Skip to main content
Log in

Quaternion cartesian fractional hahn moments for color image analysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Moment descriptors have been widely used for the analysis and representation of images. In this paper, we propose a new set of discrete orthogonal moments of fractional order, called Quaternion Cartesian Fractional Hahn Moments. The proposed QCFrHMs are based on new Fractional Hahn Polynomials and generalize the classical Quaternion Hahn Moments. First, FrHPs are proposed and defined using eigenvalue decomposition and the spectral representation of the classical Hahn polynomial matrix. Then, the proposed FrHPs are used as a kernel function to define the new Fractional Hahn Moments. Finally, based on quaternion algebra, the FrHMs for grayscale images are generalized to the QCFrHMs for color images. The proposed QCFrHMs depend on four parameters: two polynomial parameters and two fractional orders, which allow us to use them to propose a robust, blind and efficient watermarking scheme for the copyright protection of color images where the requirements of a watermarking scheme are successfully ensured thanks to the performance of the proposed QCFrHMs. Experimental results are provided to illustrate the effectiveness of the proposed color image descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

QCFrHMs :

Quaternion Cartesian Fractional Hahn Moments.

QCHMs :

Quaternion Cartesian Hahn Moments.

FrHMs :

Fractional Hahn Moments.

FrHPs :

Fractional Hahn Polynomials.

PSNR :

Peak Signal to Noise Ratio.

BER :

Bit Error Rate

References

  1. Benouini R, Batioua I, Zenkouar K, Zahi A, Najah S, Qjidaa H (2019) Fractional-order orthogonal Chebyshev Moments and Moment Invariants for image representation and pattern recognition. Pattern Recogn 86:332–343

    Article  Google Scholar 

  2. Bin TJ, Lei A, Jiwen C, Wenjing K, Dandan L (2008) Subpixel edge location based on orthogonal Fourier-Mellin moments. Image Vis Comput 26(4):563–569

    Article  Google Scholar 

  3. Chen B, Wornell GW (2001) Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 47(4):1423–1443

    Article  MathSciNet  Google Scholar 

  4. Daoui A, Yamni M, El ogri O, Karmouni H, Sayyouri M, Qjidaa H (2020) New algorithm for large-sized 2D and 3D image reconstruction using higher-order Hahn moments. Circ Syst Signal Process 39:1–26

    Article  Google Scholar 

  5. El ogri O, Daoui A, Yamni M, Karmouni H, Sayyouri M, Qjidaa H (2019) 2D and 3D medical image analysis by discrete orthogonal moments. Procedia Comput Sci 148:428–437. https://doi.org/10.1016/j.procs.2019.01.055

    Article  MATH  Google Scholar 

  6. Flusser J, Suk T, Zitova B (2016) 2D and 3D image analysis by moments. Wiley, Chichester

    Book  Google Scholar 

  7. Hmimid A, Sayyouri M, Qjidaa H (2015) Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recogn 48(2):509–521. https://doi.org/10.1016/j.patcog.2014.08.020

    Article  MATH  Google Scholar 

  8. Hosny KM (2011) Image representation using accurate orthogonal Gegenbauer moments. Pattern Recogn Lett 32(6):795–804

    Article  Google Scholar 

  9. Hosny KM, Darwish MM (2019) Resilient color image watermarking using accurate quaternion radial substituted Chebyshev moments. ACM Transact Multimedia Comput Commun Application (TOMM) 15(2):1–25

    Article  Google Scholar 

  10. Karakasis EG, Papakostas GA, Koulouriotis DE, Tourassis VD (2013) A unified methodology for computing accurate quaternion color moments and moment invariants. IEEE Trans Image Process 23(2):596–611

    Article  MathSciNet  Google Scholar 

  11. Karmouni H, Jahid T, Lakhili Z, Hmimid A, Sayyouri M, Qjidaa H, Rezzouk A (2017) Image reconstruction by Krawtchouk moments via digital filter. ISCV 2017:1–7

    Google Scholar 

  12. Karmouni H, Jahid T, Sayyouri M, Hmimid A, Qjidaa H (2019) Fast reconstruction of 3D images using charlier discrete orthogonal moments. Circuits Systems Signal Process 38(8):3715–3742

    Article  Google Scholar 

  13. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

    Article  Google Scholar 

  14. Li Z, Gong-bin Q, Wei-wei X (2007) Geometric distortions invariant blind second generation watermarking technique based on Tchebichef moment of original image. Journal of Software 18(9):2283–2294

    Article  Google Scholar 

  15. Liu X, Han G, Wu J, Shao Z, Coatrieux G, Shu H (2017) Fractional Krawtchouk transform with an application to image watermarking. IEEE Trans Signal Process 65(7):1894–1908

    Article  MathSciNet  Google Scholar 

  16. Mandal MK, Aboulnasr T, Panchanathan S (1996) Image indexing using moments and wavelets. IEEE Trans Consum Electron 42(3):557–565

    Article  Google Scholar 

  17. Mukundan R, Ong SH, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364

    Article  MathSciNet  Google Scholar 

  18. Nikiforov AF, Uvarov VB (1988) Special functions of mathematical physics. Birkhäuser Boston, Boston, MA

    Book  Google Scholar 

  19. Niu P, Wang P, Liu Y, Yang H, Wang X (2016) Invariant color image watermarking approach using quaternion radial harmonic Fourier moments. Multimedia Tools and Applications 75(13):7655–7679

    Article  Google Scholar 

  20. Ping Z, Wu R, Sheng Y (2002) Image description with Chebyshev-Fourier moments. JOSA A 19(9):1748–1754

    Article  MathSciNet  Google Scholar 

  21. Rahmalan H, Abu NA, Wong SL (2010) Using tchebichef moment for fast and efficient image compression. Pattern Recognit Image Anal 20(4):505–512

    Article  Google Scholar 

  22. Ryu S-J, Kirchner M, Lee M-J, Lee H-K (2013) Rotation invariant localization of duplicated image regions based on Zernike moments. IEEE Trans Inf Forensics Secur 8(8):1355–1370

    Article  Google Scholar 

  23. Sangwine SJ (1996) Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electron Lett 32(21):1979–1980

    Article  Google Scholar 

  24. Sayyouri M, Hmimid A, Qjidaa H (2015) A fast computation of novel set of Meixner invariant moments for image analysis. Circuits Systems Signal Process 34(3):875–900

    Article  Google Scholar 

  25. Sayyouri M, Hmimid A, Qjidaa H (2016) Image analysis using separable discrete moments of Charlier-Hahn. Multimedia tools and applications 75(1):547–571

    Article  Google Scholar 

  26. Shape Matching/Retrieval. http://www.dabi.temple.edu/~shape/MPEG7/dataset.html. Accessed 13 May 2020.

  27. Sheng Y, Shen L (1994) Orthogonal Fourier-Mellin moments for invariant pattern recognition. JOSA A 11(6):1748–1757

    Article  Google Scholar 

  28. SIPI Image Database. http://sipi.usc.edu/database/. Accessed 13 May 2020.

  29. Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930. https://doi.org/10.1364/JOSA.70.000920

    Article  MathSciNet  Google Scholar 

  30. Tsougenis ED, Papakostas GA, Koulouriotis DE, Karakasis EG, Karras DA (2013) Color image watermarking via quaternion radial Tchebichef moments. IEEE Int Conf Imaging Syst Techniques (IST) 2013:101–105

    Google Scholar 

  31. Tsougenis ED, Papakostas GA, Koulouriotis DE, Karakasis EG (2014) Adaptive color image watermarking by the use of quaternion image moments. Expert Syst Appl 41(14):6408–6418

    Article  Google Scholar 

  32. Tsougenis ED, Papakostas GA, Koulouriotis DE (2015) Image watermarking via separable moments. Multimed Tools Appl 74(11):3985–4012. https://doi.org/10.1007/s11042-013-1808-y

    Article  Google Scholar 

  33. Wang X, Wang C, Yang H, Niu P (2013) A robust blind color image watermarking in quaternion Fourier transform domain. J Syst Softw 86(2):255–277

    Article  Google Scholar 

  34. Wang X, Niu P, Yang H, Wang C, Wang A (2014) A new robust color image watermarking using local quaternion exponent moments. Inf Sci 277:731–754

    Article  Google Scholar 

  35. Xiao B, Li L, Li Y, Li W, Wang G (2017) Image analysis by fractional-order orthogonal moments. Inf Sci 382:135–149

    Article  Google Scholar 

  36. Xiao B, Luo J, Bi X, Li W, Chen B (2020) Fractional discrete Tchebyshev moments and their applications in image encryption and watermarking. Inf Sci 516:545–559

    Article  MathSciNet  Google Scholar 

  37. Yamni M, Daoui A, El ogri O, Karmouni H, Sayyouri M, Qjidaa H, Flusser J (2020) Fractional Charlier moments for image reconstruction and image watermarking. Signal Process 171:107509. https://doi.org/10.1016/j.sigpro.2020.107509

    Article  MATH  Google Scholar 

  38. Yamni M, Daoui A, El ogri O, Karmouni H, Sayyouri M, Qjidaa H, Maaroufi M, Alami B (2021) Fast and Accurate Computation of 3D Charlier Moment Invariants for 3D Image Classification. Circuits, Systems, and Signal Processing, pp. 1–31

  39. Yamni M, Karmouni H, Sayyouri M, Qjidaa H (2020) Color stereo image zero-watermarking using quaternion radial tchebichef moments. ISCV 2020:1–7

    MATH  Google Scholar 

  40. Yamni M, Karmouni H, Sayyouri M, Qjidaa H (2021) Image watermarking using separable fractional moments of Charlier–Meixner. J Franklin Inst 358(4):2535–2560. https://doi.org/10.1016/j.jfranklin.2021.01.011

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang B, Dai M (2012) Image reconstruction from continuous Gaussian-Hermite moments implemented by discrete algorithm. Pattern Recogn 45(4):1602–1616

    Article  Google Scholar 

  42. Yang H-Y, Wang X-Y, Niu P-P, Wang A-L (2015) Robust color image watermarking using geometric invariant quaternion polar harmonic transform. ACM Transact Multimedia Comput Commun Application (TOMM) 11(3):1–26

    Google Scholar 

  43. Yap P-T, Paramesran R, Ong S-H (2003) Image analysis by Krawtchouk moments. IEEE Trans Image Process 12(11):1367–1377

    Article  MathSciNet  Google Scholar 

  44. Yap P-T, Paramesran R, Ong S-H (2007) Image analysis using Hahn moments. IEEE Trans Pattern Anal Mach Intell 29(11):2057–2062. https://doi.org/10.1109/TPAMI.2007.70709

    Article  Google Scholar 

  45. Zhang H, Li Z, Liu Y (2016) Fractional orthogonal Fourier-Mellin moments for pattern recognition. Chin Conf Pattern Recogn 2016:766–778

    Article  Google Scholar 

  46. Zhu H, Shu H, Zhou J, Luo L, Coatrieux JL (2007) Image analysis by discrete orthogonal dual Hahn moments. Pattern Recogn Lett 28(13):1688–1704. https://doi.org/10.1016/j.patrec.2007.04.013

    Article  Google Scholar 

  47. Zhu H, Shu H, Liang J, Luo L, Coatrieux J-L (2007) Image analysis by discrete orthogonal Racah moments. Signal Process 87(4):687–708

    Article  Google Scholar 

  48. Zhu H, Liu M, Shu H, Zhang H, Luo L (2010) General form for obtaining discrete orthogonal moments. IET Image Proc 4(5):335–352

    Article  MathSciNet  Google Scholar 

  49. Zhou J, Shu H, Zhu H, Toumoulin C, Luo L (2005) Image analysis by discrete orthogonal Hahn moments. International conference image analysis and recognition. Springer, Berlin, P 524–531.

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sayyouri.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamni, M., Karmouni, H., Sayyouri, M. et al. Quaternion cartesian fractional hahn moments for color image analysis. Multimed Tools Appl 81, 737–758 (2022). https://doi.org/10.1007/s11042-021-11432-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11432-8

Keywords

Navigation