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Multi-Representation Knowledge Distillation For
Audio Classification

Liang Gao, Kele Xu, Huaimin Wang, Yuxing Peng

Abstract—As an important component of multimedia analysis
tasks, audio classification aims to discriminate between different
audio signal types and has received intensive attention due to
its wide applications. Generally speaking, the raw signal can be
transformed into various representations (such as Short Time
Fourier Transform and Mel Frequency Cepstral Coefficients),
and information implied in different representations can be
complementary. Ensembling the models trained on different
representations can greatly boost the classification performance,
however, making inference using a large number of models is
cumbersome and computationally expensive. In this paper, we
propose a novel end-to-end collaborative learning framework
for the audio classification task. The framework takes multiple
representations as the input to train the models in parallel.
The complementary information provided by different repre-
sentations is shared by knowledge distillation. Consequently, the
performance of each model can be significantly promoted without
increasing the computational overhead in the inference stage.
Extensive experimental results demonstrate that the proposed
approach can improve the classification performance and achieve
state-of-the-art results on both acoustic scene classification tasks
and general audio tagging tasks.

Index Terms—convolutional neural networks, acoustic classifi-
cation, knowledge distillation.

I. INTRODUCTION

AUDIO classification task refers to identify a pre-defined
label for an audio signal [1]. The potential applications

of audio classification seem to be evident in several fields,
such as multimedia retrieval, security surveillance [2], health
care monitoring [3] and context-aware services [4]. Due to
the dramatic increase of the sound recordings, the demand
for automatic audio classification is growing rapidly in last
decades. Sustainable efforts have been made to address the
audio classification problems [1], [5], [6], [7], [8], [9], [10].

The launch of the Detection and Classification of Acoustic
Scenes and Events (DCASE) [11] challenge promoted the
development of audio classification, which was organized by
the IEEE Audio and Acoustic Signal Processing (AASP) tech-
nical committee. Many audio processing techniques have been
proposed during the past years, and the applications of deep
learning in the audio classification have witnessed a significant
increase, especially the convolutional neural network (CNN).
The traditional method, which commonly involve models like
Gaussian Mixture Model (GMM) [8], Support Vector Machine
(SVM) [6] or Hidden Markov Model (HMM) [7] are trained
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using the frame-level features such as Mel-frequency Cepstral
Coefficients (MFCC) [12].

[13], [14] used one-dimensional convolution and fully con-
nected layers to learn from the original raw signal; [15]
combined MFCC and its delta into two-channel data, and
used convolutional neural networks for feature extraction and
classifier training. [16] extracted three channels of log Mel-
spectrograms (static, delta, and delta delta) as the DCNN
input for speech emotion recognition. [17] explored the use
of dilated convolutions to use more contextual information to
classify audio. [18], [9], [19] applied the time-domain convo-
lution method to different tasks, such as speech recognition
and sound event detection. [10] used convolutional recurrent
neural network (CRNN) for music labeling tasks.

In most existing audio classification works [15], [17], [18],
[9], [10], [20], [21], the raw signal was transformed into
one single representation (for example, Short Time Fourier
Transform (STFT) [22] logMel and MFCC), then train the
classifiers based on the single representation. The performance
of deep neural networks heavily relied on the representation
of the audio clip while one single representation may cannot
present the information effectively and efficiently. The conver-
sion process from the original audio signal to the advanced
representation undergone a variety of transformations and
information compression operations, which undoubtedly led
to the loss of audio information. Thus, single representation-
based deep models are still short of accuracy. Fusion the
knowledge obtained using different representations can greatly
improve the classification performance [23], [24], as the single
representation may be stuck at poor local minimums during
the training phase.

Different representations represent different aspects of sig-
nals, joint using the knowledge of different representations
could enhance model generalization performance [25]. For ex-
ample, in image classification, [26] combined the discrimina-
tive power of different views to jointly learn the classifiers and
transformation matrices. There are many works that improve
model performance by ensemble networks [27], [28], [29]
which trained on different representations. But it leads to the
increase of model complexity, some researchers tried to fusion
information of different representations into a single network.
In audio classification, [30] combines convolutional neural
networks (CNNs) with long short-term memory (LSTM) to
exploit the correlative information from multiple views. These
methods require careful model design, The universal approach
to employ complementary information provided by different
representations is still under-explored.

Intuitively, there are two kinds of approaches for the uti-

ar
X

iv
:2

00
2.

09
60

7v
1 

 [
cs

.M
M

] 
 2

2 
Fe

b 
20

20



2

lization of complementary information from multiple repre-
sentations. One straightforward way is early-fusion, which
concatenates different representations as a whole input to a
single network, with each representation being a separate chan-
nel. However, this method decreases the network performance
in the practical settings. Another method is later-fusion [23],
[27], which ensembles the predictions generated by different
classifiers, which can empirically boost the classification per-
formance. Nevertheless, the inference of a large number of
models is cumbersome and computationally expensive.

Recently, it has been found that knowledge distillation [31],
[32] can be used to transfer knowledge between different
models, which could improve the classification without in-
creasing the computational complexity in the inference phase
[32], [33]. Inspired by the knowledge distillation, in this paper,
a multi-representation based knowledge distillation approach
was proposed for audio classification, with the goal to fully
utilize complementary information introduced by different
representations of the audios. Moreover, our method uses only
one model in the inference phase, so the computational cost
is independent of the number of models that participated in
the distillation framework. Overall, our contributions are three-
fold:

• Firstly, a novel collaborative learning framework is pro-
posed for the audio classification task. Unlike most of
the traditional approaches which only use a single rep-
resentation, we leverage multiple representations within
the framework. Complementary information embedded
in multiple representations is extracted through different
neural networks and fused in the end-to-end distillation
framework. The fused knowledge is then fed back to
each network during the training phase and can ef-
fectively improve the performance of different models.
Consequently, the performance of each model has been
improved by using collaborative distillation in the training
stage. Moreover, different network architectures can be
easily integrated into the framework.

• Secondly, our method provides a novel ensemble ap-
proach without additional inferring cost. Due to the de-
coupling nature of the knowledge distillation framework,
no dependency is enforced between participated models.
In other words, each model can be used independently in
the inference stage. Those lightweight models trained by
distillation become very effective in resource-constrained
computing scenarios.

• Thirdly, extensive experiments are conducted on acoustic
scene classification (DCASE 2018 Challenge Task 1A)
and general audio tagging (DCASE 2018 Challenge Task
2). We find that the learning framework can improve the
performance of audio classification and achieve state-
of-the-art results on both acoustic scene classification
and general audio tagging task. More specifically, with
our framework single network obtained the mAP@3 of
93.26% in the acoustic scene classification task, and the
accuracy of 72.48% in the acoustic scene classification
task.

The paper is organized as follows. We firstly discuss the

relationship between our method and prior works in section
II, while the details of the proposed approach are presented in
section III. The experimental settings, the analysis of results
and conclusions are given in the last three parts.

II. RELATED WORK

In this section, we discuss the relationship between our
work and previous work, which includes two parts: audio
classification and knowledge distillation.

A. Audio classification

Audio tagging aims to predict the presence or absence of
certain acoustic events in the interested acoustic scene. Some
traditional methods for audio classification like SVM, HMM
and GMM are applied in industry. In the first edition of
DCASE in 2013, SVM [34], [35] and bagging of decision
trees [36] were used. Recently, deep neural networks have
shown improved performance for the audio classification task.
In brief, the main modifications of current deep learning-based
audio classification can be divided into four types: jointly
using different representations of the audio signal [37], [38];
more sophisticated deep learning architectures [39], [40], [41];
and the applications of different regularization methods (such
as data augmentation) [42], [43], [44], [45].

Among all of the studies, the selection of representation for
the audio signal is one of the key factors for classification
performance, while only a few attempts have been made in
previous studies [42]. The audio signal can be transformed
into various representations, such as raw wave signal, MFCC
[46], i-vector [47] and so on. A suitable representation can
effectively improve the generalization ability of the model,
MFCC and logMel have been proven to be useful in CNNs.
[48] presents a novel two-phase method for audio represen-
tation, they take into account both global structure and local
structure, the learned representation can effectively represent
the structure of audio. [49] argue that an image-like spectro-
gram cannot well capture the complex texture details of the
spectrogram, so that they proposed a multichannel LBP feature
to improve the robustness to the audio noise. Combining
knowledge of multiple audio representations can obtain more
comprehensive features and strengthen the generalization of
models. It is found that ensembling [50], [51] the predictions
generated by different classifiers can greatly boost the audio
classification performance. However, making inferences using
a large number of models is cumbersome and computationally
expensive. On the other hand, an efficient fusion of different
representations within the end-to-end manner also draws lots
of attention [23]. Still, the audio classification using multi-
representation needs to be thoroughly explored.

B. Knowledge distillation

Knowledge Distillation was firstly proposed in [52] and re-
popularized with the goal of model compression in [31]. With
the knowledge distillation method, knowledge of pre-trained
complex models can be transferred to a small network, which
would help to improve the model performance. Except for
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the traditional supervised learning objective such as the cross-
entropy loss which based on the ground truth label, distillation
hopes to introduce the extra supervision from the teacher
model to the student model. The extra supervision can be in
the forms of classification probabilities [31], [53] or feature
representation [54].

[33] uses the knowledge distillation method to extract
knowledge from an integrated model and compress the knowl-
edge into a single network. In [32], two models are training
at the same time, exchanging their prediction probability with
each other to enhance the model performance. For classifiers
that use label smoothing, soft labels replaced one-hot hard
labels. Label smoothing can reduce the interference of noise
data or wrong labels. In online distillation [55] studied the
co-distillation of multiple examples of neural networks, which
using exactly the same settings, and achieved training accel-
eration. [56] proposed cooperative learning, in which jointly
trains multiple models in different fields. For example, in the
image detection task, one model inputs using the RGB image
and the other model inputs using the depth image. The two
models exchange the unchanged object attributes in the task
so that the same task can be trained with different data inputs.
Only a few attempts have been made to leverage knowledge
distillation for the audio analysis tasks.

III. METHODOLOGY

In this section, we present our approach for the audio
classification task using knowledge distillation. The overview
of the multi-representation distillation framework is illustrated
in Figure 1. The framework contains multi-branch networks
with leveraging multi-representation as the input. The au-
dio signals can be transformed to different representation,
which exhibits heterogeneous properties. Each representation
presents a different view of the raw audio, and each view
has its own individual representation space and dynamics.
The training framework consists of multiple branches, the
information aggregation unit and the similarity measure units.
Each of branches in the framework is a network of full
function with feature layers capturing features, fully-connected
layers and logits layer for audio classification. The information
aggregation unit which aggregates knowledge from multi-
branch networks, and networks in the framework learn from
the aggregated knowledge by minimizing the loss of similarity
unit. The raw signal of audio can be transformed into a
variety of representations with complementary knowledge.
And each branch trains network with one representation. After
the information aggregation unit aggregated knowledge from
multi-branch networks, the branches in the framework learning
from the aggregated knowledge.

To train networks with the framework, first we transform
the audio into different representations. And then we use the
strategy of cyclic distillation for network training. Each cycle
of the training process is divided into three small phases: the
training of single branches, the information fusion and the
distillation training.

Assuming that given a training set which contains N
samples X = {x1, x2, .., xN}, the samples come from M cate-

gories, and their corresponding labels are Y = {y1, y2, ...yN}.
Assuming there are Γ branches in the framework.

A. Data preparation

In the data preparation phase, multiple representations of
the audio data are generated and used as input for different
branches. In acoustic classification tasks, converting the origi-
nal audio data into a suitable feature representation often leads
to better performance. In general, the audio signal conversion
process includes framed windowing, Fourier transforming,
power spectrum calculation, filtering, and discrete cosine trans-
forming, etc.

The continuous sound signal is converted into a high-
level representation through time-frequency transformation,
which can highlight the frequency domain features of the
audio. And the transformed features representations have the
advantages of low dimensions which can be represented as
two-dimensional images. On the other hand, advanced audio
representations are more in line with human ear characteristics.
For example, the MFCC could simulate the human ears
masking effect (the human ears are more sensitive to low-
frequency sounds than to high-frequency sounds and more
sensitive to high loudness sounds than low loudness sounds).
In the transform processing of raw signal to MFCC or logMel,
a set of bandpass filters which distributed gradually sparse
from low to high frequencies are arranged in the critical fre-
quency bandwidth to filter the input signal. The basic features
obtained with the bandpass filters can be deployed as inputs
for networks, and the generated representation is more robust
and has better recognition performance in the signal with a
lower noise ratio. On the other hand, the constant Q transform
(CQT) avoids the disadvantage of uniform time-frequency
resolution. For low-frequency waves, its bandwidth is very
small, but it has higher frequency resolution to decompose
similar notes; and for high-frequency waves, the bandwidth
is relatively large, so that there is a higher time resolution at
high frequencies to track rapidly changing overtones.

As shown in Figure 2, the audio signals could be trans-
formed into different representations, such as log-scaled
Mel-spectrograms (logMel), constant-Q transform (CQT) and
MFCC and so on. Different audio representations have their
own advantages, and one single representation cannot present
the information effectively and efficiently. Learning to inte-
grate multiple representations can utilize their mutual comple-
ment information. The neural networks learned with multiple
representations may give better classification performance
due to the complementary information contains in different
representations.

In the framework with Γ branches, we convert the raw signal
D = (X,Y ) into Γ kinds of different representations, which
are denoted as Di = (Xi, Y i), i ∈ (1, 2, ...,Γ).

Using knowledge distillation methods to combine with
networks of different structures. Each branch in the framework
can independently select the network structure, assuming that
the networks in i-th branch denoted as fi in the knowledge
distillation framework. And Di is the corresponding training
set of the classifier fi.
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Fig. 1: The overview of the proposed framework, which includes two components: (1) The multiple representations which
provide input for the networks. (2) The training framework which consists of multiple branch networks (students), the
information aggregation unit and the similarity measure units. In the training process, the information aggregation unit aggregate
knowledge from the multiple participated networks of branches. For each of participated branches, there is a similarity measure
unit that feeds back the aggregated knowledge to the network in branch.

(a) WAVE (b) MFCC

(c) CQT (d) logMel

Fig. 2: Different representations of audio data. (a)WAVE (b)
MFCC (c) CQT and (d) logMel

B. Single branch training

In the phase of single branch training, the learning objective
is to fit the ground-truth label. We minimize the cross-entropy
loss between the predicted values with target labels, and the
formula is as follows:

Lce = − 1

N

N∑
i=0

[yi log f(xi)], (1)

where Lce is the loss of single branch training phase for the
branch network f . The cross-entropy represents the distance

between the predicted value and the expected value (ground-
truth label).

C. Information fusion
In order to aggregate knowledge from multiple branches, we

averaged the predicted values, using soft labels as information
carriers. The One-hot label only indicates the category to
which the sample belongs, but ignores the similar relationship
between the sample and different categories. Soft labels are the
soften softmax probability of the logits layer, which consists
of the sample similarity information. For each branch, we
calculate the soft labels for all training data and then send
them to the information aggregation unit. For the sample xi,
the formula to calculate soft label is:

pi =
exp(gi/T )∑M
j=0 exp(gj/T )

, (2)

where gi is the logits layer output of a branch network f
corresponding to the i-th category. And T is a soften hyper-
parameter. The larger the value of T , the smoother the soft
label distribution.

The information from different branch networks is ag-
gregated in the aggregation unit, which would be adopted
as teacher information during the distillation training phase.
The aggregated information was calculated from the multiple
branches with average ensemble method:

−→
P =

1

Γ

Γ∑
i=1

(Pi). (3)
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In this equation, Pi represents the training set’s soft labels of
branch networks fi, and Γ represents the number of branches.
The averaged soft labels

−→
P has the same effect as probability

of ensembled network, which is smoother and stronger gener-
alized than the soft labels in single branch network.

D. Knowledge distillation

Knowledge transfer in knowledge distillation is accom-
plished by reducing the difference of information between
teachers and students. Kullback-Leibler (KL) divergence could
measure the difference of two distributions. In the distillation
training process, the averaged soft labels which had aggregated
knowledge from all branches were used as the teacher. For
each branch, the similarity between soft labels P and the
averaged soft labels

−→
P is calculated as follows:

Lkl = − 1

N

N∑
i=0

M∑
j=0

[P j
i log

−→
P j
i

P j
i

], (4)

where Pi denote the soft labels for i-th sample of branch
networks f , and j donate the j-th category.

In previous attempts for knowledge distillation [32], [57], it
has been found that combining supervision from onehot labels
with supervision of teacher information leads to smoother
optimization and better-performed network. The distillation
loss for each branch of in the distillation training phase is
given as follows:

Ld = Lce + Lkl. (5)

The training process of the framework is summarized in
Algorithm 1. Different from traditional two-stage distillation,
we adopted cyclic distillation strategy, a large cycle including
three phases: the branch training, knowledge aggregation, and
distillation training. Three phases correspond to the infor-
mation generation, information aggregation, and information
feedback, respectively. The cyclic training could help networks
better capture and utilize complementary information of mul-
tiple representations. After the model converges, any branch
classifier in the framework could be applied for inferring
according to the data representation or the resources limits.
If better classification performance is sought, an ensemble
network of multiple branch networks can also be used.

IV. EXPERIMENT

Two widely-used datasets are applied to verify the efficacy
of our distillation framework, (1) the FSDKaggle2018 audio
tagging dataset and (2) the 2018 TUT Urban acoustic scene
classification dataset.

A. Dataset

FSDKaggle2018 dataset. The FSDKaggle2018 dataset [58]
was adopted for the general-purpose audio tagging task in
2018 DCASE, which aims to explore efficient models for
general-purpose audio tagging problem. The samples in this
dataset were annotated by Freesound [59] with 41 labels (from
Googles AudioSet Ontology). The data format is unified to

Algorithm 1 Multi-representation knowledge distillation

INPUT: Dataset D = (X,Y ),learning rate lr, the number
of training epoch Q, the number of branches Γ, soften
temperature parameter T , single branch training epoch b and
distillation training epoch d.
PREPARING WORKS: Transforming the raw audio signal to
multiple representations. Determining the network architecture
fi and input representation Xi for each branch in the frame-
work.
CYCLIC DISTILLATION:

1: Initialization: q = 1, load pre-train parameters Θ for
branch networks.

2: for q < Q do
SINGLE BRANCH TRAINING:

3: while t in range(b) do
4: Calculate Lce as Eq. (1)
5: Update the network’s parameters: Θ = Θ + ∂Lce

∂Θ
6: end while
7: Calculate soft label Pi as Eq (2)
8: Send soft label Pi to the information aggregation unit

INFORMATION FUSION:
9: Aggregate knowledge:

−→
P = 1

Γ

∑Γ
i=0 Pi

DISTILLATION TRAINING:
10: while t in range(d) do
11: Calculate Lce as Eq. (1)
12: Calculate Lkl as Eq. (4)
13: The final loss: Ld = Lce + Lkl

14: Update the network’s parameters: Θ = Θ + ∂Ld

∂Θ
15: end while
16: q=q+1
17: Update learning rate
18: end for

mono audio files of PCM 16 bit, frequency 44.1 KHz. There
are about 9.5k samples in the training set, and 1.6K samples
manually-verified annotated in the test set. Among the training
set, samples are unequally distributed, which consists of about
3.7K manually-verified samples and about 5.8K non-verified
samples whose quality estimated to be around 65-70%. The
sample clips range from 92 to 300 for different classes in
the training set, while the duration of audio files differs from
300ms to 30s.

TUT Urban acoustic scenes 2018 dataset. The TUT Urban
Acoustic Scenes 2018 development dataset [60] (the dataset
for DCASE 2018 task 1) for the acoustic scene classification
task was used in our experiments, which tries to classify
the characterizes of the environment where a recording from.
Every sample in the training set is 10 seconds segments, and all
of them are divided into 10 categories (acoustic scenes). Each
acoustic scene contains 864 segments, in total 8640 segment.
In the dataset, 6122 segments are used for training and 2518
segments are used for testing.

B. Networks

Convolutional neural networks (CNN) have shown their
superiority in the audio classification tasks. However, few
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researchers have explored the application of the knowledge
distillation method to the acoustic CNN model. In this paper,
two representative CNN networks, VGGNet [61] and ResNet
[40], were used for experimental verification.

VGGNet replaces the large convolution kernel (such as 7×7
in AlexNet [62]) with a 3×3 convolution kernel and improves
its performance by deepening the network architecture. Three
3×3 convolutional layers connected in series have the same
effect with one 7×7 convolutional layer, that is, the three
3×3 convolutional layers have a receptive field size equivalent
to one 7×7 convolutional layer. However, the former has
only about half of the latter’s parameters and reducing linear
operations which enhances the learning ability of models.

ResNet uses the residual connection to solve the problems
of information loss and vanishing gradients while training deep
networks. The use of shortcut connections in ResNet directly
bypasses the input information to the output, which protecting
the integrity of the information and simplifying the learning
objectives.

In this paper, we use the classic 19-layer VGGNet network
VGGNet19 and the 101-layer ResNet network ResNet101 in
the distillation framework [25].

C. Experiment setting

We use Pytorch to implement the network architecture and
the librosa1 toolkit package for data processing. In addi-
tion, the gRPC2 framework is used for information transfer
between networks. All the experiments are conducted on
NVIDIA GeForce GTX 1080Ti GPU. For the experiment
setting, SGD algorithm was adopted with the learning rate
initialized as 0.001. The learning rate decays according to
Pytorch CosineAnnealingLR function. The mini batch size
set as 64 and the number of train epoch is 150. The mixup-
data augmentation method [63] was adopted in all experiments
to avoid overfitting. Setting the single branch training epoch
s = 1 and distillation training epoch d = 1. In all experiments
the models loading the parameters of pre-trained on ImageNet
dataset.

It is worthwhile to notice that many different audio repre-
sentations can be deployed for the experiments. In this paper,
log Mel, CQT and MFCC are used, while it is trial to extent
our approach to other representations. To produce logMel and
MFCC, we follow the setting of [64], the mel filter banks as
64, frameshift as 10 ms and frame width as 80 ms. Thus there
will be 150 frames in an audio clip. The delta and delta-delta
features are calculated using a window size of 9. To determine
the relationship between features at different scales, logMel
features of different resolution were used. In this paper, the
logMel feature determined as ”logMel128” where the number
of mel filter banks is 128, and for the logMel feature whose
number of mel filter banks is 64 determined as ”logMel64”.
And in the tables without ambiguity, ”logMel” defaults to
logMel feature whose number of mel filter banks is 64.

1https://github.com/librosa/librosa
2https://github.com/grpc/grpc

V. RESULTS AND ANALYSIS

In this part, we present our experimental results of different
configurations. In our experiments, the mean average precision
(mAP) and accuracy were applied as the main evaluation
criterion. All results reported are the audio level scores.

A. Knowledge distillation using cross multi-resolution repre-
sentations

Table I compares the results of networks trained with our
distillation framework (masked with *) using cross resolution
representations as inputs and the results of networks training
independently. We can observe that from the table: (1) The
performance of network distilled using cross resolution rep-
resentations are better compared to the independently trained
networks. (2) The networks with inputs of logMel128 perform
better than the networks with inputs of logMel64, which
indicates that logMel128 maintains more information about
audio signals than logMel64. The reason may be that more mel
filter banks are beneficial to preserve the detailed information.
(3) Although the complementary information has been used
to improve the performance of each branch in the distillation
framework, the ensembled network are better than the single
branch network in the framework, which demonstrates that
there is still complementary information works in the ensemble
network. The two groups (network as ResNet and VGGNet)
of experiments have the same trend. In addition, although the
classification results based on the VGGNet network are not
as good as the experimental group based on the ResNet, our
method achieves a bigger performance improvement on the
experiments based on VGGNet. Knowledge distillation using
cross resolution representations can be beneficial compared to
the network training with the conventional method, indicating
that different resolution representations enable networks to
learn useful features to reach sufficient agreement.

TABLE I: The results (%) of distillation using cross resolution
representations with network architecture as ResNet on FSDK-
aggle2018 dataset. In the table, * indicates the branch network
in our knowledge distillation framework, while network not
distilled does not indicate with *. The Ensemble* is the results
of ensemble networks of the branches in the framework. The
same in the following tables.

Network Input Accuracy mAP@3

ResNet

logMel64 88.01 91.06
logMel128 88.42 91.75
logMel64* 89.43 92.65
logMel128* 90.12 93.16
Ensemble* 91.02 93.84

VGGNet

logMel64 82.4 87.58
logMel128 83.12 88.45
logMel64* 89.75 92.66
logMel128* 89.81 92.98
Ensemble* 90.5 93.48

B. Knowledge distillation using multiple representations
To verify the effectiveness of multiple representations distil-

lation, we use ResNet as the two branches’ network architec-
ture, while MFCC and LogMel are used as inputs, respectively.
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Table II reports the accuracy and mAP@3 on the FSDKag-
gle2018 dataset of ResNet trained with independent training
method and the results of distillation using multiple repre-
sentations. And Table III reports the results of distillation on
multiple representations on the THU Urban Acoustic Scenes
2018 dataset. From the table, we can conclude that our distil-
lation framework can leverage the complementary information
in different representations to enhance the performance. It also
can be seen that the branch with inputs of MFCC is better
improved than the branch with inputs of logMel, more useful
knowledge flow from the logMel branch to the MFCC branch
during the distillation process. This is noteworthy that the basic
performance of the logMel branch is better than the MFCC
branch, that means that the branch of low-performance can
get more performance gain from the high-performance branch.
Another noteworthy phenomenon is that the accuracy and the
mAP@3 of the logMel branch improved more after knowledge
distillation with CQT than distillation with MFCC. This is
in line with our expectations, because the conversion process
from original audio to MFCC and logMel is similar, resulting
in fewer feature differences between them. The CQT and
logMel have more complementary information, which leads
to a better effect of knowledge distillation.

TABLE II: The results (%) of distillation using multiple
representations with ResNet as network architecture on FS-
DKaggle2018 dataset.

Model Input Accuracy mAP@3

ResNet

logMel 88.01 91.06
MFCC 84.18 88.78

logMel* 88.31 91.95
MFCC* 87.19 90.86

Ensemble* 90.44 93.28

ResNet

logMel 88.01 91.06
CQT 85.81 89.68

logMel* 89.63 92.72
CQT* 87.69 91.29

Ensemble* 91.06 93.76

TABLE III: The results (%) of distillation using multiple
representations with ResNet on TUT Urban acoustic scenes
2018 dataset.

Model Input Accuracy mAP@3

VGGNet

logMel 65.29 76.88
MFCC 63.46 75.11

logMel* 66.12 77.44
MFCC* 65.8 76.22

Ensemble* 66.76 77.7

ResNet

logMel 70.33 80.67
MFCC 67.71 78.32

logMel* 72.43 81.65
MFCC* 68.59 79.82

Ensemble* 72.86 82.25

C. Knowledge distillation using different network architec-
tures

As the different inputs could produce complementary infor-
mation, the network architectures may also lead to differences

in knowledge. Table IV and Table V compare the results in
the distillation framework which distilled with ResNet and
VGGNet network and the results of independent training
method on TUT Urban acoustic scenes 2018 dataset and
FSDKaggle2018 dataset. As expected, the knowledge dis-
tillation framework provided sufficient promotion compared
to the independently training. Different network structures
are also sources of complementary knowledge. Although our
framework is useful on both the FSDKaggle2018 dataset
(for general-purpose audio tagging task) and the TUT Urban
acoustic scenes 2018 dataset (for acoustic scenes classification
task), it is apparent that the promotion is greater on the
general-purpose audio tagging task. There are a large number
of non-verified samples on the FSDKaggle2018 dataset, and
in distillation the soft labels re-marking the erroneous data can
greatly reduce the impact of the error label. The process of
relabeling the target by the knowledge distillation method can
obtain similar benefits to semi-supervised learning and reduce
the false induction of confusing labels.

TABLE IV: The results (%) of distillation using different
network architectures with inputs of logMel on TUT Urban
acoustic scenes 2018 dataset.

Input Network Accuracy mAP@3

logMel

VGGNet 65.29 76.88
ResNet 70.33 80.67

VGGNet* 66.6 77.59
ResNet* 70.49 80.51

Ensemble* 70.84 80.85

TABLE V: The results (%) of distillation using different
network architectures with inputs of CQT on FSDKaggle2018
dataset.

Input Network Accuracy mAP@3

logMel

VGGNet 82.4 87.58
ResNet 88.01 91.06

VGGNet* 86.43 90.58
ResNet* 89.18 92.61

Ensemble* 89.88 93.05

CQT

VGGNet 75.13 82.55
ResNet 85.81 89.68

VGGNet* 86.2 90.42
ResNet* 87.94 91.31

Ensemble* 89.93 93.18

D. Knowledge distillation using multiple representations and
different network architectures

Further experiments explored the impact of multi-
representations and different network architectures on knowl-
edge distillation. Table VI and Table VII report the results
where two branches use completely different inputs and net-
work architectures on the general-purpose audio tagging task
and acoustic scenes classification task, respectively. Theo-
retically, the more different factors are set in the branches,
the more complementary information produced. From Table
VI, we can find that the branches distilled using multi-
representations and different network architectures are much
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TABLE VI: The results (%) of distillation using multiple representations and different network architectures on FSDKaggle2018
dataset. I is an abbreviation for input, and N is an abbreviation for network.

Branch1 Branch2 Ensemble
I1,N1 ACC mAP@3 ACC* mAP@3* I2,N2 ACC mAP@3 ACC* mAP@3* ACC* mAP@3*

logMel,ResNet 88.01 91.06 90.18 93.26 MFCC,VGGNet 81.54 86.88 84.31 88.96 90.69 93.27
MFCC,ResNet 84.18 88.78 87.5 91.13 logMel,VGGNet 82.4 87.58 89.5 92.78 89.93 93.18
logMel,ResNet 88.01 91.06 90.6 93.16 CQT,VGGNet 75.12 82.55 86.5 90.73 91.31 94.11

TABLE VII: The results (%) of distillation using multiple representations and different network architectures on TUT Urban
acoustic scenes 2018 dataset. I is an abbreviation for input, and N is an abbreviation for network.

Branch1 Branch2 Ensemble
I1,N1 ACC mAP@3 ACC* mAP@3* I2,N2 ACC mAP@3 ACC* mAP@3* ACC* mAP@3*

logMel,ResNet 70.33 80.67 72.48 81.65 MFCC,VGGNet 63.46 75.11 64.29 75.24 71.17 80.98
MFCC,ResNet 67.71 78.32 67.91 77.87 logMel,VGGNet 65.29 76.88 68.19 78.38 70.29 80.14

better than trained independent. And the improvements (both
accuracy and mAP@3) of distilled branches are much bigger
than distillation just using multiple representations or different
architectures. This indicates that the difference between the
branches no matter input or network architecture directly
determines effect of distillation. In Table VII, similar trends as
Table VI can be observed. These conclusions also hold on the
TUT Urban acoustic scenes 2018 dataset. In addition, in the
first set of experiments in TUT Urban acoustic scenes 2018
dataset, the ensemble collapse phenomenon occurred for the
reason of the large performance gap of the branch networks,
which indicates that our knowledge distillation method is more
stable than the ensemble method.

88.06

91.06

89.75

92.66

89.18

92.61

90.18

93.26

86

87

88

89

90

91

92

93

94

Accuracy mAP@3

Baseline DN DR D-RN

Fig. 3: The results (%) comparison of different mode distilla-
tion on FSDKaggle2018 dataset, we only report the results of
the branch with logMel as input and ResNet as the network in
distillation framework. DN is an abbreviation for distillation
using different network architectures, DR is an abbreviation for
distillation using different representations, and D-RN stands
for distillation using different representations and different
network architectures.

E. The results comparison of distillation in different settings

Figure 3 compare the results in different setting of our
distillation framework. We can find that the networks with
our knowledge distillation still perform better that the results
of baseline (independently trained network). And it is obvious
that the results of distillation using multiple representations

and different network architectures are better than only dis-
tillation using multiple representations or distillation using
different network architectures. From the all above results
we conclude that (1) The knowledge distillation method
always improves the performance of the branch network,
and the ensemble method works for the distilled branches.
(2) Both multiple representations distillation and different
architectures provided supplementary information needed for
distillation. (3) The biggest improvement comes from the
distillation simultaneous different representations and different
architectures, where branch network gets the best performance.
This suggests that complementary knowledge from different
sources can be superimposed.

Fig. 4: The T-SNE visualization figure without using our
method.

F. The T-SNE visualization analysis

To show the effectiveness of our method clearly, we using
the t-distributed Stochastic Neighbor (T-SNE) embedding vi-
sualization method. The T-SNE method is an efficient manifold
learning method that can compress high-dimensional data
to a low-dimensional structure. Figures 4 shows the T-SNE
visualization figure of a ResNet network (CQT as input)
trained independently and Figures 5 was the results with our
multi-representation distillation method. We used the 1600
manually verified samples on the validation set of the THU
2018 dataset, and got the logits layer outputs of the network,
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Fig. 5: The T-SNE visualization figure of using our method.

then using the T-SNE method to compress logits outputs
into two-dimensional space to visualize the results. It can
be found that without knowledge distillation, the points of
samples are more scattered and there are many crossovers
between samples of different categories, which makes it more
difficult to distinguish the category boundaries. In contrast,
in the T-SNE visualization figure of the model trained by
our knowledge distillation method, the samples are compact
and the sample category confusion is reduced. The figures
show that our method can effectively enhance the classification
performance of audio classification models.

VI. CONCLUSIONS

In this paper, we propose a novel collaborative learning
framework for the audio classification task. It takes multiple
representations as input and trains a classifier separately on
each representation. A collaborative distillation framework
is employed to share knowledge across different models.
Extensive experiments demonstrate that the proposed approach
can improve the classification performance and achieve com-
petitive results on both acoustic scenes classification task and
general audio tagging task (experiments were conducted on
the FSD-Kaggle2018 dataset and the TUT Urban acoustic
scenes classification 2018 dataset). Moreover, it is worthwhile
to notice that leveraging this approach is capable of promoting
the performance of the model, without increasing the computa-
tional complexity in the inference phase. A direction of future
work is using the multi-representation distillation method to
improve the performance on the tasks of the sound event
detection. Moreover, we would like to explore of knowledge
distillation for multi-modal datasets.
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