Skip to main content
Log in

Multi-scale retinex-based adaptive gray-scale transformation method for underwater image enhancement

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Underwater images play an irreplaceable role as one of the carriers of underwater information acquisition. Underwater degraded images are usually affected by the color cast, noise, and blurred details, which are difficult to apply to various vision tasks. We propose a multi-scale retinex adaptive grayscale transformation underwater image enhancement method, which includes three parts: color correction, image denoising, and detail enhancement. Firstly, the multi-scale Retinex algorithm is adopted to extract the lighting components. Mean and mean square errors were introduced through linear quantization, and color recovery factors were adopted to adjust the three channels for color correction. Second, by treating the image as an anisotropic thermal field diffusing in all direction,image noise is eliminated and edge details are preserved. Finally, for different underwater degraded images, a simulated annealing optimization algorithm is introduced to perform adaptive gray-scale transformation on the image to enhance image details. The results show that the proposed method can comprehensively solve the problems of color distortion, noise, and low contrast. Compared with the state-of-the-art underwater image enhancement and restoration methods, our method has achieved better visual effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ancuti C, Ancuti CO, Haber T et al (2012) Enhancing underwater images and videos by fusion. In IEEE conference on computer vision and pattern recognition pp 81–88

  2. Ancuti CO, Ancuti C, De Vleeschouwer C, Bekaert P (2017) Color balance and fusion for underwater image enhancement. IEEE Trans Image Process 27(1):379–393

    Article  MathSciNet  MATH  Google Scholar 

  3. Anwar S, Li C (2020) Diving deeper into underwater image enhancement: a survey. Signal Process Image Commun 89:115978

    Article  Google Scholar 

  4. Artyukov IA, Irtuganov NN (2019) Noise-driven anisotropic diffusion filtering for x-ray low contrast imaging. J Russ Laser Res 40(2):150–154

    Article  Google Scholar 

  5. Barnard K (1999) Practical color constancy. PhD Thesis Simon Fraser University, School of Computing

  6. Buchsbaum G (1980) A spatial processor model for object colour perception. J Franklin Inst 310(1):1–26

    Article  Google Scholar 

  7. Chen Y, Lin J, Zhang S, Chen C (20109) Image hiding algorithm based on block random scrambling and grayscale transformation. In 2010 international conference on display and photonics, vol 7749, pp 77490Y

  8. Cong R, Zhang Y, Zhang C, Li C, Zhao Y (2020) Research progress of deep learning driven underwater image enhancement and restoration. J Signal Process 36(9):1377–1389

    Google Scholar 

  9. Deng L, Zhu H, Yang Z, Li Y (2019) Hessian matrix-based fourth-order anisotropic diffusion filter for image denoising. Opt Laser Technol 110:184–190

    Article  Google Scholar 

  10. Drews P, Nascimento E, Moraes F, Botelho S, Campos M (2013) Transmission estimation in underwater single image. In proceedings of the IEEE international conference on computer vision workshops pp 825–830

  11. Drews PL, Nascimento ER, Botelho SS, Campos MFM (2016) Underwater depth estimation and image restoration based on single images. IEEE Comput Graph Appl 36(2):24–35

    Article  Google Scholar 

  12. Fabbri C, Islam MJ, Sattar J (2018) Enhancing underwater imagery using generative adversarial networks. In IEEE international conference on robotics and automation (ICRA) pp 7159–7165

  13. Fu X, Fan Z, Ling M, Huang Y, Ding X (2017) Two-step approach for single underwater image enhancement. In 2017 international symposium on intelligent signal processing and communication systems pp 789–794

  14. Fu X, Zhuang P, Huang Y, Liao Y, Zhang XP, Ding X (2014) A retinex-based enhancing approach for single underwater image. In 2014 IEEE international conference on image processing (ICIP) pp 4572–4576

  15. Guo F, Zhang G, Zhang Q, Zhao R, Deng M, Xu K, Jia P, Hao X (2019) Fusion despeckling based on surface variation anisotropic diffusion filter and ratio image filter. IEEE Trans Geoence Remote Sens 58(4):2398–2411

    Article  Google Scholar 

  16. Guo P, Zeng D, Tian Y, Liu S, Liu H, Li D (2020) Multi-scale enhancement fusion for underwater sea cucumber images based on human visual system modelling. Comput Electron Agric 175:105608

    Article  Google Scholar 

  17. Guo Y, Li H, Zhuang P (2019) Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J Ocean Eng 45(3):862–870

    Article  Google Scholar 

  18. Han M, Lyu Z, Qiu T et al (2020) A review on intelligence dehazing and color restoration for underwater images. IEEE Trans Systems Man Cybern Syst 50(5):1820–1832

    Article  Google Scholar 

  19. Hautiere N, Tarel JP, Aubert D, Dumont E (2008) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereol 27(2):87–95

    Article  MathSciNet  MATH  Google Scholar 

  20. He K, Sun J, Tang X (2010) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Google Scholar 

  21. Hummel R (1977) Image enhancement by histogram transformation. Comput Graph Image Proc 6(2):184–195

    Article  Google Scholar 

  22. Hussain DM, Surendran D (2020) Content based image retrieval using bees algorithm and simulated annealing approach in medical big data applications. Multimed Tools Appl 79(5):3683–3698

    Article  Google Scholar 

  23. Iqbal K, Odetayo M, James A, Salam RA, Talib AZH (2010) Enhancing the low quality images using unsupervised colour correction method. In 2010 IEEE International Conference on Systems, Man and Cybernetics pp 1703–1709

  24. Iqbal K, Salam RA, Osman A, Talib AZ (2007) Underwater image enhancement using an integrated colour model. IAENG Int J Comput Sci 34(2):239–244

    Google Scholar 

  25. Jobson DJ, Rahman Z, Woodell GA (1997) Properties and performance of a center/surround retinex. IEEE Trans Image Process 6(3):451–462

    Article  Google Scholar 

  26. Kim JH, Jang WD, Sim JY, Kim CS (2013) Optimized contrast enhancement for real-time image and video dehazing. J Vis Commun Image Represent 24(3):410–425

    Article  Google Scholar 

  27. Kim TK, Paik JK, Kang BS (1988) Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans Consum Electron 44(1):82–87

    Google Scholar 

  28. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee HS, Moon SW, Eom IK (2020) Underwater image enhancement using successive color correction and superpixel dark channel prior. Symmetry 12(8):1220

    Article  Google Scholar 

  30. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  31. Li CY, Guo JC, Cong RM et al (2016) Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans Image Process 25(12):5664–5677

    Article  MathSciNet  MATH  Google Scholar 

  32. Li C, Guo J, Guo C, Cong R, Gong J (2017) A hybrid method for underwater image correction. Pattern Recogn Lett 94:62–67

    Article  Google Scholar 

  33. Li C, Guo J, Guo C (2018) Emerging from water: underwater image color correction based on weakly supervised color transfer. IEEE Signal Process Lett 25(3):323–327

    Article  Google Scholar 

  34. Li C, Guo C, Ren W, Cong R, Hou J, Kwong S, Tao D (2020) An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process 29:4376–4389

    Article  Google Scholar 

  35. Li J, Skinner KA, Eustice RM, Johnson-Roberson M (2017) WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot Autom lett 3(1):387–394

    Google Scholar 

  36. Lu H, Li Y, Zhang Y et al (2017) Underwater optical image processing: a comprehensive review. Mob Netw Appl 22(6):1204–1211

    Article  Google Scholar 

  37. Panetta K, Gao C, Agaian S (2015) Human-visual-system-inspired underwater image quality measures. IEEE J Ocean Eng 41(3):541–551

    Article  Google Scholar 

  38. Parthasarathy S, Sankaran P (2012) An automated multi scale retinex with color restoration for image enhancement. In 2012 national conference on communications (NCC) pp 1–5

  39. Peng YT, Cosman PC (2017) Underwater image restoration based on image blurriness and light absorption. IEEE Trans Image Process 26(4):1579–1594

    Article  MathSciNet  MATH  Google Scholar 

  40. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  41. Rahman ZU, Jobson DJ, Woodell GA (1996) Multi-scale retinex for color image enhancement. In Proceedings of 3rd ieee international conference on image processing vol 3, pp 1003–1006

  42. Ren W, Liu S, Ma L, Xu Q, Xu X, Cao X, Du J, Yang MH (2019) Low-light image enhancement via a deep hybrid network. IEEE Trans Image Process 28(9):4364–4375

    Article  MathSciNet  MATH  Google Scholar 

  43. Ren W, Pan J, Zhang H et al (2020) Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int J Comput Vis 128(1):240–259

    Article  Google Scholar 

  44. Ren W, Zhang J, Xu X, Ma L, Cao X, Meng G, Liu W (2018) Deep video dehazing with semantic segmentation. IEEE Trans Image Process 28(4):1895–1908

    Article  MathSciNet  Google Scholar 

  45. Roser M, Dunbabin M, Geiger A (2014) Simultaneous underwater visibility assessment, enhancement and improved stereo. In IEEE international conference on robotics and automation (ICRA) pp 3840–3847

  46. Sankpal SS, Deshpande SS (2016) A review on image enhancement and color correction techniques for underwater images. Adv Comput Sci Technol 9(1):11–23

    Google Scholar 

  47. Schechner YY, Karpel N (2005) Recovery of underwater visibility and structure by polarization analysis. IEEE J Ocean Eng 30(3):570–587

    Article  Google Scholar 

  48. Song W, Wang Y, Huang D, Tjondronegoro D (2018) A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration. Pacific Rim Conf Multimed 11164:678–688

    Google Scholar 

  49. Tan CS, Seet G, Sluzek A et al (2005) A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium. Opt Lasers Eng 43(9):995–1009

    Article  Google Scholar 

  50. Tang C, von Lukas UF, Vahl M, Wang S, Wang Y, Tan M (2019) Efficient underwater image and video enhancement based on retinex. Signal Image Video Process 13(5):1011–1018

    Article  Google Scholar 

  51. Tang JR, Isa NAM (2017) Bi-histogram equalization using modified histogram bins. Appl Soft Comput 55:31–43

    Article  Google Scholar 

  52. Wang J, Lu K, Xue J, He N, Shao L (2018) Single image dehazing based on the physical model and MSRCR algorithm. IEEE Trans Circ Syst Video Technol 28(9):2190–2199

    Article  Google Scholar 

  53. Wang Y, Song W, Fortino G et al (2019) An experimental-based review of image enhancement and image restoration methods for underwater imaging. IEEE Access 7:140233–140251

    Article  Google Scholar 

  54. Weickert J (1996) Theoretical foundations of anisotropic diffusion in image processing. Theor Found Comput Vis 221–236

  55. Wen H, Tian Y, Huang T, Gao W (2013) Single underwater image enhancement with a new optical model. In 2013 IEEE international symposium on circuits and systems (ISCAS2013) pp 753–756

  56. Weng CC, Chen H, Fuh CS (2005) A novel automatic white balance method for digital still cameras. In IEEE international symposium on circuits and systems (ISCAS) pp 3801–3804

  57. Xia H, Liu M (2019) Non-uniform illumination image enhancement based on retinex and gamma correction. J Phys Conf Ser 1213(5):052072

    Article  Google Scholar 

  58. Yang M, Hu J, Li C et al (2019) An in-depth survey of underwater image enhancement and restoration. IEEE Access 7:123638–123657

    Article  Google Scholar 

  59. Yang M, Sowmya A (2015) An underwater color image quality evaluation metric. IEEE Trans Image Process 24(12):6062–6071

    Article  MathSciNet  MATH  Google Scholar 

  60. Yang M, Sowmya A, Wei Z, Zheng B (2019) Offshore underwater image restoration using reflection-decomposition-based transmission map estimation. IEEE J Ocean Eng 45(2):521–533

    Article  Google Scholar 

  61. Zhang K, Jin WQ, Su Q, Wang X (2011) Multi-scale retinex enhancement algorithm on luminance channel of color underwater image. Infrared Technol 33(11):630–634

    Google Scholar 

  62. Zhishen L, Tianfu D, Gang W (2003) ROV based underwater blurred image restoration. J Ocean Univ Qingdao 2(1):85–88

    Article  MATH  Google Scholar 

  63. Zhang S, Wang T, Dong J, Yu H (2017) Underwater image enhancement via extended multi-scale retinex. Neurocomputing 245:1–9

    Article  Google Scholar 

  64. Zhou J, Zhang D, Zhang W (2020) Classical and state-of-the-art approaches for underwater image defogging: a comprehensive survey. Front Inform Technol Elect Eng 21(5):1745–1769

    Article  Google Scholar 

  65. Zhou J, Zhang D, Zou P, Zhang W, Zhang W (2019) Retinex-based laplacian pyramid method for image defogging. IEEE Access 7:122459–122472

    Article  Google Scholar 

  66. Zhuang P, Ding X (2020) Underwater image enhancement using an edge-preserving filtering Retinex algorithm. Multimed Tools Appl 1–21

  67. Zhou Y, Wu Q, Yan K et al (2018) Underwater image restoration using color-line model. IEEE Trans Circuits Syst Video Technol 29(3):907–911

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61702074), the Liaoning Provincial Natural Science Foundation of China (No. 20170520196), and the Fundamental Research Funds for the Central Universities (Nos.3132019205 and 3132019354).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingchun Zhou or Weishi Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Yao, J., Zhang, W. et al. Multi-scale retinex-based adaptive gray-scale transformation method for underwater image enhancement. Multimed Tools Appl 81, 1811–1831 (2022). https://doi.org/10.1007/s11042-021-11327-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11327-8

Keywords

Navigation