49. Li YM, Te Wu C, Lai CY (2013) A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship. Decis Support Syst. https://doi.org/10.1016/j.dss.2013.02.009

    Article  Google Scholar 

  50. Liu B, Xia Y, Yu PS (2000) Clustering through decision tree construction. https://doi.org/10.1145/354756.354775

  51. Liu B, Xia Y, Yu PS (2005) Clustering via decision tree construction. https://doi.org/10.1007/11362197_5

  52. Lu J, Shambour Q, Xu Y, Lin Q, Zhang G (2010) BizSeeker: A hybrid semantic recommendation system for personalized government-to-business e-services. Internet Res. https://doi.org/10.1108/10662241011050740

    Article  Google Scholar 

  53. Lucas JP, Luz N, Moreno MN, Anacleto R, Figueiredo AA, Martins C (2013) A hybrid recommendation approach for a tourism system. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2012.12.061

  54. Lucia SP (1963) A History of Wine As Therapy, J. B. Lippincott Company; 1st edition

  55. Mathew P, Kuriakose B, Hegde V (2016) Book Recommendation System through content based and collaborative filtering method. Proc 2016 Int Conf Data Min Adv Comput SAPIENCE 2016. https://doi.org/10.1109/SAPIENCE.2016.7684166

  56. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recognit. https://doi.org/10.1016/S0031-3203(99)00137-5

    Article  MATH  Google Scholar 

  57. McGovern PE, Katz SH, Fleming SJ (2003) The origins and ancient history of wine: Food and nutrition in history and antropology. https://doi.org/10.4324/9780203392836

    Article  Google Scholar 

  58. Moreno IM, González-Weller D, Gutierrez V, Marino M, Cameán AM, González AG, Hardisson A (2007) Differentiation of two Canary DO red wines according to their metal content from inductively coupled plasma optical emission spectrometry and graphite furnace atomic absorption spectrometry by using Probabilistic Neural Networks. Talanta. 72:263–268. https://doi.org/10.1016/j.talanta.2006.10.029

    Article  Google Scholar 

  59. Pan Y, He F, Yu H (2019) A novel Enhanced Collaborative Autoencoder with knowledge distillation for top-N recommender systems. Neurocomputing 332:137–148, ISSN 0925-2312. https://doi.org/10.1016/j.neucom.2018.12.025

  60. Pan Y, He F, Yu H (2020) Learning social representations with deep autoencoder for recommender system. World Wide Web 23:2259–2279. https://doi.org/10.1007/s11280-020-00793-z

  61. Perbet F, Stenger B, Maki A (2009) Random forest clustering and application to video segmentation. Br Mach Vis Conf BMVC 2009  Proc. https://doi.org/10.5244/C.23.100

  62. Pomarici E, Lerro M, Chrysochou P, Vecchio R, Krystallis A (2017) One size does (obviously not) fit all: Using product attributes for wine market segmentation. Wine Econ Policy 6:98–106. https://doi.org/10.1016/j.wep.2017.09.001

    Article  Google Scholar 

  63. Priyanka K, Tewari AS, Barman AG (2015) Personalised book recommendation system based on opinion mining technique. Glob Conf Commun Technol GCCT. https://doi.org/10.1109/GCCT.2015.7342668

  64. Rédei GP (2008) Euclidean distance. Encycl Genet Genom Proteom Inform. https://doi.org/10.1007/978-1-4020-6754-9_5603

  65. Risius A, Klann BO, Meyerding SGH (2019) Choosing a lifestyle? Reflection of consumer extrinsic product preferences and views on important wine characteristics in Germany. Wine Econ Policy 8:141–154. https://doi.org/10.1016/j.wep.2019.09.001

    Article  Google Scholar 

  66. Rong C, Esteves RM (2011) Using Mahout for clustering Wikipedia’s latest articles: A comparison between k-means and fuzzy c-means in the cloud. In Proceeding 2011 3rd IEEE International Conference on Cloud Computing Technology and Science. https://doi.org/10.1109/CloudCom.2011.86

  67. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  68. Schubert E, Sander J, Ester M, Kriegel HP, Xu X (2017) DBSCAN Revisited, Revisited. ACM Trans Database Syst. https://doi.org/10.1145/3068335

    Article  Google Scholar 

  69. Sebastia L, Garcia I, Onaindia E, Guzman C (2009) E-Tourism: A tourist recommendation and planning application. Int J Artif Intell Tools. https://doi.org/10.1142/S0218213009000378

    Article  Google Scholar 

  70. Shambour Q, Lu J (2011) Government-to-Business personalized e-services using semantic-enhanced recommender system. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinform). https://doi.org/10.1007/978-3-642-22961-9_16

  71. Smith BC (2019) Getting More Out of Wine: wine experts, wine apps and sensory science. Curr Opin Food Sci 27:123–129. https://doi.org/10.1016/j.cofs.2019.10.007

    Article  Google Scholar 

  72. Sohail SS, Siddiqui J, Ali R (2013) Book recommendation system using opinion mining technique. Proc 2013 Int Conf Adv Comput Commun Inform ICACCI. https://doi.org/10.1109/ICACCI.2013.6637421

  73. Steinley D (2004) Properties of the Hubert-Arabie adjusted Rand index. Psychol Methods. https://doi.org/10.1037/1082-989X.9.3.386

    Article  Google Scholar 

  74. Sun LX, Danzer K, Thiel G (1997) Classification of wine samples by means of artificial neural networks and discrimination analytical methods. Fresenius J Anal Chem 359:143–149. https://doi.org/10.1007/s002160050551

    Article  Google Scholar 

  75. Syms C (2018) Principal components analysis. Encycl Ecol. https://doi.org/10.1016/B978-0-12-409548-9.11152-2

    Article  Google Scholar 

  76. Tewari AS, Kumar A, Barman AG (2014) Book recommendation system based on combine features of content based filtering, collaborative filtering and association rule mining. Souvenir 2014 IEEE International Advance Computing Conference. https://doi.org/10.1109/IAdCC.2014.6779375

  77. Tweedale J, Ichalkaranje N, Sioutis C, Jarvis B, Consoli A, Phillips-Wren G (2007) Innovations in multi-agent systems. J Netw Comput Appl. https://doi.org/10.1016/j.jnca.2006.04.005

    Article  Google Scholar 

  78. Vlassides S, Ferrier JG, Block DE (2001) Using historical data for bioprocess optimization: Modeling wine characteristics using artificial neural networks and archived process information. Biotechnol Bioeng. https://doi.org/10.1002/1097-0290(20010405)73:1%3c55::AID-BIT1036%3e3.0.CO;2-5

    Article  Google Scholar 

  79. Wang W, Mishra KK (2018) A novel stock trading prediction and recommendation system. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4587-z

    Article  Google Scholar 

  80. Winters-Hilt S, Merat S (2007) SVM clustering. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-8-S7-S18

    Article  Google Scholar 

  81. Xu C, Zhang P, Li B, Wu D, Fan H (2013) Vague C-means clustering algorithm. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2012.12.001

    Article  Google Scholar 

  82. Yang MS (1993) A survey of fuzzy clustering. Math Comput Model. https://doi.org/10.1016/0895-7177(93)90202-A

    Article  MathSciNet  MATH  Google Scholar 

  83. Yang Z (2013) Recommendation Systems. Appl Data Min. https://doi.org/10.1201/b15027-15

    Article  Google Scholar 

  84. Yu H, Lin H, Xu H, Ying Y, Li B, Pan X (2008) Prediction of enological parameters and discrimination of rice wine age using least-squares support vector machines and near infrared spectroscopy. J Agric Food Chem. https://doi.org/10.1021/jf0725575

    Article  Google Scholar 

  85. Zhang B (2003) Regression clustering. Proceeding IEEE International Conference on Data Mining. https://doi.org/10.1109/icdm.2003.1250952

  86. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: An efficient data clustering method for very large databases. SIGMOD Rec (ACM Spec Interes Gr Manag Data) https://doi.org/10.1145/235968.233324

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Katarya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katarya, R., Saini, R. Enhancing the wine tasting experience using greedy clustering wine recommender system. Multimed Tools Appl 81, 807–840 (2022). https://doi.org/10.1007/s11042-021-11300-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11300-5

Keywords

Navigation