Skip to main content
Log in

An improved method of linear spectral clustering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Superpixel segmentation is a popular image preprocessing technology in image processing. Among the various methods used to calculate uniform superpixel, the performance of linear spectral clustering (LSC) is better than the state-of-the-art superpixel segmentation algorithms. However, this method is slow on images and has low accuracy on non-convex images. In order to improve this problem, we propose a subsampled clustering method that can accelerate LSC. Meanwhile, this paper presents an improved distance measurement method based on non-convex image features and Manhattan distance, which can achieve high accuracy on non-convex images. The proposed method is evaluated on the BSDS500 dataset. The experimental results confirmed that this method runs faster than LSC, and at the same time produces almost the same superpixel segmentation accuracy on the images. In addition, the proposed method improves the accuracy of superpixel segmentation on non-convex images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Achanta R, Shaji A, Smith K et al (2012) SLIC superpixel compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 11:2274–2282. https://doi.org/10.1109/TPAMI.2012.120

    Article  Google Scholar 

  2. Achanta R, Susstrunk S (2017) Superpixel and polygons using simple non-iterative clustering. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 4895–490

  3. Alexandre EB, Chowdhury AS, Falcão AX et al (2015) IFT-SLIC: a general framework for superpixel generation based on simple linear iterative clustering and image foresting transform. In: Graphics, patterns and images. IEEE, pp 337–344

  4. Arbeláez P, Maire M, Fowlkes C et al (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33:898–916. https://doi.org/10.1109/TPAMI.2010.161

    Article  Google Scholar 

  5. Belem FC, Guimaraes SJF, Falcao AX (2020) Superpixel segmentation using dynamic and iterative spanning forest. IEEE Signal Process Lett 27:1440–1444. https://doi.org/10.1109/LSP.2020.3015433

    Article  Google Scholar 

  6. Chen J, Li Z, Bo H (2017) Linear spectral clustering superpixel. IEEE Trans Image Process 7:3317–3330. https://doi.org/10.1109/TIP.2017.2651389

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen LC, Zhu Y, Papandreou G et al (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) European conference on computer vision. Springer, Cham, pp 833–851

    Google Scholar 

  8. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 5:603–619. https://doi.org/10.1109/34.1000236

    Article  Google Scholar 

  9. Cour T, Shi J (2007) Recognizing objects by piecing together the segmentation puzzle. In: IEEE conference on computer vision & pattern recognition. IEEE, pp 1–8

  10. Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without eigenvectors: a multilevel approach. IEEE Trans Pattern Anal Mach Intell 29:1944–1957. https://doi.org/10.1109/TPAMI.2007.1115

    Article  Google Scholar 

  11. Feng HW, Xiao F, Bu QR et al (2017) An accelerated superpixel generation algorithm based on 4-labeled-neighbors. In: CCF Chinese conference on computer vision. Springer, pp 539–550

  12. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59:167–181. https://doi.org/10.1023/B:VISI.0000022288.19776.77

    Article  MATH  Google Scholar 

  13. Haralick R, Shanmugam K et al (1973) Textural features for image classification. Syst Man Cybernet 6:610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  14. Levinshtein A, Stere A, Kutulakos KN et al (2009) TurboPixels: fast superpixel using geometric manifolds. IEEE Trans Pattern Anal Mach Intell 12:2290–2297. https://doi.org/10.1109/TPAMI.2009.96

    Article  Google Scholar 

  15. Li Z, Chen J (2015) Superpixel segmentation using linear spectral clustering. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1356–1363

  16. Liu MY, Tuzel O, Ramalingam S et al (2011) Entropy rate superpixel segmentation. In: Computer vision and pattern recognition. IEEE, pp 2097–2104

  17. Liu YJ, Yu CC, Yu MJ et al (2016) Manifold SLIC: a fast method to compute content-sensitive superpixel. In: Computer vision and pattern recognition. IEEE, pp 651–659

  18. Ma B, Hu H, Shen J et al (2016) Generalized pooling for robust object tracking. IEEE Trans Image Process 9:4199–4208. https://doi.org/10.1109/TIP.2016.2588329

    Article  MathSciNet  MATH  Google Scholar 

  19. Qian X, Li XM, Zhang C (2019) Weighted superpixel segmentation. Vis Comput 35:985–996. https://doi.org/10.1007/s00371-019-01682-x

    Article  Google Scholar 

  20. Reddy NS, Faruq MSU, Lakshmi KR (2016) Image segmentation by using linear spectral clustering. Int J Adv Res Comput Commun Eng. https://doi.org/10.17148/IJARCCE.2016.51009

    Article  Google Scholar 

  21. Ren XF, Jitendra M (2008) Learning a classification model for segmentation. In: IEEE international conference on computer vision. IEEE, pp 10–17

  22. Shi J, Malik JM (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 8:888–905. https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  23. Tenenbaum JB et al (2000) A Global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323. https://doi.org/10.1126/science.290.5500.2319

    Article  Google Scholar 

  24. Tian ZQ, Zheng NN, Xue JR, Lan XG (2014) Video object segmentation with shape cue based on spatiotemporal superpixel neighbourhood. IET Comput Vis 8:16–25. https://doi.org/10.1049/iet-cvi.2012.0189

    Article  Google Scholar 

  25. Vedaldi A, Soatto S (2008) Quick shift and kernel methods for mode seeking. In: European conference on computer vision. Springer, pp 705–718

  26. Wang H, Peng X, Xiao X et al (2017) BSLIC: SLIC superpixels based on boundary term. Symmetry 3:31. https://doi.org/10.3390/sym9030031

    Article  MathSciNet  Google Scholar 

  27. Zhu L, Kang XJ, Ming AL, Zhang XS (2018) Dynamic Random Walk for Superpixel Segmentation. In: Conference on Asian conference on computer vision. Springer, pp 540–554

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianzu Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, N., Di, L. An improved method of linear spectral clustering. Multimed Tools Appl 81, 1287–1311 (2022). https://doi.org/10.1007/s11042-021-11459-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11459-x

Keywords

Navigation