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LSB steganography detection in monochromatic still images 
using artificial neural networks

Julián D. Miranda1   · Diego J. Parada1

Abstract
Embedding graphic content in multimedia through steganography is a useful and fast prac-
tice to hide information. However, detecting the use of this technique is complex and some-
times unsuccessful because variations are not visually perceptible. This article proposes  
the use of a binary classification model based on artificial neural networks to detect the 
presence of LSB steganography on monochromatic still images of 256x256 and 8 bits, 
based on the Standford Genome Project. The steganograms were generated by varying the 
payload from 0.1 to 0.5 to obtain image pairs of carriers and steganograms. For each steg-
anogram, the following features were extracted from image histograms: kurtosis, skewness, 
standard deviation, range, median, harmonic mean, Hjorth mobility, and complexity. The 
results show that the classifier reaches a 91.45% accuracy in detecting LSB steganography 
when learning from all payloads, as well as a 96.78% individual classification accuracy in 
the best case with a payload of 0.5.

Keywords  Steganography · Steganalysis · Artificial neural networks · Least significant bit

1  Introduction

The mechanism of human vision is based on the trichromatic identification (three-
dimensional vision) of colors. These are perceived by photoreceptors (light-sensitive 
receivers) distributed on the periphery and interior of the fovea, a structure located in 
the retina in which the vision of objects triggers [7]. The information obtained, pro-
duced by this perception, is transduced from biological signals to electrical impulses 
that are sent through the optic nerve or second cranial nerve and interpreted by the brain 
[23], which is able to distinguish approximately 2.7 million different hues. This without 
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considering changes in color hues caused by variations in lighting conditions that do not 
affect color but perception [16].

Computational visual representation of the objects observed can be made by diverse 
visual multimedia, such as still images or photograms that have no movement. This rep-
resentation is made in a matrix way in which delimited intensities are stored defined 
by a specific interval, usually containing 256 levels (8 bits) per dimension. If a trichro-
matic vision is considered, these 256 levels represented in three dimensions become 
more than 16 million chromatic possibilities [10]. Accordingly, there are more chances 
of representing object hues in still images than those the human eye can perceive, which 
is take advantage of by certain computational techniques focused on information con-
cealment, such as steganography images.

Steganography is a practice to embed messages in innocuous objects carriers that 
are often framed in visual or auditory media of multimedia type [8]. When it comes 
to media as still images, there are two groups of stenographic techniques which allow 
concealing visual or written information (images or text messages either formatted or 
unformatted): LSB steganography by substitution and LSB steganography by coinci-
dence or matching [28], where LSB stands for Least Significant Bit. In both cases, the 
carrier image is modified in the spatial domain, making variations in the least signifi-
cant bits of the intensities in order to embed the message. However, although the image 
has changed its intensity hues, outwardly, it remains invariable to the human eye as a 
result of trichromatic perception explained.

Thus, steganography in still images proves to be hardly recognizable by the human 
eye, which has made it usable to conceal sensitive information through various trans-
mission information media, breaking through human filters undetected [31] and expand-
ing security breaches to control the static visual multimedia. LSB steganography is 
one of the most popular spatial steganography techniques implemented [31], as it is a 
relatively simple practice to perform and difficult to detect. There are other more com-
plex spatial practices, such as Discrete Cosine Transform (DCT) and Discrete Wavelet 
Transform (DWT). However, although they are more robust to modifications, they have 
limitations in the embedding capacity. If this capacity is increased, then the peak-signal-
to-noise-ratio (PSNR), which measures the quality of the steganogram when compared 
to the carrier image, is considerably poor. In this way, LSB steganography becomes a 
widely used attack vector due to its vast embedding capacity and PSNR performance.

According to Chet Hosmer [20], President and CEO of Wetstone Technologies, 
approximately 0.6% of the content of images that are shared on websites have embed-
ded graphic content. GeoEdge PR Department [9], provider of security solutions and 
verification of mobile and online advertising, in their report published on November 15, 
2018, they document an exponential increase in the number of advertising images with 
steganography. According to GeoEdge, this rise has left a balance of approximately 120 
million dollars in additional costs to advertisers and 920 million dollars to online adver-
tising consumers in 2018, as most images contain malicious software embedded which 
executes automatically when opening them.

As David Buchanan [5] demonstrated when concealing information in images 
and publishing them on social networks like Twitter and Facebook, this information 
becomes undetectable both to the human eye and web services, making it undistinguish-
able between images with or without embedded content. This is because, although there 
are mechanisms for the detection of steganography in images, they are based on vis-
ual techniques, and statistics, which consider the purely spatial content [3], leading to 
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information concealing by means of techniques with random patterns and subtle varia-
tions that are visually undetectable.

The aim of this paper is to present the development of an algorithm for the detection 
of LSB steganography embedded in the spatial domain of monochromatic still images, by 
means of the use of binary classification models based on artificial neural networks, col-
laborating with steganalysis processes of one-dimensional images.

2 � State of the art

A study of the state-of-the-art was carried out in order to identify various applications of 
Neural Networks in the identification of LSB steganography in still images. In Table  1, 
has been detailed the state of the art relevant to this research. This table shows that several 
works have been developed in the field of steganalysis of monochromatic images and color 
images, by using artificial neural networks and convolutional neural networks. The period 
analyzed in this study dates from 2016 to 2019, the interval in which this type of learning 
techniques for steganography detection has begun to be used. Several works of relevance 
for this research are detailed below.

Ingale et al. [14] in 2016 developed a model of artificial neural network for the stega-
nalysis of LSB steganography in images with three spatial resolutions:128x128, 256x256 
and 512x512, and four densities of embedded content (payload): 5%, 10%, 15% and 20% 
of the total size of the input image. 150 input images were used for the training process and 
50 images were used for testing the model, divided into 50% for carrier images and 50% for 
images with steganography. These images were generated by using steganPEG and Quick-
stego in JPEG format. Each image was sectioned in windows with a spatial resolution of 8 
rows and 8 columns, extracting the histogram of each window and calculating entropy as 
the main attribute of model input, for a total of 16, 32 and 64 input attributes for images 
with spatial resolutions stipulated, respectively. The binary classifier application resulting 
from the neural network classification model achieved an accuracy of between 97% and 
99%.

In 2016, Qian et al. [26], on the other hand, developed a learning model based on Con-
volutional Neural Networks (CNN) for the identification of spatial attributes in images 
with LSB Steganography, from images coming from BOSSbase (Break Our Steganography 
System) v1.01, a database of grayscale images designed to execute steganalysis tests. This 
database contains 10,000 carrier images and images with steganography, with 50% distri-
bution and spatial resolution of 512x512. 70% of this dataset was assigned to model train-
ing, 10% to validation and 20% to testing. Five densities of embedded content (payload) 
were considered: 0.1, 0.2, 0.3, 0.4 and 0.5 bpp (bits per pixel). The classifier achieved a 
performance measured in accuracy of between 84% and 86%.

Following the implementation of CNN for detecting steganography in monochromatic 
images, Wu et al. [34] developed in 2016 a learning model with deep residual networks 
(DRN) from 10,000 images with spatial resolution 512x512, coming from the database 
called BOSSbase (Break Our Steganography System) v1.01. The authors extracted four 
non-overlapping windows of 256x256 from each image, in a way that a set of 40.000 
input images were settled, with a density of embedded content (payload) of 0.4 bpp. 
They used five known algorithms to embed steganographic content to input images: 
HUGO-BD (Undetectable steganography With Bounding Distortion), WOW (Wavelet 
Obtained Weights steganography), HILL (High-pass Low-pass Low-pass steganography), 
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S-UNIWARD and MiPOD. 50% of this data set was assigned for model training and 50% 
for testing. The classifier’s performance measured in accuracy ranked between 89% and 
96%.

In 2017, Wu et al. [35] used the same learning model based on CNN proposed in 2016 
for image binary classification with LSB steganography, starting from images coming from 
the BOSSbase database (Break Our Steganography System) v1.01. They used again four 
known algorithms for embedding steganographic content to input images: HUGO-BD, 
DC, and S-UNIWARD HILLF. Five densities of embedded content (payload) were con-
sidered for this study: 0.05, 0.1, 0.2, 0.3 and 0.4 bpp (bits per pixel). 50% of this data set 
was assigned for model training and 50% for testing. The classifier achieved an accuracy 
between 68% and 84%.

Likewise, Sharifzadeh et  al. [30] developed in 2017 a learning model based on CNN 
for binary classification of images with LSB steganography, from 10,000 images with a 
spatial resolution of 512x512 coming from BOSSbase database (Break Our Steganography 
System) v1.01. The authors used three known algorithms for embedding steganographic 
content to input images: HUGO, HILL, and S-UNIWARD. Two densities of embedded 
content (payload) were considered: 0.1 and 0.4 bpp, evenly distributed over the set of input 
images. 80% of the pairs of images (carrier and steganography) was assigned for training 
model and 20% for testing. The classifier achieved an accuracy of about 70%.

In 2017, Kim and Lee [17, 18] developed a system based on CNN for the identification 
of images with steganography in the spatial domain, considering two preprocessing stages: 
filtering by means of a high pass filter (HPF) and filtering through a binarization differen-
tial filter (BDF). The authors used 10,000 images for the study, with a spatial resolution 
of 512x512, coming from BOSSbase (Break Our Steganography System) database v1.01 
and SIPI. Four non-overlapping windows of 256x256 from each image were extracted by 
the authors, and a steganography algorithm with two configurations was implemented, in 
such a way that a set of 80.000 input image was formed. The density of embedded content 
(payload) was 0.4 bpp. 75% of this dataset was assigned for the model training and 25% for 
testing. The classifier’s accuracy was between 96% and 98%.

Chhikara and Kumari [4] developed in 2017 a binary classification model for detecting 
steganography on still images, focusing on the feature selection process. This process was 
based on the Wrapper GLBPSO method, which allowed the authors the detection of the 
interactions among variables, considering the Discrete Cosine Transformation (DCT) [25] 
and the Subtraction Pixel Adjacency model (SPAM) [24]. The data set consisted of 5,000 
pairs of JPEG images distributed in 60% for training and 40% for testing. The stegano-
graphic content was embedded considering four densities of embedded content (payload): 
10%, 25%, 50% and 100% of the total size of the input image. Each image was cropped in 
windows with a spatial resolution of 8 rows and 8 columns. The features were extracted 
from these windows, which served as the input of the input neurons of the binary classifi-
cation model. The classifier achieved an accuracy of between 95% and 96%.

In 2017, Aljarf et al. [2] developed a system based on artificial neural network and mul-
tilayer perceptrons (MLP) for binary classification of grayscale images and color images 
with LSB steganography, based on image histogram features. The authors identified that 
the peak value of the histogram decreased when LSB content was embedded, while the re-
normalized histogram (the radius of the histogram to the peak value) increased. The set of 
4.800 input images used by the authors was distributed as follows: 2.400 grayscale images 
(1.200 carriers and 1.200 with steganography) and 2.400 color images (1.200 carriers and 
1.200 with steganography). All images counted on a spatial resolution of 512x512 and two 
densities of embedded content (payload) were considered: 10% and 25% of the total size of 
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the input image. 70% of pairs of images (carriers and with steganography) were assigned 
for the model training and 30% for testing. The classifier achieved a performance measured 
in accuracy between 86% and 90%.

A precise focus on the implementation of standardized algorithms of steganalysis was 
executed by Qian et  al. [27] in 2018, who developed a CNN model to assess the learn-
ing attributes of steganalysis by applying the HUGO, WOW, S-UNIWARD, MiPOD, and 
HILL algorithms on a set of 5,000 images with spatial resolution of 256x256. These images 
were adapted from the BOSSbase (Break Our steganography System) database v1.01, 
forming 5,000 pairs of input images (carriers and with steganography). The images were 
transformed by running reflections on each of the axes, with which were formed 100,000 
images in total. A density of embedded content (payload) of 0.5 bpp was considered. 80% 
of pairs of images (carriers and with steganography) was assigned for model training and 
20% for testing. The classifier achieved an accuracy between 72% and 88%.

In 2019, Sun et  al. [32] developed a learning model based on CNN for binary clas-
sification of images with LSB steganography, from 10,000 images with a spatial resolu-
tion of 512x512 from BOSSbase (Break Our Steganography System) databases v1.01 and 
BOWS2. The authors extracted four windows from each image, in a way that an initial 
set of 40,000 input images with a density of embedded content of 0.1 bpp was formed. 
From this set were extracted 5,800 pairs of images. 70% of the pairs of images (carriers 
and with steganography) was allocated for model training. 30% of the set of input images 
was divided into 10 sets of 50, 20 and 10 images each one, and three sets were chosen to 
execute the tests. A fourth set was formed with the same images of one of the three sets 
chosen, but with a variation in the density of embedded content, setting it in 0.5 bpp. The 
classifier achieved a performance measured in accuracy between 91% and 92%.

3 � Methodology

The methodology followed in this work is shown in Fig. 1. First, a selection of the dataset 
was performed. Subsequently, a preprocessing of the images was made in order to obtain 
a set of pairs of monochromatic images with a uniform spatial resolution with and without 
LSB steganography. These pairs of images were entered into the classification process that 
identified the existence of steganography. Here is explained in more detail each of these 
stages.

3.1 � Dataset selection

The set of sample images was taken from Standford’s database derived from the Genome 
Project, available in [19]. This database contains an image population of 108.077 RGB 
images in JPEG format, labeled and categorized in 80.138 different categories, with spatial 
resolutions from 72 pixels in length and width, up to 1,280 pixels width and length, with 
an average of 500 pixels width and length. This allows us to state that the database is het-
erogeneous as for kinds and spatial resolutions, which makes the task of classification by 
means of neural network models head to be generalizable.

From this population was extracted an initial sample of color images, considering two 
criteria: the homogenization of the spatial resolution and the temporary complexity in the 
preprocessing and classification model training, as documented [35] and [27].

790 Multimedia Tools and Applications (2022) 81:785–805
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3.2 � Preprocessing of the image dataset

The preprocessing of the set of selected images was performed by using the Matlab work 
environment in its R2018a version with educational license number 160127 and Data 
Acquisition Toolbox and Communications Toolbox.

The whole preprocessing process is shown in Fig. 2. First, we proceed to represent color 
images chosen in the previous step in a one-dimensional color model. Thus, 70.000 JPEG 
monochromatic images with a fixed spatial resolution of 256x256 and a depth of 8 bits 
(256 levels of intensity from 0 to 255) are obtained. Subsequently, the set is divided into 
two datasets, one for training (80% of monochromatic images chosen randomly) and one 
for testing (20% of monochromatic images chosen randomly). Each of these two sets was 
halved to form pairs of carrier images and images with LSB steganography so that the 

Fig. 1   Block diagram of the 
methodology proposed for the 
detection of LSB steganography

Fig. 2   Block diagram of the data-
set preprocessing stage

791Multimedia Tools and Applications (2022) 81:785–805
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binary classification model would be trained with an equal number of observations, which 
avoids an imbalance of classes.

These division processes were carried out by choosing images randomly from each of 
the sets established. Finally, the set of monochromatic images that were going to be altered 
with steganography was divided randomly and equally into five sub-kinds which identify 
the five loads of density of steganographic content (payloads): 0.1, 0.2, 0.3, 0.4 and 0.5. 
Each of these subclasses had a total of 5,600 observations. While each set was sectioned, a 
function of random transformation on monochrome images comprising seven transforma-
tions was applied:

–	 0◦ clockwise image rotation ( r
0◦

).
–	 90◦ clockwise image rotation ( r

90◦
).

–	 180◦ clockwise image rotation ( r
180◦

).
–	 270◦ clockwise image rotation ( r

270◦
).

–	 Image reflection around the vertical axis ( Rv).
–	 Image reflection around the horizontal axis ( Rh).
–	 Transpose of the image matrix ( Timage).

The application of these transformations was made once for each image randomly and the 
carrier images were stored in the BMP format to prevent image compression which may 
affect the spatial variations executed.

An LSB steganography embedding algorithm used to hide graphic content in mono-
chrome images is based on the algorithm presented by [6]. This algorithm is a variation 
of the traditional LSB steganography algorithm, with a constan message image. A random 
sequence based on a Pseudo-Random Number Generators (PRNG) is defined, and with the 
sequence, the pixels to be modified are assigned. Additionally, an XOR operation is made 
between the least significant bit of the pixels to be assigned of the carrier image, with the 
message’s bits. This procedure makes it difficult to detect the message image, as docu-
mented by [6]. The mean Peak Signal-to-Noise Ratio (PSNR) of our algorithm is 54.08 dB 
(51.24 dB in the worst case with payload 0.5 bpp and standard deviation of 0.027 dB, and 
58.01 dB in the best case with payload 0.1 bpp and standard deviation of 0.085 dB), which 
outperforms the initial results described by [6].

An estimate of the general performance of the steganographic algorithm measured by 
PSNR is shown in Fig. 3, in which it is evident that when increasing the payload, the PSNR 
decreases linearly with a slope of 1.70 dB for each 0.1 bpp increase in the payload. The 
estimation has an R-squared of 0.96.

Fig. 3   Performance of the pro-
posed steganographic algorithm 
measured with PSNR, when the 
payload is increased

792 Multimedia Tools and Applications (2022) 81:785–805
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3.3 � Feature selection and extraction

Once the dataset of pairs of carrier images and steganograms was processed, the follow-
ing descriptors were extracted, which represented each of the input images1: (a) Histogram 
kurtosis, (b) Histogram skewness, (c) Histogram standard deviation, (d) Histogram range, 
(e) Histogram median, (f) Histogram geometric median, (g) Histogram Hjorth mobility, 
and (h) Histogram Hjorth complexity. The first six features allow to quantify small graphi-
cal variations not visually perceptible in the images, while the last two attributes allow to 
give a non-linear description of these variations.

Other features that were considered but not included in the training, validation, and test-
ing of the neural network were: (a) Interquartile ranges (0.1, 0.3 and 0.9) of the histogram, 
(b) Histogram harmonic mean, (c) Histogram correlation dimension, (d) Histogram maxi-
mum Lyapunov exponent, and (e) Histogram Hurst Exponent.

The first three features were dismissed because they do not describe variations in the 
dynamics of the embedded of LSB steganographic content, unlike the statistical attributes cho-
sen. The last two attributes were discarded because of the computational cost, which implied 
to calculate them since polynomial adjustments must be made continuously until there was 
convergence, which required heavy use of resources such as time, memory and processing.

3.4 � Classification process

Once processed the set of images, the process of binary classification of 256x256 mono-
chromatic still images run in two classes: a negative class corresponding to carrier images 
and a positive class corresponding to steganogram images with LSB steganography. For 
the detailed process of binary classification were proposed six models based on artificial 
neural networks, five models for each individual and independent payloads, and one gen-
eral classification model with a centralized function that grouped the observations of all 
payloads interchangeably.

Models of artificial neural networks were proposed because: 

1.	 They have a better general performance in the multiclass classification, and are aligned 
with the objective that is being proposed within this research framework.

2.	 When the amount of training data is large, the ANN models outperform SVM models 
and logistic regression, among others.

3.	 ANN models can be trained in one go, a characteristic required to reduce the time com-
plexity of training.

4.	 It was necessary to stipulate a fixed architecture with which the training and testing 
could be executed in such a way that the number of observations did not influence it’s 
structure. This situation was remedied with a parametric ANN approach.

The overall classification process is shown in Figs. 4, 5, and 6, comprising the following 
procedure: 

1.	 The hyperparameter to be optimized by means of Grid search and performance metrics 
is defined (Fig. 5).

1  Public dataset at: http://​dx.​doi.​org/​10.​21227/​gs67-​yn65
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2.	 N iterations are executed, corresponding to the number of combinations of hyperparam-
eters. In each iteration, K-Fold cross-validation with 5 folds was used to determine the 
metrics of each model for each combination of hyperparameters.

3.	 The hyperparameter combination with better metrics was chosen and this neural network 
model was used in the validation of Monte Carlo.

4.	 Five (m value) iterations were executed, in which the chosen model was trained through 
grid search, with the dataset distributed five times randomly between training set (64%), 
validation set (16%) and testing set (20 %).

5.	 The metrics of the performance model were calculated by averaging the metrics provided 
by the iterations, which were obtained as a result of the validation of Monte Carlo, a 
process explained in the section of performance evaluation (Fig. 6).

For the Grid Search process, optimization algorithms were considered: Adadelta, 
RMSprop, and Adam, as proposed by [29], who concludes that such optimization algo-
rithms have a similar performance in similar situations. As for the size batch and the num-
ber of epochs, the ranges of values [8, 16, 32, 64, 128] and [10, 50, 100, 250, 500] were 
considered respectively. These ranges were raised according to the results shown by [33] 

Fig. 4   Overall classification 
process

Fig. 5   Optimization of hyperpa-
rameters by grid search
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wherein the performance of neural networks, the batch size and the number of epochs in 
different ranges, applied to known datasets.

3.5 � Performance evaluation

The metric used to evaluate the performance of each of the classification models proposed 
in the hyperparameter tuning by grid search was accuracy, as with this metric it was pos-
sible to generalize the model behavior and also compare its performance against the per-
formance obtained by other authors related to this context. The performance metric was 
calculated from the relationship between true positives, true negatives, false positives and 
false negatives of each of the confusion matrixes obtained in the validation process and the 
hyperparameter tuning.

To increase the reliability of the metrics associated with the classification model, Monte 
Carlo cross-validation (Fig. 6) was executed. In this method, based on an input neural net-
work model, m training iterations are carried out and m sets of metrics are calculated by 
distributing the observations of the whole dataset into groups of the training set, validation 
set, and testing set, as stated in the previous section. The final average metric calculated 
was accuracy.

Accuracy was the metric calculated to measure the performance of the model. This met-
ric allows you to evaluate binary classifiers by the proportion of correct predictions over 
the total number of evaluated observations:

In Eq. (1), TP refers to true positives (correctly classified steganography observations), TN 
to true negatives (correctly classified non-steganography observations), FP to false posi-
tives (incorrectly classified steganography observations), and FN to false negatives (mis-
classified non-steganography observations). Accuracy was the selected metric considering 
that (a) the dataset presents a balance between the classes in which 50% belong to the posi-
tive class and 50% belong to the negative class, (b) we have not defined a weight on the 
importance of a false positive or a false negative, and (c) accuracy allows us to compare the 
results with respect to related studies.

(1)Acc =
TP + TN

TP + TN + FP + FN

Fig. 6   Monte Carlo cross-
validation

795Multimedia Tools and Applications (2022) 81:785–805



1 3

Even though we calculate the accuracy to present the performance of the model, 
other additional metrics are reported to make the study more comparable:

–	 Precision, also called positive predictive value, measures the proportion between 
the relevant (positive) observations over the total positive observations: 

–	 Specificity, also called true negative rate, measures the proportion of observations 
classified as negative compared to the total number of negative observations: 

–	 Sensitivity, also called the true positive rate or Recall, measures the proportion of 
observations classified as positive compared to the total of positive observations: 

–	 F1 Score, corresponds to the harmonic mean between the precision and the recall: 

In additition, the classification model was tested individually against a dataset of pairs 
of carrier images and steganograms for each stipulated payload (0.1, 0.2, 0.3, 0.4 and 
0.5), in order to generalize the overall performance of the classification model, as well 
as to observe the incidence of each payload individually. The results are presented in 
the following section.

4 � Results

The following section presents the results obtained by applying the methodological 
processes detailed in the former section, following the same order presented in that 
section.

4.1 � Dataset selection

From the population of 108.077 color images in JPEG format, labeled and categorized 
an initial sample of color images was extracted, considering the two criteria established 
in the former section. By analyzing these criteria, 70.000 color JPEG images with a 
fixed spatial resolution of 256x256 and a bit depth of 24 were selected.

(2)precision =
TP

TP + FP

(3)specificity =
TN

TN + FP

(4)sensitivity =
TP

TP + FN

(5)F1 =
2 ∗ precision ∗ recall

precision + recall
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4.2 � Pre‑processing of the image dataset

Considering the color model of the images in the selected sample, when represent-
ing the images as one-dimensional arrays, the images following the intensity equation 
below Eq. (6) are obtained [22]:

Let Gray be the value of one-dimensional intensity and the triplet (R, G, B), the intensity 
values of the three components of color images. Afterward, spatial transformation opera-
tions were applied randomly to the input images, obtaining what is shown in Fig. 7, where 
the seven transformations applied can be observed.

It should be considered that the maximum content to embed is one-eighth of the spa-
tial resolution of the carrier image, that is, an image of a maximum spatial resolution 
of 90x90. The relationship between the number of pixels to be modified in the carrier 
image ( SRcarrier ) with respect to the spatial resolution of the carrier image (width Wcarrier 
and height Hcarrier ) and the payload (P) is the following Eq. (7):

Thus, for the five density loads, the spatial resolution of the graphic content, considering 
a square matrix of representation with respect to the fixed resolution of the carrier image 
of 256x256, will be the square root of the number of pixels modified, as shown in Table 2.

(6)Gray = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B

(7)SR
carrier

=

W
carrier

∗ H
carrier

8
∗ P

Fig. 7   Example of application of 
spatial transformation operations. 
From left-to-right and top-to-
bottom: (a) 0 ◦ clockwise rotation 
(original image), (b) 90◦ clock-
wise rotation, (c) 180◦ clockwise 
rotation, (d) 270◦ clockwise 
rotation, (e) reflection around the 
vertical axis, (f) reflection around 
the horizontal axis, and (g) image 
transpose
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In this way, the dataset of monochromatic images is subdivided into subsets of images, 
as shown in Fig. 8.

Figure 9 shows an example of the result of executing the preprocessing stage and the 
execution of the steganography algorithm on a carrier image (Fig. 9a), embedding a con-
tent image of spatial resolution 64x64 and payload 0.1, which produces a graphic stegano-
gram (Fig. 9b).

The steganogram images were stored in BMP format to avoid image compression affect-
ing spatial variations executed by means of the LSB steganography algorithm.

Table 2   Relationship between 
the density load of the message 
(payload) embedded and the 
spatial resolution message

Payload Spatial resolution of 
graphic content  
embedded

0.1 28x28
0.2 40x40
0.3 49x49
0.4 57x57
0.5 64x64
1.0 90x90

Fig. 8   Diagram of observations 
distribution that served as input 
to the classification model
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4.3 � Feature selection and extraction

The features were calculated from the histogram of each carrier pair and steganogram. An 
example of the histogram of a dataset pair is shown in Fig. 10.

As can be seen, there are slight differences between the two histograms, which are vis-
ible to the naked eye, such as the frequency of some intensity levels and the distribution 
of intensities along with the histogram. When extracting features from the pairs of carrier 
images and processed steganogram, was obtained what is shown in Fig. 11, which shows 
the behavior of the mobility attribute, one of the eight attributes chosen as input to the neu-
ral network model.

In the graph, the horizontal axis represents the ID of each of the test images and the 
vertical axis shows the variation in the magnitude of Hjorth mobility, calculated from the 
histogram of each image. The blue curve shows the behavior of the mobility feature for the 
carrier images and the orange curve shows the behavior for the steganogram images. The 
steganograms images from 0 to 399 have a payload of 0.1; from 400 to 799 they have a 
payload of 0.2; from 800 to 1199 they have a payload of 0.3; from 1200 to 1599 they have 
a payload of 0.4; from 1600 to 1999 they have a payload of 0.5 . It may be noted that there 
is a very strong dynamics in the mobility that is probably related to the variation in the 
payload of the steganogram images, which allows to state at first sight that this feature can 
successfully identify the existence of steganography through the analysis of its dynamics. 
The other seven attributes that were chosen also showed heterogeneous dynamics that were 
related to the inclusion and change of steganographic content in the carrier images.

Fig. 9   Example of application of 
the steganography algorithm dur-
ing the preprocessing stage with 
a payload of 0.1: (a) the carrier 
image, and (b) the steganogram

Fig. 10   Carrier and steganogram 
histograms
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4.4 � Classification process

The characteristics of the architecture proposed for the classifier were established in 
accordance with the hyperparameters resulting from the application of the optimization 
process by means of Grid Search and considering the criteria proposed by [1, 11–13, 15, 
21]. The following table presents the architecture proposed for the best ANN model used 
for the classification process (see Table 3), considering the 10-fold Cross-Validation:

The neural network model has an architecture in which there are eight input neurons in 
the input layer (one neuron per input hyperparameter), two hidden layers and one output 
neuron, since it is a binary classification. A batch size of 64 was used, which represents 
the number of observations per training cycle, and a total of 250 complete training cycles 
through the training data (epochs).

4.5 � Performance evaluation

When executing ten training iterations and calculating the metric sets of Monte Carlo 
cross-validation, the results shown in Fig. 12 are obtained, where the horizontal axis repre-
sents the number of iterations and the vertical axis shows the accuracy per iteration, and the 
constant orange line represents the average accuracy (91.45%) of the ten iterations shown.

It may be noted that a low variance of 0.068% is present, which indicates that the 
accuracy is considerably homogeneous throughout the execution of the test iterations of 
the model, meaning that it is highly generalizable for the context of LSB steganography 

Fig. 11   The behavior of the 
Hjorth mobility attribute in the 
carrier images (blue curve) and 
steganograms (orange curve) as 
the payload is increased

Table 3   The binary classification 
model architecture for LSB 
steganography detection

Characteristic Value

Number of hidden layers 2
Number of neurons per concealed layer 4 and 2
Number of input neurons 8
Number of output neurons One
Activation function of the input layer Rectifier
Activation function of concealed layers Rectifier
Activation function of the output layer Sigmoid
Optimizer Adam
Batch size 64
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detection. The accuracy closeness of the iterations with the average value indicates a low 
variance.

Some additional average metrics of the best performance model, after having applied 
Monte Carlo cross-validation are the following (see Table 4):

When matching the classification model to 2,800 pairs of individual pairs of observa-
tions (carriers and steganograms) for each payload defined, the classifier’s performance per 
such variations is the one shown in Fig. 13, where the horizontal axis represents the pay-
load and the vertical axis represents the accuracy of the model when classifying the obser-
vations of each of the payloads.

It can be seen in the graph that there is a considerable difference in the classifier’s per-
formance as variations in the density of the content message in the steganogram are exe-
cuted. For messages with a low performance inside the carrier image, the model turns out 
to be less accurate before its detection. For messages with greater embedded content in a 
carrier of the same size, the classifier’s accuracy increases.

5 � Disussion

LSB steganography detection turns out to be particularly complex when it comes to 
graphic media such as still images, as the modification of the least significant bits does not 
have repercussions on a visually appreciable variation. The significance of this study lies 
(a) in the detection of images with LSB steganography of variable payload, from 0.1 to 0.5 
bpp, (b) the application of the classifier to detect individual payloads, (c) the construction 
of a dataset which balances the categories and classes, and (d) the application of transfor-
mation operations to the input data in order to ensure that the model does not learn spatial 

Fig. 12   Accuracy of the clas-
sification model along with the 
iterations of the Monte Carlo 
cross-validation

Table 4   Average metrics 
resulting from the execution of 
the Monte Carlo cross-validation 
process with the best binary 
classification model

Metrics Average value (%)

Sensitivity 88.97
Specificity 93.93
Precision 93.77
F1-Score 91.22
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patterns and that there are no horizontal or vertical trends which affect the classification of 
the embedded content.

Representing images in a one-dimensional way abbreviates computational processes in 
time and space, as well as the identification of embedded content by means of descriptors 
calculated from its histogram. This allows to evidence slight variations in the distribution 
of their intensity and frequency, which can be taken advantage of by the descriptors in 
order to accentuate the behavior of the LSB steganography vector used to conceal the mes-
sage contained in the carrier images.

The sensitivity and accuracy metrics that measure the classifier’s performance increased 
as the steganography load of the message also increased on the carriers. This may be due to 
intensity modifications on the carrier as the payload is increasing. They are more recurrent, 
which makes more pixels with even intensities increase by one unit, and pixels with odd 
intensities decrement by a unit. Additionally, as shown in the feature selection, their behav-
ior is heterogeneous before the payload variation, which makes the dynamics get influ-
enced by the amount of embedded content. Conversely, since the message is not homoge-
neous and does not present a distinctive pattern in its intensities, indistinct variations in the 
carrier’s pixels help to recognize the steganogram.

In complement, accuracy and sensitivity are metrics in which false negatives are con-
sidered as a preponderant variable, which means that an increase in these means a direct 
decrease of accuracy and sensitivity. It is for this reason that when increasing the content 
of steganography, the neural network model of the classifier has the capacity to detect the 
steganograms with better efficiency, which results in a decrease in false negatives, increas-
ing the metrics outlined.

On the other hand, the results obtained showed 91.45% overall accuracy and 96.78% 
by individual maximum accuracy per payload in the binary classification of images with 
varying LSB steganography generated from a population of images from the Genome Pro-
ject’s database. These results are consistent with those reported by other authors: Qian 
et al. who obtained 90% accuracy in the classification in 2016 with payloads from 0.1 tp 
0.5, Wu et al. who obtained 86% accuracy in the classification in 2016 with payloads from 
0.05 to 0.5, Chhikara and Kumari who obtained 96% in the best case of the classification 
approach in 2017 with payloads from 0.1 to 1.0, and Sun et al. who obtained 92% accuracy 
in the classification in 2019 with payloads of 0.1 and 0.5. With the model presented in this 

Fig. 13   Accuracy variation when 
the message payload is increased 
in the steganogram
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article, we have achieved an accuracy equivalent to that presented by the authors, detecting 
a wide range of payloads, which is a significant contribution. Additionally, in the best of 
cases, the presented classifier outperforms those studied and presented in Table 1, which is 
promising for future work.

6 � Conclusions

The model for LSB steganography detection proposed enabled the binary classification of 
carriers and steganograms by means of its pre-processing, feature extraction, training, vali-
dation, and testing processes. The narrow margin of difference between the performance 
metrics per iteration of the Monte Carlo cross-validation allowed to guarantee the generali-
zation of the classification model.

Thanks to the one-dimensional representation processes, image cropping with fixed spa-
tial resolutions of 256x256 and feature extraction, features of interest in steganograms were 
highlighted, and it was possible to associate the payload measurements with the descriptors 
chosen. Kurtosis, Asymmetry, Standard Deviation, Range, Median, Geometric Median, 
Hjorth Mobility and Hjorth Complexity were eight features considered; all calculated from 
image histograms. The latter two attributes allowed an improvement in the classifier’s per-
formance, as they provided a description of the non-linear dynamics of steganography in 
the observations.

According to the results presented, the following future research studies are proposed: 
developing a voting detection system, considering individual models for the detection of 
LSB steganography and considering a binary classification model per payload; studying 
the dependence between features for the reduction of temporary complexity; selecting addi-
tional features which allow the model to learn from the non-linear dynamics of steganogra-
phy algorithms; and replicating the LSB steganography detection model to other contexts 
of this steganographic area for the detection of embedded images in other media objects.
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