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Abstract
Recent advances in deep learning (DL) have provided promising solutions to medical 
image segmentation. Among existing segmentation approaches, the U-Net-based meth-
ods have been used widely. However, very few U-Net-based studies have been conducted 
on automatic segmentation of the human brain claustrum (CL). The CL segmentation is 
challenging due to its thin, sheet-like structure, heterogeneity of its image modalities and 
formats, imperfect labels, and data imbalance. We propose an automatic optimized U-Net-
based 3D segmentation model, called AM-UNet, designed as an end-to-end process of the 
pre and post-process techniques and a U-Net model for CL segmentation. It is a lightweight 
and scalable solution which has achieved the state-of-the-art accuracy for automatic CL 
segmentation on 3D magnetic resonance images (MRI). On the T1/T2 combined MRI CL 
dataset, AM-UNet has obtained excellent results, including Dice, Intersection over Union 
(IoU), and Intraclass Correlation Coefficient (ICC) scores of 82%, 70%, and 90%, respec-
tively. We have conducted the comparative evaluation of AM-UNet with other pre-existing 
models for segmentation on the MRI CL dataset. As a result, medical experts confirmed 
the superiority of the proposed AM-UNet model for automatic CL segmentation. The 
source code and model of the AM-UNet project is publicly available on GitHub: https:// 
github. com/ Ahmed Albis hri/ AM- UNET.

1 Introduction

There has been considerable attention to medical imaging technologies and applications 
due to their substantial benefits for medical diagnosis and treatment. In particular, there 
have been advances in automated medical imaging segmentation. On the other hand, the 
demand and interest for new medical imaging applications have grown substantially. The 
advancements in deep learning, especially with image segmentation technologies, have 
been applied to medical imaging and automated segmentation [31] for a broad range of 
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studies, from cancer detection [13] to brain tumor segmentation [23] and treatment and 
prevention of brain aging-related conditions, Alzheimer’s disease (AD) [51].

The image segmentation and detection studies using Convolutional Neural Networks 
(CNN) [31] have shown its performance comparable to that of visual detection or segmen-
tation performed by human operators. Segmentation tasks play a vital role in delineating 
different anatomical structures, and other regions [7]. However, there are still challenges 
in applying deep learning technologies to neuroimaging segmentation in practice. Specifi-
cally, segmentation becomes a challenging task due to the following reasons [18]:

– Variations in the size and structure of the objects.
– Images with different modalities, in different formats, and of different sizes due to the 

usage of different scanning systems.
– Insufficient manually labeled data for training.
– High class-imbalance in most training and evaluation datasets.
– Lack of high quality of data manually annotated by domain experts.
– Complicated and time-consuming task of manual segmentation.
– Vulnerability to human errors during experts’ annotation.

These challenges could be amplified on more complex data, e.g., computed tomography 
(CT) images or magnetic resonance images (MRI), which have been used to diagnose 
disease for the best treatment decision [53]. In particular, an increasing number of neu-
roimaging studies have focused on identifying an intricate pattern or a small region in the 
human brain for predictive medicine. Medical imaging technologies need to handle mul-
tiple images or slices representing anatomical volumes in a specific data format acquired 
from imaging scanners [18]. The automated segmentation can be conducted with specific 
human organs (e.g., liver, brain, lung) or their boundary annotations of labeled datasets 
[31]. However, automated segmentation technologies are mainly developed for large corti-
cal and subcortical areas (e.g., FreeSurfer [20]). The conventional segmentation methods 
have limited capacity to obtain high accuracy in segmenting small regions of medical brain 
images, especially those of the deep brain [49]. Therefore, it is imperative to develop more 
advanced automated segmentation methods that can be applied to small regions or com-
plex and diverse data formats to facilitate various medical applications for medical research 
and clinical practice.

Automatic segmentation studies on small and complex brain regions have not been 
widely attempted. The present study focused on the claustrum (CL), an excellent example 
of an important and challenging target of the CNN approach. CL is a mysterious thin deep 
brain grey matter structure located at the center of each hemisphere. It is known as the 
brain’s most highly connected hub [45]. CL has reciprocal connectivity with almost all 
cortical and subcortical brain areas, and massive input from all significant neuromodulator 
circuits [44]. Based on the anatomy and animal neurophysiological findings, CL has been 
hypothesized as a brain network hub node for multisensory integration [35], conscious per-
cepts [12], and bottom-up and top-down attention [22]. Studies have reported CL volume 
reduction in post-mortem brains in people with autism spectrum disorders [14, 48] and 
schizophrenia [8] and CL abnormalities in patients with neurological disorders [36, 43]. 
Figure 1 shows the MRI of the human brain with CL highlighted in orange.

Despite accumulating evidence of CL abnormalities in people with neuropsychiatric 
disorders [36, 43], few neuroimaging studies have been conducted to investigate the func-
tions of human CL. It is primarily due to (1) the methodological limitations of conven-
tional neuroimaging techniques to isolate the thin structure of CL (i.e., the limited spatial 
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resolutions of MRI and other neuroimaging techniques) and (2) lack of essential neuro-
imaging tools (e.g., no CL label in most widely used neuroimaging brain atlases, no reli-
able method to delineate CL). In addition, the region of interest (ROI) approach to CL 
requires manual segmentation of CL using structural MR images. An earlier study devel-
oped a manual tracing protocol for volumetric analysis of the human CL [14]. However, the 
protocol did not provide details of CL’s unique anatomy and no clear boundary to delineate 
the sub-regions. Also, manual segmentation of CL on MRI’s is a time-consuming and chal-
lenging procedure that requires domain expertise.

In this paper, we propose an end-to-end mini U-Net-based network, AM-UNet, to 
achieve automatic 3D CL segmentation. For the training and validation of our AM-UNet 
network, we used the CL label maps that domain experts manually segmented. Further-
more, to improve the model accuracy while mainly reducing the training dataset, we have 
optimized the end-to-end workflow consisting of preprocessing, augmentation, and post-
processing. We have explored the proposed approach by experimenting with various deep 
learning architectures (U-Net variants) for automatic segmentation of the CL from T1, T2, 
and T1T2 weighted MRI datasets. Using multiple performance metrics, we extensively 
evaluated the model performance by comparing AM-UNet with two other state-of-the-art 
segmentation models. Our main contributions to this research are as follows:

– Design of an optimal U-Net architecture for smaller, simpler, and efficient CL segmen-
tation.

– Development of an automated end-to-end 3D segmentation network for CL segmenta-
tion.

– Robust segmentation model for multi sequences (T1, T2, and T1T2) and multi-view 
(Axial, Coronal, or Sagittal) MRIs from the Human Connectome Project (HCP) [46].

Fig. 1  The human claustrum (orange) delineated in a T1-weighted MRI
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– State-of-the-art results of automatic CL segmentation based on extensive evaluations, 
including those of a domain expert.

2  Related work

We have conducted extensive literature reviews on automated medical image segmentation. 
This section will first focus on medical imaging and then will discuss related work on deep 
learning methods for medical image segmentation.

2.1  Medical imaging

Advanced techniques for medical image formats, including Nifti, Minc, and Dicom [30], 
have shown excellent performance on detection of anatomies in medical search [31]. 
Furthermore, medical image segmentation for partitioning the areas of interest and their 
boundaries has shown promising results [31]. The machine learning techniques enhance 
the model performance, optimize the model weights while training, and remove the irrele-
vant aspect of the data [39]. In deep learning algorithms, the more data the algorithm trains 
on, the better the results it can produce [40]. The data augmentation technique is used to 
create more training data from the available dataset. The data augmentation is a general 
solution to reduce over-fitting on image data [4]. Also, obtaining a large amount of accu-
rately labeled medical images (e.g., manually segmented MRI data) is not easy. Therefore, 
it is highly recommended for automatic deep learning-based segmentation [41]. In this 
technique, a slightly different stretch is applied to each image to create a new variation. As 
such, the same brain observed in two other embodiments may have different appearances, 
which should not influence the decision of whether a CL is present or not. Thus, elastic 
deformation is a commonly used technique to augment and model variations in data [9].

2.2  Deep learning for medical image segmentation

Recent works have presented CNN-based medical image segmentation approaches, 
grouped into 3D-based and 2D-based models. 3D CNN-based models primarily focus on 
extracting volumetric information across all three spatial dimensions. The 3D deeply super-
vised network (3D DSN) was proposed for automated segmentation of volumetric medical 
images [17]. The 3D DSN model was evaluated on 3D CT scans and MRIs of the liver and 
heart. Their volume-to-volume learning and inferences and the 3D deep supervision mech-
anism effectively handled gradient vanishing/exploding problems, accelerating the conver-
gence speed and improving the discrimination capability using an objective function that 
guides both the upper and lower layers in the network. Interestingly, the fully connected 
conditional random field was used in a postprocessing step to enhance the performance.

Another approach, which is similar to AM-UNet, was proposed with pre-and post-
processing image analysis techniques and 2D CNN to create a 3D segmentation network 
[6]. Specifically, the 2D U-Net model was used for segmentation. The 3D construction 
approach was performed in the postprocessing step. This model performed well for image 
analysis of cervical vertebrae of patients and normal controls to resolve multiple cervical 
bone segmentation and separations [6].

2D CNN models usually segment the CT scans or MRI data in a slice-wise fashion. 
In recent work, [32], multi-view fully convolutional networks were used to segment the 

36174 Multimedia Tools and Applications (2022) 81:36171–36194



1 3

CL jointly. In this work, 181 T1-weighted MRI scans were to train two networks, Axial 
and Coronal. Then the probability ensemble method was applied to generate a seg-
mentation map of CL, including Axial, Coronal, Sagittal, Axial + Coronal, and Axial 
+ Coronal + Sagittal views; hence, they named it a multi-view model. Compared to 
the multi-view study using 181 subjects’ MRI scans, we used only 30 MRI scans for 
training, including various types of MRIs (T1-, T2-, and T1/T2-weighted), to produce 
segmentation maps for the Axial, Coronal, or Sagittal views. Another recent approach, 
UNet++, used a deeply-supervised encoder-decoder network for segmentation [34]. 
In this method, the encoder and decoder path is connected through a series of nested, 
dense skip connections. Although UNet++ has shown some promising results, it uses 
more learning parameters than U-Net and AM-UNet due to its complex architecture.

The idea of using skip connection to upsample the network output was first intro-
duced in Fully Convolutional Networks (FCNs) [34]. However, FCNs’ main drawback 
is the difficulty in training the model from scratch. Segnet [5] modified the skip connec-
tions to copy the indices from max pooling to the decoder path on the right. This study 
produced better segmentation results than FCNs while making the network lighter and 
faster to converge. Finally, Ronneberger et al. [41] presented the idea of copying the fea-
ture maps from the encoder to the decoder part through skip connections designed with 
U-Net for image segmentation. This study showed good performance with a minimal 
amount of biomedical images, and data augmentation was the key to the success of this 
model.

Inf-Net used a modified U-Net architecture for automatic COVID-19 lung infection 
segmentation from CT images [19]. This architecture is inspired by the observation that 
low-level features demand more computational resources due to larger spatial resolutions 
but contribute less to the performance compared with high-level features. Therefore, this 
model only aggregates high-level features. Inf-Net consists of three reverse attention (RA) 
modules connected to the paralleled partial decoder. In one recent work, UNET 3+, the 
researchers modified the U-Net architecture to take advantage of the full-scale skip con-
nections, and deep supervisions [25]. This model incorporates low-level information with 
high-level semantics from features maps, and deep supervision helps in learning hierarchi-
cal representations from the full-scale aggregated feature maps. Unfortunately, even though 
this approach showed promising results for organs at varying scales, this design is intricate. 
It creates many skip connections with lots of additional parameters than the original U-Net 
design that results in high training costs with low efficiency.

Moeskops et al. [38] applied a CNN model that used multiple patch sizes and various 
convolution kernel sizes to get multi-scale information of each voxel. The authors success-
fully created a robust model that worked with different image modalities. Kayalibay et al. 
[28] applied the U-Net model to segment two datasets, including hand and brain scans. 
They made two changes to U-Net architecture, including combining multiple feature maps 
at different scales and element-wise multiplication instead of concatenation. The first 
change harmed the model performance, while the second one could speed up the conver-
gence time. Kushibar et al. [29] proposed a novel method that took advantage of combining 
the convolutional features and the prior spatial features from a brain atlas. Their network 
was trained with 2.5D batches, instead of 3D, due to the memory constraint. Christ et al. 
[10] applied the U-Net model to segment the liver and liver lesions in a cascaded way, and 
they obtained an improved accuracy using a conditional random field (CRF). We also pre-
sented a novel cascaded U-Net model for liver and liver tumor segmentation and summari-
zation, called CU-Net [2]. It consists of two U-Net models and works in a cascaded fashion 
to segment liver and liver tumors.
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3  Methodology

AM-UNet is a fully automated 3D segmentation network that is based on a 2D U-Net 
model. AM-UNet consists of three parts, preprocessing, segmentation, and postprocess-
ing, as seen in Fig. 2. In the preprocessing step, the 3D MRI volumes are converted into a 
series of 2D slices, and the region of interests (ROIs) are created. The segmentation model 
is designed to segment a series of 2D ROIs based on 2D U-Net models. The postprocessing 
step reconstructs 3D MRI from the 2D segmented slices.

3.1  Manual segmented human brain data

For this project, we used the MRI data of 30 healthy adults (13 males and 17 females; age 
range 21-35 years old) for CL segmentation. The dataset, including T1- and T2-weighted 
MRIs, were collected as a part of the Washington University-Minnesota Consortium 
Human Connectome Project (WU-Minn HCP) [46], which are available from the Con-
nectomDB [11]. The MRIs were acquired using a customized Siemens 3T Connectome 

Fig. 2  AM-UNet Architecture
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Skyra scanner with the 3D MPRAGE T1 and T2 weighted sequence with 0.7 mm isotropic 
resolution (FOV=224 mm, matrix=320, 256 Sagittal slices in a single slab, TR=2400 ms, 
TE=2.14 ms, TI=1000 ms, flip angle=8◦ ). MRI scans can be viewed in the three orien-
tational planes, Axial, Coronal, Sagittal as shown in Fig. 3. The details of MRI data col-
lection and preprocessing methods are described in [50]. Using this dataset, we created 
T1T2 combined MRI (T1T2w) by integrating T1w and T2w images to improve the con-
trast between the gray and white matters [37] using the following formula:

In Eq. 1, sT2 is a scaled T2 with the same median signal intensity (of brain part) as that 
of the T1 MRI. The combined MRI is further scaled to have the same median value as the 
original T1. Thus, T1T2w MRI has better grey/white matter contrasts, and due to the oppo-
site directional signals of T1 and T2 and the calculations, the new MRI data has some high 
values in the brain’s margin. Figure 4 shows the T1w, T2w, and T1T2w MRI images along 
with graphs of their respective pixel intensities (normalized). As seen from this figure, the 
data has a class imbalance issue, and the majority of the pixels (50000) have 0.0 intensity 
(black background color). In [27], we reported the manual CL segmentation for the 30 T1 
& T2 MRI scans based on a protocol developed for the conventional 3T resolution (1.0 mm 
isotropic voxels). This protocol is widely used for MRI-based human brain atlas [16]. The 
annotated CL label map in Nifti 3D format was used for the CL automatic segmentation.

3.2  Preprocessing

The preprocessing stage was designed to prepare the MRI data for the CL segmentation, as 
shown in Fig. 5. It was composed of three sub-stages: (1) processing of the 3D MRI slicing 
for the 2D U-Net segmentation (selection of 2D CL slices from 3D MRI), (2) processing 
of ROI selection from the 2D selected slices (ROI operation from 2D selected slices to 2D 
ROI images), and (3) machine learning techniques (data normalization and augmentation). 
Also, note that the preprocessing steps were performed for the multi-view CL segmenta-
tion of the axial, coronal, and sagittal planes.

The goal of the preprocessing step was to convert the 3D MRIs into 2D slices to gen-
erate ROIs, which will be used as an input by the 2D segmentation model. Initially, 2D 

(1)T1T2w =
(T1 − sT2)

(T1 + sT2)

Fig. 3  Three Views of MRI Scans (from left to right) (a) Axial, (b) Coronal, (c) Sagittal
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slices were generated from 3D MR images to preprocess the data in a slice-wise fashion for 
optimal model performance, as shown in Fig. 5a. Each MRI contains around 260 slices for 
each subject. Therefore, all the input slices were resized to have the same pixel size of 256×
256. Secondly, the selection task was performed to ensure that only the slices containing 
CL were included in training the CL segmentation model. This step reduced the number of 
slices on average from 260 to 36 for each MRI, as shown in Fig. 5b. Lastly, we processed to 
overcome the issue of a massive class imbalance between the target (CL is approximately 
0.3%) and the extensive background regions, which is shown in the intensities graphs of 
the three data types (T1w, T2w, and T1T2w; Fig. 4). To this end, the filtered slices were 
superimposed onto the region of interest (ROI) with a size of 96×128 from the full-size 
slice with a size of 256×256, as shown in Fig. 5c. After applying the ROI, each slice con-
tained approximately 98.4% of background pixels and 1.6% of the CL pixels. Table 1 com-
pares the number of CL and the background pixels before and after the ROI procedure. The 
ROI procedure significantly reduced the number of background pixels without affecting the 
number of the CL pixels, therefore decreasing the class imbalance.

Besides the preprocessing of MRI images, machine learning (ML) techniques were 
applied to increase the performance. In our study, normalization was performed on the 

Fig. 4  T1w, T2w, and T1T2w MRIs and Normalized Pixel Intensities Graph 

Fig. 5  Preprocessing for CL Segmentation: (1) 3D MRI Slicing (2) Slice Selection (3) ROI
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ROI’s pixel intensities ranging from 0 to 1. Further, data was augmented to produce the 
desired invariance properties and increase the training dataset. Additional slices were syn-
thetically generated using the stretching technique. With data augmentation, the size of 
training data was increased from 855 to 1069 slices, as shown in Table 2.

3.3  CL segmentation model architecture

In our previous work [3], we designed a U-Net architecture for human brain CL segmen-
tation and obtained an average dice score of 72%. This U-Net architecture consists of an 
encoder and a decoder, which performed downsampling and upsampling with four layers, 
and are connected through skip connections for the construction of a high-resolution image. 
The proposed optimal U-Net architecture of AM-UNet, shown in Fig. 2, is an extension of 
our previous architecture, making the model more simple and more efficient. In AM-UNet, 
we have reduced the segmentation model size to half by removing the last two layers of 
the original U-Net model and expanding the bottleneck layer of the segmentation model 
(Fig. 2). AM-UNet consists of an encoder and a decoder connected with skip connections. 
On the left, the encoder path is called the contracting path, and it captures the context from 
the images in a Nifti format T1w, T2w, or T1T2w MRI file. On the right, the decoder path 
is called the expanding path, and it enables the precise localization of the target (i.e., CL) 
that needs to be segmented.

The features learned at each level in the encoder path are transferred to the decoder path 
through skip connections, where the features from the encorder path will be concatenated 
with the features from the decoder path [41]. The encoder path maps a given input signal 
’a’ that belongs to a set of signals ’A,’ which is a subset of all the signals ’R’ in the layer 
with the total number of dimensions ’d’, a 𝜖 A ⊂ Rd0 , to a feature space ’s’, which belongs 
to a set of feature spaces ’S,’ s 𝜖 S ⊂ Rdj , and the decoder does the opposite of what the 
encoder does - taking the feature map as an input, processing it, and producing an output 
o 𝜖 O ⊂ RdL . The encoder and decoder paths are symmetric, and both have the same num-
ber of layers, say L. Eqs. 2 and 3 represent the input and output dimensions for the encoder 
layer, EL , and the decoder layer, DL , respectively, where dL represents the total dimension 
of the feature at the L-th layer.

(2)EL ∶ RdL−1 ⟶ RdL

(3)DL ∶ RdL ⟶ RdL−1

Table 1  The number of CL and the background pixels before and after an ROI procedure for three slices. 
The number of the CL pixels did not change before ROI ( R

b
 ) and after ROI ( R

a
 ), but the number of back-

ground pixels is reduced significantly after the ROI procedure

Slice CL Size Background Pixel#

ID Pixel# Ratio(R
b
) Ratio(R

a
) Before ROI After ROI

1 198 0.3% 1.6% 65338 12090
2 209 0.3% 1.7% 65327 12079
3 187 0.28% 1.5% 65349 12101
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As shown in Fig. 2 (Segmentation Model), the AM-UNet segmentation model consists 
of two layers along with the bottleneck layer, which is half of the size of the U-Net archi-
tecture. Each layer in the encoder path performs two rounds of convolution, batch nor-
malization, and dropout, respectively. After that, the max-pooling reduces the image size 
by half and passes it to the next layer in the architecture. This process continues until the 
image reaches the last layer in the encoder path, called the bottleneck layer. We added three 
new blocks in this layer, each consisting of two rounds of convolution, batch normalization, 
and dropout, respectively. After the third block, we concatenated all the previous blocks’ 
output into the last block in the bottleneck layer. The three new block design was confirmed 
as optimal from the experiments with various numbers of blocks in the bottleneck layer.

The decoder path starts at the end of the bottleneck layer on the right side. Initially, 
upsampling is applied to increase the image resolution by a factor of 2. In regular upsam-
pling, convolutions are replaced by transposed convolution to upsample the image. After 
that, the image is transferred to the next layer in the decoder path, which concatenates the 
feature maps from the contracting path (encoder), and performs two rounds of convolution, 
batch normalization, and dropout, respectively. After that image is upsampled again, the 
process continues until it reaches the last level in the decoder path, where image is restored 
to its original size of 96x128. The final layer in the decoder path has a sigmoid function 
that classifies each pixel in a binary way to a probability between 0 to 1.

We applied a window of 3 × 3 to the input image to construct a feature map in the convo-
lution process. We used the ReLU activation function [21] in these convolution processes. 
This activation function did not change the features’ positive weights, but it assigned a 
value of zero to all the negative weights of the features. Batch normalization was used to 
accelerate the network training by reducing the rate at which each layer’s inputs distribu-
tion changes during training, as the previous layer’s parameters change [26]. To prevent 
overfitting, we implemented L2 and Dropout as regularization methods in the model. We 
also used early stopping [47] for the same reason. Adam optimizer was used to optimize 
the weight and bias at each layer in the network, with a learning rate of 0.001 [47]. The 
input to the model is an ROI image of a slice in a human brain MRI, and the output is the 
segmented CL image.

Compared to U-Net and UNet++, the AM-UNet architecture produces higher accurate 
results in less computation time on the CL dataset. It is half the size of U-Net and does not 
need the complex skip connections of UNet++. AM-UNet enables the model to produce 
quality segmentation results with a small amount of training data. Since we have removed 
the last two max-pooling layers from the original U-Net model, AM-UNet consumes fewer 
training parameters and is faster to converge. This model performs well for inter and intra-
slice classification in detecting CL in identifying the coarse CL boundaries and segment 
them from the human brain MRI dataset.

3.4  Postprocessing

The postprocessing stage of the AM-UNet 3D segmentation network was designed to ensure 
a high prediction accuracy for 3D CL segmentation. It was composed of three sub-stages: (1) 
filtering false positives from the segmentation output, (2) reconstruction of the 2D slices from 
the segmented 2D ROIs (from 2D ROI images to 2D full images), (3) reconstruction of the 3D 
volumes from the 2D reconstructed slices (from 2D segmented slices to 3D MRI), as shown in 
Fig. 6. There was noise in the ground truth (manual annotation), which caused the segmenta-
tion model to falsely label some background pixels as CL. The false-positive removal step was 
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designed to solve this issue. The removal of false positives was conducted through two steps: 
(i) each pixel was labeled with 1 or 0 that is 1 when probability p ≥ � ( � = 0.5 ), and 0 oth-
erwise; (ii) the false positive pixels in the non-CL region were further detected and removed. 
The non-CL region was determined considering the ROI (represented by a rectangular matrix 
of 96x128) of each slice. In this matrix, CL pixels were supposed to present in the left and 
right CL regions. Hence, we filtered out the pixels falling out of the regions.

Secondly, the 2D segmented slices, as shown in Fig. 6a, were restored to their original size 
of 256x256 using padding, as shown in Fig. 6b. Thus, each ROI (or image) at this stage is a 
slice of MRI. Finally, all the annotated slices for CL segmentation were stacked back to recon-
struct each subject’s 3D MRI brain. Each subject MRI may have a different number of slices 
for CL segmentation. Thus, the 3D MRI brain was reconstructed by replacing the original 
slices with the annotated slices, as shown in Fig. 6c.

3.5  Loss function

The AM-Net model used the stochastic gradient descent optimization algorithm and evalu-
ated the model’s performance using the loss function of Weighted Binary Cross-Entropy 
(WBCE) [24] during training. The higher value of the loss function indicates that the model 
is off, whereas the lower value indicates a good training performance. The WBCE loss func-
tion reduced the classification error due to the class imbalance between the target (CL) and the 
background pixels and resulted in the enhancement of the model performance. The WBCE is 
defined in Eq. 4.

Where M represents the number of the training examples, w is the weight, ym is the tar-
get label for the training example m, xm represents the input training example m, and hΘ is 
the model with neural network weight Θ.

(4)
Jwbce = −

1

M

M
∑

m=1

[w x ym x log(hΘ(xm))

+ (1 − ym) x log(1 − hΘ(xm))]

Fig. 6  Postprocessing for 3D MRI Reconstruction: (1) Filtering False Positives, (2) Reconstruction of 2D 
Slices, (3) Reconstruction of 3D MRI
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4  Results and evaluation

4.1  Dataset

We used the 30 subjects’ high-resolution HCP MRIs (0.7 mm isotropic voxels) that were 
manually traced by domain experts using the manual tracing protocol. The manual seg-
mentation protocol [27] was developed using a cellular-level human brain atlas [15] that 
incorporated neuroimaging (T1 & diffusion-weighted MRI), high-resolution histology, 
large-format cellular resolution Nissl, and immunohistochemistry anatomical plates of an 
intact adult brain. T1w, T2w, and T1T2w MRI were used to produce segmentation maps 
for the Axial, Coronal, and Sagittal views (see Table 2 for the details of this dataset).

4.2  Evaluation metrics

To quantitatively evaluate the model accuracy, we have calculated various evaluation meas-
ures, including Dice score, Intersection over Union (IoU), Intraclass Correlation Coeffi-
cient (ICC), Sensitivity, Specificity, False Positive Rate (FPR), False Negative Rate (FNR), 
and Precision. True positive (TP) indicates the number of the CL pixels correctly predicted 
by the model. True negative (TN) indicates the number of the background pixels correctly 
predicted by the model. False positive (FP) indicates the number of background pixels that 
the model incorrectly predicted as CL. False negative (FN) indicates the number of CL 
pixels that the model incorrectly predicted as the background. Dice score is an index used 
to gauge the similarity of two samples in a range from 0 to 1 (see Eq. 5). The higher the 
value of the Dice score, the better is the accuracy of the model. IoU is an evaluation metric 
used to measure the accuracy of the image segmentation model by dividing the area of 
overlap between the predicted bounding box and the ground-truth bounding box by the 
total area encompassed by both, the predicted bounding box and the ground-truth bounding 
box, using Eq. 6.

For measuring the reliability of our evaluation, we used Intraclass Correlations (ICC), 
which describes how the observations in the same class resemble each other [42]. It is 
the index that reflects both degrees of correlation and agreement between measurements. 
In ICC3, each subject was assessed by each rater, but the raters were the only raters of 
interest, and the reliability was calculated from a single measurement, while ICC(3,K) 
was assessed by taking an average of the k raters’ measurement. Eq. 7 and 8 shows the 

(5)DiceScore =
2TP

2TP + FP + FN

(6)IoU =
Area of Overlap

Area of Union
=

TP

TP + FP + FN

Table 2  AM-UNet Dataset

Subjects MRI Slices Selected Slices# ROI+Aug.

Num. M/F Age Slice Size Min Avg Max Total Size Total

30 13/17 21-35 260 256x256 21 36 47 855 96x128 1069
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formula for ICC3 and ICC(3,k) calculations respectively, where MSR is the mean square 
for rows, MSW is the mean square for residual sources of variance, MSE is the mean square 
for error, MSC represents mean square for columns, and K represents the number of raters/
measurements.

We also computed the following measures: true positive rate (TPR) (Sensitivity) to 
determine how often our model can correctly identify the CL pixel (Eq. 9), true negative 
rate (TNR) (Specificity) to determine how often our model can correctly identify back-
ground pixels (Eq. 10), false positive rate (FPR) to determine how often the model incor-
rectly identifies background pixel as Cl (Eq.  11), False-negative rate (FNR) to measure 
how often the model will incorrectly identify CL pixel as background (Eq. 12), and Posi-
tive Predictive Value (PPV) (Precision) to measure how many pixels are CL out of all the 
pixels that the model has identified as CL for the CL segmentation (Eq. 13).

4.3  AM‑UNet: slice and subject level performance

We calculated the evaluation metrics with k-fold cross-validation performed on the 30 sub-
ject MRI dataset. For CL segmentation, we evaluated AM-UNet performance on multi-
ple MRIs, including T1w, T2w, and T1T2w, with three different views, including Axial, 
Coronal, and Sagittal views. We conducted the evaluation of the model on each of the three 
datasets separately, and for each run, we used k-fold cross-validation with the value of k 
= 5. The dataset was divided into five equal parts during each run. The model was trained 
on four parts and tested on one part. Then, the values of the evaluation parameters were 
recorded. This process was repeated five times so that model was tested on the whole data-
set, and the average values for evaluation parameters were obtained at the end.

(7)ICC3 =
MSR −MSE

MSR + (K − 1)MSE

(8)ICC(3,K) =
MSR −MSE

MSR

(9)TPR =
TP

TP + FN
= 1 − FNR

(10)TNR =
TN

TN + FP
= 1 − FPR

(11)FPR =
FP

FP + TN
= 1 − TNR

(12)FNR =
FN

FN + TP
= 1 − TPR

(13)Precision = PPV =
TP

TP + FP
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We trained the model on the augmented dataset for CL segmentation and tested it on 
a non-augmented one. With this procedure, we obtained an average Dice score of 82%, 
81%, and 82% and an average IoU score of 69%, 68%, and 70% for the CL segmentation 
for the Axial view of T1w, T2w, and T1T2w MRI, respectively. Table 3 shows the average 
Dice and IoU scores of AM-UNet on the three datasets for the Axial and Coronal views. 
The Sagittal results have been omitted due to its poor performance that does not provide 
meaningful results. To the best of our knowledge, these results are state-of-the-art for 3D 
human brain CL segmentation. ICC3 and ICC(3,K), whose manual tracer (raters) are the 
only raters of interest (3), are relevant to measure the reliability of the AM-UNet model. 
We evaluated the accuracy of the model’s CL segmentation, the single average measure 
of many pixels (K). Our model achieved 90% and 81% for ICC(3,K) and ICC3 respec-
tively for T1T2w data set for the Axial view. The average values of Sensitivity, Specificity, 
FPR, FNR, and Precision of AM-UNet are shown in Table 4. We achieved excellent overall 
scores on T1T2w data for the Axial view, such as Sensitivity (TPR) of 84.8%, Specificity 
(TNR) of 99.7%, FPR of 0.332%, FNR of 15.2% and Precision of 78.1%. We also evalu-
ated AM-UNet on the slice level. Since our model was tested on the whole dataset, the 
model performance on individual slices was recorded. We analyzed the best and worst-case 
slices of our model for the Axial view T1T2w data. The details are shown in Fig. 7.

In addition, we evaluated AM-UNet performance on the subject level. As mentioned 
earlier, in the CL MRI dataset, each subject had 260 slices. Only slices containing CL (36 
per subject on average) are presented to the segmentation model for prediction. Since we 
used the K-fold cross-validation approach for evaluation purposes, AM-UNet was tested on 
the whole dataset. The average Dice and IoU scores were calculated for the entire dataset. 
Figure 8 shows the boxplots for Dice and IoU per case score for all the 30 subjects in the 
dataset. Figure 9 depicts the ground truth (GT) and the model segmentation results of three 
subjects; the segmentation models precisely assigned each pixel of an image to one of the 
two classes, CL and the background. Figure 10 shows the 3D reconstructed volumes of GT 
and AM-UNet predictions.

Table 3  AM-UNet performance on T1w only, T2w only, and T1T2w data

Axial view Coronal view

Type Dice Score(%) IoU Score(%) Dice Score(%) IoU Score(%)

T1w 82 69 81 68
T2w 81 68 81 68
T1T2w 82 70 82 70
Number of Subjects = 30

Table 4  AM-UNet accuracy 
analysis for T1T2w MRI in axial 
view

Metric Average Value

Sensitivity (TPR) 84.8%
Specificity (TNR) 99.7%
False Positive Rate (FPR) 0.332%
False Negative Rate (FNR) 15.2%
Precision 78.1%
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4.4  Comparative evaluation

One of the closely related approaches to our work uses a fully convolutional network with 
a multi-view method [32]. This work employs a deep learning-based multi-view approach 
to segment CL from T1w data. Table 5 compares the Dice score accuracy of our model 
with the multi-view model. As seen in Table 5, the multi-view model [32] used 181 T1w 
MRI scans for training. As per the results in Table 5, with only 30 MRIs as training data, 
our model has shown better performance in all three views. The multi-view model [32] 
also generated segmentation maps for Axial + Coronal and Axial + Coronal + Sagittal 

Fig. 7  Best and worst cases of AM-UNet
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views and obtained the Dice score of 0.718 and 0.710, respectively. AM-UNet achieved 
better performance in all these three views even with less data, as seen in Table 5. Thus, we 
have not generated segmentation maps for Axial + Coronal and Axial + Coronal + Sagittal 
views that can be our future work.

Fig. 8  Subject-wise Evaluation for 3D CL Segmentation: Dice Coefficient Scores (on left), IoU Scores (on 
right)

Fig. 9  AM-UNet for CL Segmentation for 3 subjects: (a) Ground Truth, (b) Ground Truth (CL ROI), (c) 
Predicted Outcome
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Furthermore, AM-UNet was compared with the CL segmentation implementation using 
U-Net [41] and UNet++ [41]. Both of these models have shown promising results in the 
image segmentation domain. The CL segmentation models based on U-Net and UNet++ 
were trained in our experiment setting. Table 6 shows the results of this experiment for the 
Axial view using K-fold cross-validation with the value of k equal to 5. We computed the 
Dice and IoU scores for all three datasets (T1w, T2w, and T1T2w) but only reported the 
scores for T1T2w data.

As seen in Table 6, AM-UNet has shown better results in most evaluation indicators. It 
has outperformed U-Net and UNet++ in the six metrics out of the nine ones. AM-UNet 
has achieved the best results for most of the critical evaluation parameters for the CL seg-
mentation. Our method obtained the best scores for five evaluation metrics (Dice, IoU, 
ICC, TPR, FNR) and has used significantly fewer training parameters(#Par). Our method’s 
higher TPR score and lower FNR score verify that AM-UNet is optimized in detecting 
the CL pixels. UNet++ has achieved the best scores of three scores (TNR, precision, and 
FPR). UNet++ had the highest precision score because it predicted only a few CL pixels 
with high accuracy (and hence missed some CL pixels), and therefore it obtained a low 
FPR score. The high TNR of UNet++ shows its ability to identify the background pixels 

Fig. 10  AM-UNet 3D Segmentation (Green) and Ground Truth (Orange)

Table 5  Comparative evaluation: 
AM-UNet & multi-view CL 
model

Model Dice score Subject

Axial Coronal Sagittal

Multi-View Convol. Net-
work (T1 Only) [32]

0.69 0.70 0.55 181

AM-UNet (T1 Only) 0.82 0.81 0.68 30
AM-UNet (T1T2) 0.82 0.82 0.68
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correctly. The U-Net model received poor results, such as the lowest precision and the 
highest score of FNR and FPR. The boxplots comparing the Dice and IoU scores across 
these three methods, Fig. 11, confirms the results presented in Table 6. Figure 12 shows 
the visual comparison of the three models on the T1T2w dataset for the Axial view. In 
this figure, MRI represents the input data, ROI represents the region of interest with CL 
highlighted in orange, GT represents the ground truth labels in white, AM-UNet repre-
sents the result of our model in green overlaid on white ground truth, U-Net represents the 
results of U-Net in red overlaid on white ground truth, and UNet++ represents the results 
of UNet++ in blue overlaid on white ground truth. The overlaid regions’ darker green, red, 
or blue pixels mean false positives, and white pixels represent false negatives. As seen in 
Fig. 12, U-Net and UNet++ had high false negative rates and lower true positive rates and 
therefore has more white pixels as compared to AM-UNet. In terms of false positive rates 
(the darker pixels), all the three models showed similar results, with UNet++ having mar-
ginally better performance than others.

The performance of U-Net and UNet++ was also evaluated on individual MRI levels. 
In this evaluation, we identified the worst-cases of these two models, U-Net and UNet++, 

Table 6  Comparative evaluation: AM-UNet & state-of-the-Art UNet networks

Model Average dice score Average IoU ICC

T1 T2 T1T2 T1 T2 T1T2 ICC3 ICC(3,K)

U-Net [41] 0.81 0.78 0.81 0.68 0.64 0.69 0.78 0.87
UNet++ [41] 0.80 0.80 0.81 0.67 0.69 0.68 0.7 0.87
AM-UNet 0.82 0.81 0.82 0.69 0.68 0.70 0.81 0.90
Model TPR TNR FPR ↓ FNR ↓ Prec #Par
U-Net [41] 0.80 0.996 0.0036 0.76 0.20 8.6M
UNet++ [1] 0.78 0.998 0.0024 0.22 0.82 9M
AM-UNet 0.85 0.997 0.0033 0.15 0.78 0.34M

Fig. 11  Evaluation with Dice Score & IoU Score: AM-UNet, U-Net, and UNet++
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and compared the performance of all the three models, AM-UNet, U-Net, and UNet++, for 
these 2 MRIs. Figure 13 shows the result of this comparison. This figure presents the visual 
comparison for the model performance and the values for the seven evaluation measures. 
As seen in Fig. 13, our model outperformed the other two models in terms of Dice score, 
IoU, Sensitivity, and FNR for both the MRIs. UNet++ had better results for Precision and 
FPR, mainly because the model has missed a lot of the CL pixels. This is also evident from 
the high FNR and low TPR of UNet++ and the visuals provided in Fig. 13. As seen in the 
figure, UNet++ can barely identify the CL pixels in its worst-case and completely misses 
the right half of the CL on the worst-case for U-Net. Similarly, U-Net suffers from high 
FNR, and low TPR for its worst-case completely misses the suitable CL pixels and shows 
higher FPR for the worst-case for UNet++.

5  Discussion

First, 3D segmentation modeling requires more complex modeling and much higher com-
putational resources [1], which in turn affects a modeling ability to carry out the train-
ing with large datasets. Some studies reported that 2D U-Net achieved better results than 
3D U-Net’s in terms of accuracy, memory consumption, and training time [33]. Target-
ing the 3D segmentation in AM-UNet, a series of multiple 2D segmentation models were 
designed instead of a 3D segmentation model. In AM-UNet, we utilized advanced pre and 
postprocessing image analysis techniques and the 2D segmentation model to create a fully 
automated end-to-end 3D segmentation network. As a result, we obtained a superior per-
formance from AM-UNet compared to others. Our study showed that the simplicity of the 
AM-UNet model is sufficient to capture the spatial information along the third dimension, 
like 3D models. Furthermore, AM-UNet also can represent the 3D CL segmentation with a 
series of 2D segmentation models.

Second, compared to other subcortical brain structures that are often segmented manu-
ally (e.g., amygdala), CL is much harder to segment accurately due to the thin morphology 

Fig. 12  Comparative Evaluation: Original and ROI Images, Ground Truth (white), AM-UNet (Green), 
U-Net (Red), and UNet++ (Blue)
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and the limited spatial resolutions of MR images. In this study, our AM-UNet approach 
with optimized image analysis strategies solves the challenging problem of segmenting 
CL. The comparative evaluation demonstrates the AM-UNet’s ability for the CL segmenta-
tion. The results obtained in this research and the comparison with other works have shown 
the AM-UNet’s strengths. To the best of our knowledge, we achieved the state of the art 
results for automatic end-to-end 3D CL segmentation. The present study demonstrated that 
our AM-UNet approach has great potential for developing an automatic and accurate seg-
mentation tool for very challenging medical imaging segmentation problems, such as CL 
segmentation.

Finally, there is still room to improve the AM-UNet model: We need an advanced 
method to overcome a challenging problem of the CL segmentation, such as the class 
imbalance problem (i.e., background pixels vs. CL pixels). We need more powerful 
ROI detection dealing with diverse MRI datasets. The deep learning networks could be 
extended for capturing contextual features of CL with advanced models, such as attention 

Fig. 13  Comparative Analysis with Worst Cases of U-Net and UNet++
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modeling or sequential modeling with LSTM. We need to consider a semi-supervised 
approach for CL segmentation through human and machine collaboration to overcome the 
lack of human-annotated data rather than supervised learning.

6  Conclusion and future work

We proposed AM-UNet for CL segmentation of the human brain MRIs, consisting of pre-
processing, optimal U-Net-based modeling, and postprocessing. AM-UNet produced the 3D 
CL segmentation maps for human brain MRIs effectively and efficiently. We developed and 
evaluated various deep learning models (U-Net variants) to automatically and accurately 
segment the CL from T1, T2, and T1T2 weighted MRI datasets. Among these models, 
we found that AM-UNet had the optimal performance and simplified architecture for 3D 
MRI segmentation. Our main contributions of this research are as follows: (i) designed a 
smaller, simpler, and efficient U-Net model architecture, (ii) developed an automated end-
to-end 3D segmentation network for CL, (iii) produced multi-view segmentation models, 
and (iv) obtained the state-of-the-art results in the 3D CL segmentation. For automatic seg-
mentation of 30 human brain MRIs (T1T2w) from the HCP dataset, the AM-UNet network 
has achieved superior segmentation performance with Dice, IoU, and ICC scores for the 
Axial view’s CL segmentation of 82%, 70%, and 90%, respectively. The 2D segmentation 
version of AM-UNet is publicly available on GitHub: https:// github. com/ Ahmed Albis hri/ 
AM- UNET.

In future work, we will enhance the AM-UNet approach for a 3D U-Net-based CL seg-
mentation model. As a result, the segmentation model will be more flexible with various 
imaging datasets in a wide range of medical applications. Furthermore, the model will be 
extended to use segmentation maps for Axial + Coronal and Axial + Coronal + Sagittal 
views. We will also develop an interactive 3D segmentation tool for MRI and CT-Scan 
images in which experts can give immediate feedback during machine learning and pre/
post-processing. In addition, this tool will provide advanced features, such as normaliza-
tion, augmentation, transformation, visualization, optimization, and transfer learning for 
effective CL segmentation.
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