Skip to main content

Advertisement

Log in

A shallow network for hyperspectral image classification using an autoencoder with convolutional neural network

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper addresses an approach for the classification of hyperspectral imagery (HSI). In remote sensing, the HSI sensor acquires hundreds of images with narrow and continuous spectral width in visible and near-infrared regions of the electromagnetic (EM) spectrum. Such nature of data acquisition is very useful in the classification and/or the identification of different objects present in the HSI data. However, the low-spatial resolution and large volume of HS images make it more challenging. In the proposed approach, we use an autoencoder with convolutional neural network (AECNN) for the classification of HS images. Pre-processing with autoencoder enhances the features in the HS images which helps to obtain optimized weights in the initial layers of the CNN model. Hence, shallow CNN architecture can be utilized to extract features from the pre-processed HSI data which are used further for the classification of the same. The potential of the proposed approach has been verified by conducting many experiments on various datasets. The classification results obtained using the proposed method are compared with many state-of-the-art deep learning based methods including the winner of the geoscience and remote sensing society (GRSS) Image Fusion Contest-2018 on HSI classification held at IEEE International Geoscience and Remote Sensing Symposium (IGARSS)-2018 and it shows superiority over those methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes, Dec 2018

  2. Aptoula E, Ozdemir MC, Yanikoglu B (2016) Deep learning with attribute profiles for hyperspectral image classification. IEEE Geosci Remote Sens Lett 13(12):1970–1974

    Article  Google Scholar 

  3. Baumgardner MF, Biehl LL, Landgrebe DA (2015) 220 band Aviris hyperspectral image data set: June 12, 1992 Indian pine test site 3. Purdue University Research Repository 10, R7RX991C

  4. Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491

    Article  Google Scholar 

  5. Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA (2014) Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process Mag 31(1):45–54

    Article  Google Scholar 

  6. Cao X, Yao J, Xu Z, Meng D (2020) Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans Geosci Remote Sens 

  7. Chen X, Xiang S, Liu CL, Pan CH (2014) Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci Remote Sens Lett 11(10):1797–1801

    Article  Google Scholar 

  8. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251

    Article  Google Scholar 

  9. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2094–2107

    Article  Google Scholar 

  10. Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985

    Article  Google Scholar 

  11. Congalton RG, Green K (2008) Assessing the accuracy of remotely sensed data: Principles and practices. CRC Press

  12. Ding C, Xu C, Tao D (2015) Multi-task pose-invariant face recognition. IEEE Trans Image Process 24(3):980–993

    Article  MathSciNet  Google Scholar 

  13. Duan P, Kang X, Li S, Ghamisi P, Benediktsson JA (2019) Fusion of multiple edge-preserving operations for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(12):10336–10349

    Article  Google Scholar 

  14. Fang S, Quan D, Wang S, Zhang L, Zhou L (2018) A two-branch network with semi-supervised learning for hyperspectral classification. IGARSS - 2018 IEEE International Geoscience and Remote Sensing Symposium. pp 3860–3863

  15. Gao L, Li J, Khodadadzadeh M, Plaza A, Zhang B, He Z, Yan H (2015) Subspace-based support vector machines for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(2):349–353

    Article  Google Scholar 

  16. Ham J, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492–501

    Article  Google Scholar 

  17. Hao Q, Li S, Kang X (2020) Multilabel sample augmentation-based hyperspectral image classification. IEEE Trans Geosci Remote Sens 58(6):4263–4278

    Article  Google Scholar 

  18. Haut JM, Paoletti ME, Plaza J, Li J, Plaza A (2018) Active learning with convolutional neural networks for hyperspectral image classification using a new bayesian approach. IEEE Trans Geosci Remote Sens 99:1–22

    Google Scholar 

  19. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision. pp 1026–1034

  20. Hong D, Wu X, Ghamisi P, Chanussot J, Yokoya N, Zhu XX (2020) Invariant attribute profiles: A spatial-frequency joint feature extractor for hyperspectral image classification. IEEE Trans Geosci Remote Sens 58(6):3791–3808

    Article  Google Scholar 

  21. Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J Sens 2015

  22. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. pp. 1725–1732

  23. Kingma DP, Ba JL (2014) Adam: A method for stochastic optimization. Proc. 3rd Int. Conf. Learn. Representations. pp. 1–15

  24. Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: A convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113

    Article  Google Scholar 

  25. Le QV (2013) Building high-level features using large scale unsupervised learning. Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on pp. 8595–8598

  26. Le Saux B, Yokoya N, Hansch R, Prasad S (2018) 2018 ieee grss data fusion contest: Multimodal land use classification [technical committees]. IEEE Geosci Remote Sens Mag 6(1):52–54

    Article  Google Scholar 

  27. Li J, Bioucas-Dias JM, Plaza A (2012) Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Trans Geosci Remote Sens 50(3):809–823

    Article  Google Scholar 

  28. Li J, Bioucas-Dias JM, Plaza A (2013) Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci Remote Sens Lett 10(2):318–322

    Article  Google Scholar 

  29. Li W, Chen C, Su H, Du Q (2015) Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 53(7):3681–3693

    Article  Google Scholar 

  30. Li W, Wu G, Zhang F, Du Q (2017) Hyperspectral image classification using deep pixel-pair features. IEEE Trans on Geoscience and Remote Sens 55(2):844–853

    Article  Google Scholar 

  31. Lin M, Chen Q, Yan S (2013) Network in network. arXiv preprint arXiv:1312.4400

  32. Liu W, Mei T, Zhang Y, Che C, Luo J (2015) Multi-task deep visual-semantic embedding for video thumbnail selection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3707–3715

  33. Lore KG, Akintayo A, Sarkar S (2017) Llnet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recogn 61:650–662

    Article  Google Scholar 

  34. Luus FP, Salmon BP, Van den Bergh F, Maharaj BTJ (2015) Multiview deep learning for land-use classification. IEEE Geosci Remote Sens Lett 12(12):2448–2452

    Article  Google Scholar 

  35. Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proc. icml, vol. 30. p. 3

  36. Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International. IEEE, pp. 4959–4962

  37. Mei X, Pan E, Ma Y, Dai X, Huang J, Fan F, Du Q, Zheng H, Ma J (2019) Spectral-spatial attention networks for hyperspectral image classification. Remote Sens 11(8):963

    Article  Google Scholar 

  38. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814

  39. Pal M, Foody GM (2010) Feature selection for classification of hyperspectral data by svm. IEEE Trans Geosci Remote Sens 48(5):2297–2307

    Article  Google Scholar 

  40. Parkhi OM, Vedaldi A, Zisserman A et al (2015) Deep face recognition. In: BMVC 1. p 6

  41. Patel H, Upla K (2018) Aecnn: Autoencoder with convolutional neural network for hyperspectral image classification. Workshop on Computer Vision Applications (WCVA) in IEEE Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP) 

  42. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

    Article  Google Scholar 

  43. Roy SK, Krishna G, Dubey SR, Chaudhuri BB (2019) Hybridsn: Exploring 3-d-2-d cnn feature hierarchy for hyperspectral image classification. IEEE Geosci Remote Sens Lett 17(2):277–281

    Article  Google Scholar 

  44. Windrim L, Melkumyan A, Murphy RJ, Chlingaryan A, Ramakrishnan R (2018) Pretraining for hyperspectral convolutional neural network classification. IEEE Trans Geosci Remote Sens

  45. Xu X, Li W, Ran Q, Du Q, Gao L, Zhang B (2018) Multisource remote sensing data classification based on convolutional neural network. IEEE Trans Geosci Remote Sens 56(2):937–949

    Article  Google Scholar 

  46. Yan D, Chu Y, Li L, Liu D (2018) Hyperspectral remote sensing image classification with information discriminative extreme learning machine. Multimed Tools Appl 77(5):5803–5818

    Article  Google Scholar 

  47. Yu S, Jia S, Xu C (2017) Convolutional neural networks for hyperspectral image classification. Neurocomputing 219:88–98

    Article  Google Scholar 

  48. Yue J, Zhao W, Mao S, Liu H (2015) Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens Lett 6(6):468–477

    Article  Google Scholar 

  49. Zhao W, Du S (2016) Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554

    Article  Google Scholar 

  50. Zhao W, Guo Z, Yue J, Zhang X, Luo L (2015) On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Int J Remote Sens 36(13):3368–3379

    Article  Google Scholar 

  51. Zhu C, Peng Y (2015) A boosted multi-task model for pedestrian detection with occlusion handling. IEEE Trans Image Process 24(12):5619–5629

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor P. Upla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, H., Upla, K.P. A shallow network for hyperspectral image classification using an autoencoder with convolutional neural network. Multimed Tools Appl 81, 695–714 (2022). https://doi.org/10.1007/s11042-021-11422-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11422-w

Keywords

Navigation