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Smartphone‑based food recognition system using multiple 
deep CNN models

Abdulnaser Fakhrou1 · Jayakanth Kunhoth2  · Somaya Al Maadeed2

Abstract
People with blindness or low vision utilize mobile assistive tools for various  
applications such as object recognition, text recognition, etc. Most of the available  
applications are focused on recognizing generic objects. And they have not addressed 
the recognition of food dishes and fruit varieties. In this paper, we propose a  
smartphone-based system for recognizing the food dishes as well as fruits for children  
with visual impairments. The Smartphone application utilizes a trained deep CNN 
model for recognizing the food item from the real-time images. Furthermore, we 
develop a new deep convolutional neural network (CNN) model for food recognition  
using the fusion of two CNN architectures. The new deep CNN model is developed 
using the ensemble learning approach. The deep CNN food recognition model is 
trained on a customized food recognition dataset.The customized food recognition 
dataset consists of 29 varieties of food dishes and fruits. Moreover, we analyze the 
performance of multiple state of art deep CNN models for food recognition using the 
transfer learning approach. The ensemble model performed better than state of art 
CNN models and achieved a food recognition accuracy of 95.55 % in the customized 
food dataset. In addition to that, the proposed deep CNN model is evaluated in two 
publicly available food datasets to display its efficacy for food recognition tasks.
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Visual impairment

 * Jayakanth Kunhoth 
 j.kunhoth@qu.edu.qa

 Abdulnaser Fakhrou 
 afakhrou@qu.edu.qa

 Somaya Al Maadeed 
 s_alali@qu.edu.qa

1 Department of Psychological Sciences, College of Education, Qatar University, Doha, Qatar
2 Department of Computer Science and Engineering, Qatar University, Doha, Qatar

Multimedia Tools and Applications (2021) 80:33011–33032

Received: 21 September 2020 / Revised: 26 January 2021 / Accepted: 23 July 2021 

© The Author(s) 2021
Published online: 12 August 2021

/

http://orcid.org/0000-0002-8972-0893
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11329-6&domain=pdf


1 3

1 Introduction

The data provided by WHO [1] describes that globally there exist about 285 million 
visually impaired individuals. Among 285 million individuals, 19 million individuals 
fall under the 0-14 age category. The main causes of visual impairments in children are 
nutrition deficiency, premature birth, birth defects, infections, etc. Vision impairments 
can negatively affect the social development and cognitive development of a child. Peo-
ple with visual impairments utilize various assistive systems in their day to day life for 
multiple tasks such as object recognition, navigation, text recognition, etc [15].

The advancement of technology in recent years made the development of assistive 
systems simpler. Current technological advancement allows developers to embed assis-
tive technology in smart handheld devices. In the last decade, various assistive object 
recognition systems have been proposed for people with visual impairments [6, 17, 26, 
32]. Most of the systems utilize computer vision technology to recognize objects. Com-
puter vision technology adopts various image processing and machine learning algo-
rithms to recognize the objects from imageries. Computer vision-based systems pro-
posed for object recognition tasks can be classified into two types; tag-based systems 
and non-tag-based systems. Tag-based systems [21, 27] utilize visual markers or cues 
attached to the objects for recognizing them. A mobile device embedded with a smart 
scanner or camera is assigned to scan or capture the tags for visual marker identifica-
tion. Non- tag-based systems [7, 9, 16] do not utilize any visual marker or barcodes. 
Instead, they process the raw imageries and apply various image feature detection algo-
rithms and machine learning algorithms to recognize the objects. These systems can 
recognize various objects such as packed foods, currencies, smartphones, furniture, etc. 
Among existing object recognition systems, only a few works are focused on food rec-
ognition for people with visual impairments.

Food recognition or classification is an important task in visual object recognition. 
Since many of the food dishes are similar in appearance, size, and color, vision-based 
food recognition is more challenging. Most of the existing food recognition systems 
were developed for food calorie estimation as well as dietary assessment. Unlike exist-
ing food recognition works, this work is focused on the development of a precise smart-
phone application to recognize food dishes as well as fruits for children with visual 
impairments. Children with minimum knowledge of smartphone operation can utilize 
this application to identify the food dishes and fruits from natural scenes. This food 
recognition application with trained deep CNN model can be utilized to improve the 
experience and confidence of children during dining activity. Moreover, the application 
can be extended for educating the children with visual impairments.The major contribu-
tions of the proposed work are,

– Development of a food recognition application for visually impaired children.
– Application of transfer learning methodology for food recognition using multiple 

pre-trained deep CNN models trained in ImageNet [10] dataset.
– Development of an ensemble model that integrates the two CNN models for 

improved food recognition performance.
– Development of a new food dataset that contains images of both food dishes and 

fruits for food recognition challenge.
– Evaluation of proposed ensemble model in a sufficiently large two publicly available 

food recognition datasets.
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The overall architecture of the proposed system and smartphone application for food recog-
nition is given in Fig. 1. The proposed system is comprised of two parts; an Android appli-
cation for real-time food recognition and a server-side for building the deep CNN model for 
food recognition. The Android application is configured to capture the images continuously 
using the embedded camera and run inference on each image for recognizing the food in 
real-time. The application will read out the name of the recognized food via the speaker.

On the server side, a deep neural network is trained for recognizing the food dishes and 
fruits. The deep CNN model for food recognition is developed by transfer learning method-
ology. Existing deep CNN models pre-trained on the ImageNet dataset are used for trans-
fer learning. The trained model is optimized and quantized to work in the Android appli-
cation. If the original trained deep CNN model ( unoptimized and nonquantized model )
is directly deployed in the edge devices like smartphones, the smartphone will either run 
out of memory, or prediction on the image will be very slow. Because of that, the trained 
raw deep CNN model was optimized and quantized before loading to the Android applica-
tion. Model optimization will reduce the latency as well as inference cost. Moreover, an 
optimized deep CNN model can be deployed in smartphones that are having processing, 
memory, and storage constraints. Once the model is trained, it is converted to the Tensor-
Flow Lite (TFLite) format (optimized and quantized model). The TensorFlow lite frame-
work provides a collection of tools for deploying the TensorFlow machine learning models 
in edge devices like smartphones. During TFLite conversion, the model is optimized and 
reduced its size by about 90%. The optimized TFlite model is loaded in the Android appli-
cation for recognizing the food images.

Once the Android application is loaded with the food recognition deep CNN model, 
then the application does not require any aid from an external server or pc. It can process 
the images and run inference on the images in real-time without any internet connection. 
The visual sensor embedded in the mobile device or the smartphone camera is assigned 
for capturing the scenes in front of the user. The captured frames are subjected to pre-
processing since the raw image format does not match with the input of the deep CNN 
model. The image preprocessing function will extract each frame and preprocess the frame 

Fig. 1  Overall System Architecture
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according to the input format of the deep CNN model. Later, the optimized deep CNN 
model runs inference on the preprocessed image frame. The output of the deep CNN model 
is the probability values for each class. The resulted probability values are interpreted into 
the class labels using the interpreter. Moreover, the labels with a confidence value of more 
than 90 % are only considered for speech synthesizing. The speech synthesizer is used to 
generate voice feedback for the users. Once the speech synthesizer receives the recognized 
label which is having a confidence value of more than 90 %, it generates the speech using 
Android text to speech SDK. The recognized label name is notified to the user via the 
speaker of the smartphone.

The remaining part of the paper is arranged as follows. In Sect. 2 we discuss the related 
works briefly. Detailed description about the custom food recognition dataset, public data-
sets used for the evaluation of the proposed method and the proposed methodology are 
given in Sect. 3. The evaluation experiments, results and discussion of results are provided 
in Sect. 4. And paper is concluded in Sect. 5.

2  Related work

Significant numbers of food recognition systems have been proposed in the last decade. 
Most of the proposed systems were focused on recognizing the food dishes or cuisines. 
Among them, a few of the systems were extended to food volume estimation and calorie 
estimation for dietary assessment. In this section, we provide a brief discussion on the food 
recognition systems proposed in the last decade.

Existing food classification systems utilized two different types of approaches; tradi-
tional approaches and deep learning approaches for recognizing the food dishes. The tra-
ditional approach follows a feature extraction method to extract the visual image features 
from the images of the food dish and represent them as a feature vector. Various image 
feature descriptor algorithms such as scale-invariant feature transform (SIFT), histogram of 
oriented gradients (HOG), local binary pattern (LBP), etc. were utilized in the literature for 
the feature extraction process. Moreover, morphological features such as color, shape, and 
size were also included for enhanced food recognition. The extracted feature vectors are 
utilized to train the classification model using various machine learning supervised algo-
rithms such as support vector machine (SVM), K-Nearest Neighbors (K-NN), etc.

Kong et  al. [20] proposed a mobile phone-based dietary assessment system named 
DietCam. The DietCam utilized SIFT feature descriptor algorithm and nearest neighbor 
algorithm to recognize the food dishes. Matsuda et al. [24] proposed a multiple-food rec-
ognition system that uses various image feature descriptors such as SIFT, CSIFT, HOG, 
Gabor texture, and color feature. SVM algorithm was employed for the classification task. 
Kawano and Yanai [18] proposed a real-time smartphone-based food recognition system 
for classifying 256 food dishes. The food recognition module in the proposed system used 
RootHOG (a variant of the HOG) feature vector and one vs rest linear classifier to classify 
the images into respective categories. A linear SVM classifier was trained with SIFT fea-
ture vectors for food recognition in [5]. The extracted SIFT features from images were con-
verted to the bag of features or bag of visual words using the hierarchical K means cluster-
ing approach. Reference [29] proposed an SVM classifier based food recognition system. 
The proposed system integrated various features including texture, color, size, and shape 
for building the feature vector of images. Farinella et  al. [11] proposed a food retrieval 
system that utilizes an SVM classifier for the food recognition task. The SVM classifier 
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was trained with the combination of various handcrafted features. Pairwise rotation invari-
ant co-occurrence LBP, SIFT, and Bag of texton were utilized to create the image feature 
vector.

In recent years, deep learning displayed its advancement over traditional machine 
learning algorithms for various classification tasks. Unlike traditional machine learning 
approaches, the deep learning methods don’t require any explicit feature extraction algo-
rithm. Moreover, deep learning methods showed exceptional improvements over traditional 
methods for various computer vision problems such as image classification, object recogni-
tion, face recognition, etc. Since 2014, deep neural networks are employed for food clas-
sification problems. Kagaya et al. [14] compared the performance of the CNN and tradi-
tional methods for the food classification task. The proposed method was evaluated in a 
custom dataset that contains 10 different types of food dishes. Obtained results show that 
the CNN-based approach outperformed the traditional approach (SIFT-Bag of Words) and 
displayed significant improvement in classification accuracy. Bossard et al. [8] introduced 
a large challenging dataset for the food recognition task. The proposed dataset, Food 101 
contains 101000 images falling under 101 different classes. They analyzed the perfor-
mance of the AlexNet CNN model and Random Forest algorithm for the food classification 
task. AlexNet CNN model performed better than the Random Forest algorithm in Food 
101 dataset. Yanai and Kawano [35] implemented the transfer learning methodology for 
food classification using a pre-trained AlexNet model. ALexNet model was initially trained 
on the ImageNet dataset. The pre-trained AlexNet model was fine tunned for classifying 
the food images. The transfer learning approach using the GoogleNet model pre-trained 
on the ImageNet dataset was implemented in [25]. The pre-trained GoogleNet model was 
retrained on the Food-101 dataset. Liu et al. [22] proposed a smartphone-based food rec-
ognition system for dietary assessment. The proposed system consists of a smartphone for 
capturing the images and a cloud server for processing the image. A trained deep CNN 
model was employed in the server for the food classification task. The deep CNN model 
for food classification was developed by finetuning a pre-trained GoogleNet model on the 
image dataset.

Pandey et al. [28] introduced EnsembleNet by combining 3 different CNN models for 
classifying the food images. Initially, three CNN models (pre-trained GoogleNet, pre-
trained AlexNet, and pre-trained ResNet) were separately finetuned on the food dataset. 
The ouput of the three models were fused for improved food classification performance. Yu 
et al. [36] introduced deep layer aggregation in deep CNN models. The deep layer aggre-
gation based approach improved the food classification accuracy compared to finetuned 
pre-trained models. Foresti et al. [23] proposed a wide slice residual network (WISeR) for 
food recognition. The proposed deep CNN architecture WISeR consists of two deep CNN 
branches; a residual network and a slice network. WISeR achieved a state of the art clas-
sification performance in multiple public food recognition datasets. PAR-Net [30] intro-
duced for food recognition consists of a fully connected layer and three subnetworks; a 
primary network, an auxiliary network, and a regional network. Each subnetwork of 
PAR-Net is based on a popular deep CNN architecture ResNet. Each subnetwork is a pre-
trained ResNet model. All layers of the pre-trained ResNet model in each subnetwork were 
retrained in the Food dataset. The performance of PAR-Net is analyzed by arranging differ-
ent types of ResNet( 50, 34, or 101) in different combinations. PAR-Net built with ResNet 
101 subnetworks delivered maximum classification accuracy.

Aguilar and Radeva [4] proposed a food recognition system by integrating local and flat 
classifiers. The evaluation of the proposed method was carried out in the MAFood-121 . It 
contains food from 11 different cuisines classified into 121 classes. The workflow of the 
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proposed method is training separate classifiers for dishes in each cuisine, a flat classifier 
for all the dishes in the dataset irrespective of cuisines, and a classifier for recognizing the 
cuisines. Results from the cuisine classifier, flat classifier, and local classifier classifiers are 
analyzed for recognizing the food dish. Multi-task learning CNN model based on regular-
ized uncertainty for food analysis was proposed in [3]. The proposed model can predict 
the dish name, Cuisine name, and category name ( vegetable, meat or bread, etc.) for a 
given food image. ResNet 50 architecture has been utilized for building the base of the 
regularized uncertainty based multi-task learning (RUMTL )model. The proposed RUMTL 
model achieved better accuracy compared to the single-task model for dish recognition in 
the MAFood-121 dataset. Kayikei et al. [19] proposed a smartphone-based mobile appli-
cation for recognizing Turkish food dishes. A pre-trained Inception V3 model finetuned 
on the Food 24 dataset was utilized for recognizing the food dishes. Moreover, they ana-
lyzed the performance of various pre-trained CNN models such as InceptionV3, Inception-
ResNetV2, ResNet50, and Xception for the food classification task. Inception V3 outper-
formed all other pre-trained CNN models in Food 24 dataset. Table 1 displays a summary 
of various food recognition and classification systems proposed in the literature.

Considerable numbers of food image datasets for food classification challenges are pro-
posed in the literature. Some of the popular and commonly used datasets are Food-101 [8], 
UEC Food-100 [24], and UEC Food-256 [18]. Most of the existing datasets contain food 
dishes from specific cuisine or a specific region only. But MAFood–121 [3] is a generic 
dataset and it contains food dishes from 11 different cuisines categorized into 121 classes. 
Another limitation of existing food datasets is that the majority of them contain food dishes 
only but not varieties of fruits or vegetables.

3  Materials and methods

3.1  Dataset

The evaluation of the proposed approach is carried out in three different food recognition datasets. 
The main aim of the proposed work is to develop a mobile application for recognizing both food 
dishes and fruits. Therefore a food dataset containing images of both food dishes and varieties of 
fruits is required to train the deep CNN model. In this context, a new food dataset [2] (of both food 
dishes and fruit varieties is customized for food recognition challenge. The sample images of the 
customized dataset are given in Fig. 2. The dataset is constructed by collecting food dish images 
from a popular food recognition dataset Food-101 [8] and varieties of fruit’s images from a fruit 
recognition dataset [13]. Images of 15 types of food dishes (global cuisines) like cupcakes, ice 
cream, fried rice, french fries, donuts are extracted from Food-101. The images of 15 food classes 
are merged with images of 14 types of fruits such as banana, apple, mango, etc. available in the 
fruit dataset [13]. The proposed food dataset contains 31127 images classified into 29 different 
classes. Each class in the dataset contains 1000-1200 images approximately. All the images are 
converted into 224 × 224 pixels for our experiments. Among 31127 images, 21474 images are 
used to train the deep CNN models, 2751 images are assigned for validation and the rest 6902 
images are utilized to evaluate the performance of the trained models.

Moreover, two publicly available food recognition datasets are used to assess the per-
formance of the proposed method. A large public dataset and a comparatively small 
public dataset are selected for the evaluation of the proposed method. MAFood-121 
[3] is a multi-attribute public food dataset available for food recognition problems. It 
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contains 21175 images classified into 121 food classes. Moreover, 121 food classes con-
tain food dishes from 11 different cuisines around the world. Each image has multi-
ple labels; dish name, cuisine name, and food category name. The second public food 
dataset used for evaluation is Food24 [19]. Food24 contains about 11000 food images 
categorized into 24 food classes. All of the food classes in Food24 belongs to Turkish 
cuisine. The sample images from MAFood-121 and Food24 dataset is given in Fig. 3 
respectively.

3.2  Methodology

3.2.1  Deep convolutional network

Convolutional Neural Network is a category of neural networks that contain neurons with 
biases and weights in each layer. The basic setting of a deep CNN model is shown in Fig. 4. 
The major elements of a deep CNN model are convolutional layers, batch Normalization 

Fig. 2  Sample images from custom food dataset

Fig. 3  Sample images from Public food dataset: (a) MAFood-121 dataset [3] (b) Food-24 dataset [19]
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layers, pooling layers, and fully connected layers/dense layers. Batch normalization is 
absent in some of the popular deep CNN architecture such as AlexNet, VGG. Because the 
batch normalization technique has not existed before VGG or AlexNet.

Consider an input image i . For each local patch of the image i, the convolutional layer 
computes the neuron’s output when i is passed through the convolutional layer. In a convo-
lution operation, a filter or kernel slides over each pixel of the image to generate the feature 
map. The feature map is the resultant dot product of neurons’ coefficient and input image 
vector. The convolution operation is applied either to the input image or feature map gener-
ated from the previous layer of the architecture.

Consider Fc−1
i

 is the feature map or output from the previous convolution or other pre-
vious layers and Fc

i
 is the feature map generated in the current convolutional layer. Then, 

Fc
i
= f (x) , where

NK : The number of kernels, bc
k
 : bias value, wc

k
 : current layer’s weight matrix and f(x) is an 

activation function. Activation function is applied on the output of the convolutional opera-
tion ’x’ to compute the feature map Fc

i
.

The activation function or transfer function is applied to the output of convolutional 
operation for transferring or mapping it to a particular interval such as [0, 1] or [-1, 1]. 
The popular activation functions used in deep CNN models are linear function (similar to 
a straight line equation), Sigmoid function ( f (x) = 1

1+e−x
 ), Tanh function ( f (x) = tanh(x) ) 

and RELU function.
RELU is the most widely used activation function and it is defined as,

The batch Normalization layer is included to speed up the learning process. Batch nor-
malization is responsible for normalizing the output from the previous activation layer . 
Furthermore, they improve the stability of the neural network. Pooling layers are applied to 

(1)x =
∑

i∈NK

Fc−1
i

∗ wc
k
+ bc

k

(2)f (x) =

{
0, ifx < 0

x, ifx ≥ 0

Fig. 4  Basic setting of a deep CNN architecture
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the feature maps for reducing their spatial size. It allows the model to learn the important 
features of the image. Moreover, this dimensionality reduction technique helps the deep 
CNN model to achieve translation-invariance.

Multidimensional feature maps resulted from convolutional layers are flattened into a 
1-dimensional array by using the flatten layer. The flattened features or resulted 1-dimensional  
array is fed to the fully connected layer/dense layer. The fully connected layer, a  
simple feed-forward neural network aggregate the 1-dimensional feature array to build the 
prediction model. Instead of the flatten layer, the global average pooling layer can also be 
used to reduce the spatial dimension of the multidimensional feature maps.

The output layer computes the probability of an input image for being in each class. The 
class with the highest probability is selected as the prediction of the model. The softmax 
function is widely used in the output layer to compute the probability. Softmax function 
normalizes the output of the dense layer.

For an input image i , the softmax function in the output layer estimates the probability 
that image i belongs to a class kc by the following equation.

where n is the number of classes and P is the parameter of the model.

3.2.2  Transfer learning

Transfer learning is a prevalent research methodology in the field of machine learning. Here, the 
knowledge learned while interpreting a particular research problem is being reutilized for inter-
preting other similar research problems. In deep learning, transfer learning methodology utilizes 
the knowledge learned by a pre-trained model to train a new deep CNN model in a new dataset. 
Usually, deep CNN models require a large amount of data for training from scratch. Training deep 
CNN models with an inadequate amount of data can lead to a condition where the generaliza-
tion ability of the model gets worsen and the model gets over-fitted to the training data. On the 
other hand, the transfer learning technique makes the development of deep CNN models possible 
even if a huge amount of data is not available for training the deep CNN architecture. One of the 
requirements for the transfer learning method is the availability of a pre-trained CNN model which 
is trained in a sufficiently large dataset. Transfer learning can be achieved in two ways; transfer 
learning via the feature extraction approach and transfer learning via the finetuning approach.

In transfer learning via the feature extraction approach, a pre-trained deep CNN model 
is used as a feature extractor. The images from a new dataset are passed through the pre-
trained model in batches to retrieve feature vectors of the new image dataset. The extracted 
features are utilized to develop a new prediction model by training machine learning classi-
fiers. Transfer learning via fine tunning approach utilizes a pre-trained model as a starting 
point to train on the new data set. The same pre-trained model is retrained on a new dataset 
after making some modifications to it. The modifications made in the pre-trained model 
are replacing the final classification layer with a new classification layer according to the 
number of classes in the new dataset, adding flatten layers, replacing fully connected lay-
ers, etc. In this work, transfer learning via finetuning is implemented. Figure 5 represents 
the general setting of the finetuning approach employed in this work.

(3)
p(y = kc|i;P) =

e
PT
kc
i

n∑

kj=1

e
PT
kj
x
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Three different pre-trained CNN models are used in this work to develop 5 different deep 
CNN food recognition models. VGG -16, InceptionV3, and DenseNet201 pre-trained in the 
ImageNet dataset are used for the transfer learning task. The pre-trained model is implemented 
without the head, which means the original fully connected layers in the pre-trained model are 
removed. Then, three new layers are added on top of the headless pre-trained model for fine-
tuning. Generally, on top of the pre-trained model without the head, a flatten layer is added for 
converting multidimensional features into 1 dimension. In this approach instead of a flatten layer, 
global average pooling is added. The global average pooling has some advantages over the flatten 
layer. The flatten layer simply converts a tensor of any shape to a 1-dimensional tensor. While 
the global average pooling layer implements average pooling on the spatial dimension until each 
becomes one. As a result of the average pooling operation, the global average pooling layer pro-
duces the vector with better representation. After the global average pooling layer, a fully con-
nected / dense layer with 512 neurons is added. Also, a dropout is applied to the fully connected 
layer to prevent overfitting. Finally, the output layer with the softmax activation function is added 
for the classification of the food images. Five different types of deep CNN models are devel-
oped using three pre-trained deep CNN models. The description of the developed five deep CNN 
models is given in Table 2.

The above-given abbreviation is used in the following sections to mention the five dif-
ferent deep CNN models.

Fig. 5  Transfer learning via finetunning the pre-trained deep CNN

Table 2  Description of five developed CNN models

Sl.NO Model Description Abbreviation

1 Finetuning the last convolutional block of pre-trained VGG [31] model. TL_VGG
2 Finetuning the last two inception blocks of the pre-trained InceptionV3 [33] model. TL_IV
3 Finetuning the last dense block of pre-trained DenseNet201 [12] model. TL_DN
4 Finetuning all layers of pre-trained InceptionV3 model. TL_ IVF
5 Finetuning all layers of the pre-trained DenseNet201 model. TL_DNF
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3.2.3  Ensemble learning

Ensemble learning is a popular and widely used approach in machine learning where multiple  
models are integrated for enhanced performance. The resultant model from the ensemble  
learning technique is known as the ensemble model. The ensemble model contains multiple 
machine learning models with the same or different algorithms trained on a set of the same or 
similar data. The multiple models included in the ensemble models are known as base models. 
Based on the problem and the algorithm of the base models, various approaches are used in the 
literature to combine the predictions of them to build the ensemble model. Commonly used 
two approaches are hard voting and soft voting. The hard voting a.k.a majority voting approach 
considers the class label with the most votes among all base models/classifiers as the ensemble 
decision. Let C1, C2, and C3 the three base classifiers in an ensemble model, and A and B are 
the two class labels. For an image i, the predicted label by each classifier is, C1=A, C2=B, and 
C3=A. Out of 3 classifiers, 2 classifiers predicted the class label as A, which means A received 
majority votes, so class A is the decision of the ensemble model.

The soft voting a.k.a the average voting approach will compute the average of probabili-
ties obtained in each base classifier of the ensemble model for each class. The class with 
the highest average probability is considered as the decision of the ensemble model.

Let C1, C2, and C3 are the three base classifiers in an ensemble model, and A and B are 
the two class labels. For an image i, classifier C1 predicts the probability that i belongs to 
class A and B are 0.6 and 0.4 respectively. Similarly, classifier C2 predicts the probability 
that i belongs to class A and B are 0.3 and 0.7 respectively. And classifier C3 predicts the 
probability that i belongs to class A and B are 0.35 and 0.65 respectively. From the pro-
vided probability by each base classifiers, the average probability for each class is A= 0.42 
and B = 0.58. The probability that the image i belongs to class B is higher, so B is the deci-
sion of the ensemble model.

Figure 6 illustrates the general working of the TL_Ensemble model.
The proposed ensemble model (TL_Ensemble) consists of two deep CNN models. A 

DenseNet201 model with all layers finetuned on the food dataset (TL_DNL) and An Incep-
tionV3 model with all layers finetuned on the food dataset. The soft voting or average vot-
ing approach is implemented in the TL_Ensemble model to ensemble the base deep CNN 
models. The two deep CNN models included in the TL_Ensemble model are configured 
to run inference on the query image separately. In Fig. 6, P11 , P12 , … , P1N represents the 
probability that the query image belongs to class 1, 2, … N respectively in the first clas-
sifier. Similarly P21 , P22 , … , P2N indicates the probability output of the second classifier.

In the custom food dataset there exist 29 classes. For a query image i, the DenseNet201 
model extracts the CNN features. And Computes the probability of the extracted features 
for belonging to each of the 29 classes. The softmax function added in the final layer of 
the DenseNet201 model is utilized for the probability calculation. Once the probability is 
calculated the DenseNet201 model generates an array with 29 cells. Each cell contains the 
numerical value of probability that the query image belongs to the respective class. I.e., 
the first cell of the resulted array contains the numerical value of probability that the query 
image belongs to the first class, the second cell contains the numerical value of probability 
that the query image belongs to the second class, and so on. Similarly, the InceptionV3 
model extracts the features from the query image and computes the probability. The Incep-
tionV3 model also generates an array with 29 cells where each cell contains the numerical 
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Let C1, C2, and C3 are the three base classifiers in an ensemble model, and A and B are 
the two class labels. For an image i, classifier C1 predicts the probability that i belongs to 
class A and B are 0.6 and 0.4 respectively. Similarly, classifier C2 predicts the probability 
that i belongs to class A and B are 0.3 and 0.7 respectively. And classifier C3 predicts the 
probability that i belongs to class A and B are 0.35 and 0.65 respectively. From the pro-
vided probability by each base classifiers, the average probability for each class is A= 0.42 
and B = 0.58. The probability that the image i belongs to class B is higher, so B is the deci-
sion of the ensemble model.

Figure 6 illustrates the general working of the TL_Ensemble model.
The proposed ensemble model (TL_Ensemble) consists of two deep CNN models. A 

DenseNet201 model with all layers finetuned on the food dataset (TL_DNL) and An Incep-
tionV3 model with all layers finetuned on the food dataset. The soft voting or average vot-
ing approach is implemented in the TL_Ensemble model to ensemble the base deep CNN 
models. The two deep CNN models included in the TL_Ensemble model are configured 
to run inference on the query image separately. In Fig. 6, P11 , P12 , … , P1N represents the 
probability that the query image belongs to class 1, 2, … N respectively in the first clas-
sifier. Similarly P21 , P22 , … , P2N indicates the probability output of the second classifier.

In the custom food dataset there exist 29 classes. For a query image i, the DenseNet201 
model extracts the CNN features. And Computes the probability of the extracted features 
for belonging to each of the 29 classes. The softmax function added in the final layer of 
the DenseNet201 model is utilized for the probability calculation. Once the probability is 
calculated the DenseNet201 model generates an array with 29 cells. Each cell contains the 
numerical value of probability that the query image belongs to the respective class. I.e., 
the first cell of the resulted array contains the numerical value of probability that the query 
image belongs to the first class, the second cell contains the numerical value of probability 
that the query image belongs to the second class, and so on. Similarly, the InceptionV3 
model extracts the features from the query image and computes the probability. The Incep-
tionV3 model also generates an array with 29 cells where each cell contains the numerical 

Fig. 6  Proposed ensemble model using average voting approach
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value of probability. Once the inference on the query image is completed by DenseNet201 
and InceptionV3 models, the average voting algorithm is employed to ensemble the results 
of two independent models. The average voting algorithm generates an array of 29 cells 
by averaging the respective cells of arrays generated by the DenseNet201 model and the 
InceptionV3 model. The array generated by the average voting algorithm provides the final 
average probability values for the query image. The array index with the maximum value is 
the final prediction of the TL_Ensemble model. Suppose in the final generated array, index 
5 contains the maximum value. That means the query image i belongs to class 5.

4  Evaluation and results

The proposed deep CNN methods were evaluated in three different food recognition data-
sets. Training deep CNN models is computationally expensive and it requires a powerful 
workstation. In this work, a laptop with Intel Core i7 -6700 CPU @ 2.60GHZ processor, 
24 GB RAM, and 6 GB Nvidia GTX-1060 GPU was used for training the deep CNN mod-
els. The training and implementation of the deep CNN models were carried out in python 
language. The deep CNN model was built using the ‘tf.Keras’ API of the TensorFlow 
library (version 2.0).

Model evaluation is a key task where various performance metrics of the model are ana-
lyzed to interpret its effectiveness for the respective problem. In the case of a multi-label 
classification problem, overall classification accuracy (Accuracy) is the most commonly 
used performance metric. Accuracy is defined as the ratio of the correct prediction to total 
observations in the test data. Other than accuracy, we considered the other three perfor-
mance metrics such as precision, recall, and F1 score to analyze the performance of the 
classification model.

The accuracy of the classifier is calculated using the following Eq. (4), where True Posi-
tives (TP) are the number of positive observations that are correctly classified, True Nega-
tives (TN) are the number of negative observations that are classified as negative, False 
Positives (FP) are the number of negative observation that are falsely classified as positive 
and False Negatives (FN) are the number of positive observations that are falsely classified 
as negative

Precision defines, how many of the observations are correct among the positively clas-
sified observations. The precision metric is calculated using the following Eq. (5), where 
TP is the number of true positives and FP is the number of false positives generated in the 
classifier.

Recall metric is equivalent to the accuracy of positive observations. It means how many 
positive observations are classified correctly. The recall is calculated using the following 
Eq. (6) where, TP is the number of true positives, and FP is the number of false negatives 
obtained in the classifier. Recall measures the sensitivity of the model.

(4)Accuracy =
TP + TN

TP + FP + FN + TN

(5)Precision =
TP

TP + FP
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F1 is defined as the harmonic mean of recall and precision. The F1 score of the classi-
fier is computed using the following Eq. (7).

4.1  Evaluation in custom food dataset (dataset 1)

The custom food dataset contains images of food dishes and fruits classified into 29 dif-
ferent classes. All the images are of dimension 224 × 224 pixels. The train, validation, and 
test splits are pre-arranged where the train set, validation set, and test set contains 21474, 
2751, and 6902 images respectively.

The hyperparameters and input parameter used for training (fine-tuning) all the deep 
CNN models in the custom food data set are given in Table 3.

Data augmentation was applied to the training data using the image data generator tool 
available in the TensorFlow library. Data augmentation is applied to increase the diversity 
of the data and combat the overfitting problem. The data augmentation techniques applied 
to the training data are described in Table 4.

VGG16 model, Inceptionv3 model, and DenseNet201 model pre-trained on ImageNet 
dataset are used for finetuning. Five different CNN models as described in Table  2 are 
developed in this work. Moreover, an ensemble of the two-deep CNN models is also  
developed for improved food recognition. Before fine-tuning the upper layers of each CNN 
model, the newly added fully connected layer of each model is trained on the food dataset.  
In each CNN model, the fully connected layer is trained for 3 epochs by freezing all other 
upper layers. After 3 epochs the earlier layers of the model are finetuned on the food 
dataset. In the case of the VGG16 model, the last convolutional block is finetuned for 20 
epochs. Similarly, the last two inception blocks of the inceptionV3 model and the last dense 
block of the DenseNet201 model are finetuned on the food dataset for 20 epochs separately. 
In the next two experiments, all the layers of InceptionV3 and DenseNet201 are trained 
on the food dataset for 20 epochs. Five different CNN training sessions are conducted for 
developing five deep CNN models. At the beginning of each training session, the initial 
learning rate was set to 1e-4. During training, the learning rate is reduced by a factor of 0.5 
when the validation metric hit the plateau. The ensemble model was built by integrating 
the DenseNet201 deep CNN model with all layers finetuned and InceptionV3 deep CNN 
model with all layers finetuned.

(6)Recall =
TP

TP + FN

(7)F1score = 2 ×
(Recall × Precision)

(Recall + Precision)

Table 3  Paremeters for 
experiments

Parameters value

Input size 224 × 224

Optimization algorithm Adam
Initial learning rate 1e-4
Batch Size 16
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The accuracy, precision, recall, and F1 score obtained for each food recognition model 
trained on the custom food dataset are given in Fig. 7.

In the custom food dataset, the deep CNN model developed by finetuning the last  
convolutional block of pre-trained VGG16 (TL_VGG) achieved a classification accuracy 
of 89.66%. Among all 6 methods evaluated in the custom food dataset, the least value of 
classification accuracy was recorded in the TL_VGG model. It is expected that TL_VGG 
can’t perform well as the other five deep CNN models. Except for VGG, other deep CNN 
models are having complex architecture. Moreover, they have already recorded better  
classification performance in the ImageNet dataset compared to VGG. Still, we used  
the VGG deep CNN model in our experiments because of its simple architecture and to 
analyze how a simple CNN model perform in food classification problem. Even though 
the accuracy recorded by TL_VGG is the least among all developed methods, still it is an 
acceptable value for food classification.

The deep CNN model developed by finetuning the last two inception blocks of the 
InceptionV3 model (TL_IV) performed better than the TL_VGG model and obtained 
a classification accuracy of 92.55 %. Compared to the TL_VGG model, the TL_IV 
model achieved a significant increment of about 3 % in classification accuracy. TL_IVF 

Table 4  Applied data 
augmentation techniques

Technique Value

Rotation 40
Width shift range 0.2
Height shift range 0.2
Shear Range 0.2
Zoom Range 0.2
Horizontal Flip True

Fig. 7  Accuracy, Precision, Recall and F1 score obtained for developed deep CNN models in custom food 
dataset
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is developed by finetuning all the layers of the InceptionV3 on the custom food dataset. 
The TL_IVF model surpassed the TL_IV model in terms of classification performance 
and achieved a classification accuracy of 93.63 %. Finetuning all layers of InceptionV3 
improved the classification accuracy by more than 1 %.

The DenseNet deep CNN model (TL_DN) built by finetuning the last dense block of 
pre-trained DenseNet 201 displayed a better classification performance than InceptionV3 
based deep CNN models (TL_IV and TL_IVF). The classification accuracy of the TL_DN 
model is 94.03 %, which is about 1.4 % more than the TL_IV model and 0.4 % more than 
the TL_IVF model. Even though DenseNet based models have 3 million fewer parameters 
than Inception based models, they delivered a better classification performance for food 
classification in custom food recognition dataset. The deep CNN model developed by fine-
tuning all the layers of the DenseNet201 deep CNN model (TL_DNF) further improved 
the food classification accuracy. The TL_DNF model obtained a classification accuracy of 
95.05 % in the custom food recognition dataset.

The proposed ensemble model (TL_Ensemble) developed by integrating multiple deep 
CNN models achieved the best accuracy among all other deep CNN models in the cus-
tom food recognition dataset. The TL_Ensemble model consists of TL_IVF and TL_DNF 
models. The predictions from TL_IVF and TL_DNF models are integrated by the average 
voting approach and the resultant TL_Ensemble model yielded a classification accuracy of 
95.54 %. The recorded classification accuracy value of the TL_Ensemble model demon-
strates its effectiveness and superiority over all other deep CNN models for food classifica-
tion problems.

The accuracy metric is fair enough for analyzing the performance of classifiers in 
a multi-label classification problem unless the dataset is unsymmetric. The custom food 
dataset used for evaluation is neither symmetric but not highly unsymmetric. Each class 
contains 1000 to1200 images. Because of that the average precision, recall, and F1 score 
of each deep CNN classifier were computed. The TL_Ensemble model achieved the maxi-
mum value of precision and recall among all the deep CNN models. All of the deep CNN 
models achieved an F1 score equal to or more than 0.9. It displays the efficacy of all the 
developed deep CNN models for food classification. The TL_Ensemble model yielded the 
highest F1 score (0.96) which is quite near to the possible maximum value 1.

Table 5 presents the confusion matrix of the TL_Ensemble model ( the one which out-
performed all other models in the custom food dataset). The confusion matrix provides a 
more insightful analysis of the classification model. Each row and column of the confusion 
matrix corresponds to true class and predicted class respectively. The diagonal cells cor-
respond to correctly classified observations and the off-diagonal cells correspond to incor-
rectly classified observations. In the confusion matrix, the numerical values 0 to 28 repre-
sent each class were, (0) Apple, (1)Banana, (2)Carambola, (3)Guava, (4)Kiwi, (5)Mango, 
(6)Orange, (7)Peach, (8)Pear, (9) Persimmon, (10)Pitaya, (11)Plum, (12) Pomegranate, 
(13) Tomatoes, (14) Cupcakes, (15) Donuts, (16)Falafel, (17) French fries, (18) Fried rice, 
(19) Hamburger, (20)Hot dog, (21)Hummus, (22) Ice cream, (23)Muskmelon, (24) Pan-
cakes, (25)Pizza, (26) Samosa, (27)Tiramisu, and (28) Waffles.

4.2  Real time evaluation of ensemble model in smartphone devices

The response time of the system is one of the main metrics to be considered while develop-
ing an assistive system for people with visual impairments. Especially in the case of sys-
tems that use the deep CNN models for prediction, inference time, or prediction time of the 
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deep CNN models in realtime are analyzed. Because most of the deep CNN models require 
a high computational and high memory environment to work well without any delay.

This section provides prediction time analyses of the TL_Ensemble model (Quantized 
and optimized model ) in smartphone devices. The prediction time of a deep CNN model 
may vary according to the hardware conditions of the smartphone devices. Owing to that 
fact, in our experiment we used multiple smartphone devices having different hardware 
configurations to assess the prediction time of the TL_Ensemble model. Before loading the 
TL_Ensemble model to the smartphone, it is quantized and optimized using TFLite API. 
The proposed system is made to run on four smartphone devices for two minutes separately 
and the average prediction time of the TL_Ensemble model is recorded. Figure 8 displays 
the average prediction time of the quantized and optimized TL_Ensemble model in four 

Table 5  Confusion matrix of TL Ensemble model evaluated in custom food dataset

Fig. 8  Average prediction time of TL_Ensemble model in Smartphones
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different smartphone devices. Samsung J4 ( 2 GB RAM), Redmi MI note8 Pro ( 6 GB 
RAM), Realme 7 ( 6 GB  Ram), and Motorola One Vision Plus (4 GB RAM) are the four 
smartphone devices used for experiments.

Highest average prediction time ( highest delay) is recorded in a smartphone device with 
2 GB memory. Compared to the current market standard of smartphones, devices with 2 
GB RAM are outdated. It is clear from the figure that the model performed well in smart-
phones having good hardware configurations. TL_Ensemble model achieved an average 
prediction time of 482.36 milliseconds in a device with 6 GB RAM. That means the sys-
tem can recognize the food in less than half a second in real situations.

4.3  Evaluation of ensemble model in public food dataset

To prove the effectiveness and consistency of our ensemble deep CNN model for food rec-
ognition problems, the ensemble model (TL_Ensemble) is evaluated in two public food 
datasets. The first dataset contains large varieties of food dishes falling under different cui-
sines all over the world and the second data set contains varieties of food dishes commonly 
found in the middle east region. Overall food dish classification accuracy is considered as 
the metric for analyzing the performance of the TL_Ensemble model in this evaluation 
experiment.

The first public dataset used for evaluation is MAFood-121 [3], which contains images 
of 121 different varieties of food dishes. The dataset has a preassigned train, validation, 
and test splits. The same preassigned split is followed for training and evaluating the TL_
Ensemble deep CNN model. The dataset contains 21175 images, where 72.5 % of them 
are used for training the classifier, 12.5 % of total images are used for validation during 
training and the rest 15 % is used for testing the performance of the classifier. All layers 
of InceptionV3 ( Pre-trained in ImageNet dataset) and all layers of DenseNet201 ( Pre-
trained in ImageNet dataset) are finetuned on the MAFood-121 dataset for 16 epochs and 
15 epochs respectively. Before finetuning all the layers of both deep CNN models, the 
newly added fully connected layer of both deep CNN models is finetuned on the dataset 
for 3 epochs. To reduce overfitting, data augmentation techniques mentioned in table 3 are 
applied to the training data. The same input parameter and hyperparameter mentioned in 
table 4 are used for training the deep CNN models on the MAFood-121 dataset. The learn-
ing rate of the training is configured to reduce by a factor of 0.5 when the validation metric 
hit the plateau. After training the multiple deep CNN classifiers, the TL_Ensemble model 
is built by combining their output using the average voting approach. The classification 
accuracy of the TL_Ensemble model in the MAFood-121 dataset is given in Table 6 along 
with the accuracy of state of art methods evaluated in the same dataset.

.

Table 6  Performance  
comparison of TL_Enseble 
model in MAFood-121 dataset

Methods Overall Accuracy

Single Task classifier [3] 82.50 %
RUMTL [3] 83.82 %
Flat classifier [4] 81.37 %
Local + Flat classifier [4] 81.62 %
TL_Ensemble 84.95 %
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It is clear from table 5 that the proposed ensemble model TL_Ensemble outperformed 
all the state of art methods in the MAFood-121 dataset for the food dish classification 
task. The single task classifier [3] is based on ResNet50 architecture and achieved 82.50% 
dish classification accuracy in the MAFood-121 dataset. The integration of local (clas-
sifier for each cuisine) and flat classifier (single dish classifier for 121 classes) proposed 
in [4] achieved a classification accuracy of 81.62 %.RUMTL [3] is a multi-task learning 
model developed for food dishes classification as well as cuisine and category classifica-
tion. The food dish classification accuracy obtained by RUMTL in the MAFood-121 data-
set is 83.82%, which was the maximum accuracy recorded earlier for dish classification 
tasks in the MAFood-121 dataset. Our TL_Ensemble model achieved a food dish classifi-
cation accuracy of 84.95 %, which is 1 % more than the second-best method RUMTL. The 
obtained results indicate the effectiveness of our ensemble model for the classification of a 
large variety of food items.

The second public dataset used for the evaluation of the TL_Ensemble model is Food24 
[19] which contains 24 different food dishes from Turkish cuisine. Food24 consists of 
about 11000 images, where 8600 images are preassigned for training the classifier and the 
rest of the images are for evaluating the performance of the classifier. The same train and 
test split are used for the training and testing of the TL_Ensemble model. 10 % of the 
training data has been utilized for validation tasks during training. The newly added fully 
connected layer of both InceptionV3 and DenseNet201 model is finetuned for 3 epochs 
followed by finetuning all the layers of InceptionV3 and DenseNet201 for 6 and 7 epochs 
respectively. The same input parameter and hyperparameters mentioned in table 3 are used 
for training the deep CNN models. The learning rate of training was reduced by a factor 
of 0.5 after each couple of epochs. The performance of the TL_Ensemble model in the 
Food24 dataset is given in Table  7 along with the performance of state of art methods 
evaluated in the same dataset.

In the Food24 dataset, the proposed TL_Ensemble model achieved a classification accu-
racy of 89.4 %. The TL_Ensemble model achieved better classification accuracy than all 
CNN models developed in [19] for food classification in the Turkish food dataset, Food24.

5  Conclusion

In this work, we develop a smartphone-based food recognition application for children 
with visual impairments. The proposed application utilizes a trained deep CNN model to 
recognize the food items. Moreover, we propose an ensemble model that integrates multi-
ple deep CNN models using the soft voting approach for improved food recognition. The 
obtained food classification performance of the ensemble model in multiple food datasets 
shows its effectiveness for food classification problems. Furthermore, the ensemble model 

Table 7  Performance  
comparison of TL_Enseble 
model in Food24 dataset

Methods Overall Accuracy

Xception [19] 83 %
InceptionResNetV2 [19] 85 %
InceptionV3 [19] 88 %
TL_Ensemble 89.40 %
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is employed in different smartphone devices for real-time prediction analysis. Devices 
with good hardware configuration can run the model without delay and provide real-time 
predictions. We contribute a food recognition dataset that contains both food dishes and 
fruit varieties for food classification problem. In the future, we will extend our smartphone 
application to support multiple platforms. Moreover, we will focus on the development of a 
deep CNN model for detecting and recognizing multiple food items concurrently.
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