Skip to main content

Advertisement

Log in

Energy functional driven by multiple features for brain lesion segmentation

  • 1210: Computer Vision for Clinical Images
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Brain lesion segmentation can provide useful information for diagnosis and treatment planning. The extracted features are beneficial to the accuracy of brain lesion segmentation. However, due to complex structures of different tissues in different brain modalities, i.e., magnetic resonance imaging (MRI) and computed tomography (CT), the extraction of useful features is a challenging task. In this paper, the effectiveness of four different features, i.e., local intensity, shape, and area to discriminate brain lesion from other normal tissues is explored. Here, the performance of each feature in brain images is analyzed. Next, an energy functional framework integrated with multiple features is implemented. The experiments show that the proposed method can perform well in both real MRI brain tumor and other CT encephalorrhagia segmentation obtained from Quzhou People’s hospital. The concrete innovations are as follows: (1) in view of the complexity of brain imaging and the difficulty of identifying lesion region, the proposed method can be applied to the segmentation of more complex brain lesions; (2) multiple features, i.e., local intensity, shape, and area are extracted to construct the proposed energy functional; (3) the proposed model is demonstrated using 32 real MRI images from ten pediatric patients and three different similarity metrics are evaluated. To verify the performance of the proposed algorithm, more than representative 20 images are randomly selected in databases of Quzhou People’s hospital for evaluation. The average DICE coefficient, the Jaccard (JAC) distance, the Recall, and Root Mean Square Error (RMSE) are 0.95, 0.90, 0.92, and 0.07, respectively. The proposed method can reach better accuracy performance than the traditional energy functional-based methods and other state-of-the-art brain lesion segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251

    Article  Google Scholar 

  2. Menze BH, Leemput KV, Lashkari D, Riklin-Raviv T, Geremia E, Alberts E, Gruber P, Wegener S, Weber MA, Szkely G, Ayache N, Golland P (2016) A generative probabilistic model and discriminative extensions for brain lesion segmentation with application to tumor and stroke. IEEE Trans Med Imaging 35(4):933–946

    Article  Google Scholar 

  3. Shivhare SN, Kumar N, Singh N (2019) A hybrid of active contour model and convex hull for automated brain tumor segmentation in multimodal MRI. Multimed Tools Appl 78(24):34207–34229

    Article  Google Scholar 

  4. Sawlani V, Patel MD, Davies N et al (2020) Multiparametric MRI: practical approach and pictorial review of a useful tool in the evaluation of brain tumours and tumour-like lesions. Insights Imaging 1(1):1749–1755

    Google Scholar 

  5. Toth R, Madabhushi A (2012) Multi-feature landmark-free active appearance models: application to prostate MRI segmentation. IEEE Trans Med Imaging 31:1638–1650

    Article  Google Scholar 

  6. Zhang D, Menglong Xu, Quan L, Zhu W (2015) Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding. Phys Med Biol 60(5):1807–1830

    Article  Google Scholar 

  7. Kanmani P, Marikkannu P (2018) MRI brain images classification: a multi-level threshold based region optimization technique. J Med Syst 42(4):1–12

    Article  Google Scholar 

  8. Fang J et al (2021) Region-edge-based active contours driven by hybrid and local fuzzy region-based energy for image segmentation. Inf Sci 546:397–419

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang J et al (2018) A novel deep learning based auto segmentation for rectum tumor on MRI image. Int J Radiat Oncol Biol Phys 102(3):e548–e548

    Google Scholar 

  10. Shyu K-K (2012) Fuzzy distribution fitting energy-based active contours for image segmentation. Nonlinear Dyn 69(1):295–312

    Article  MathSciNet  MATH  Google Scholar 

  11. Min Zhang PhD, Young GS (2020) Deep-learning detection of cancer metastases to the brain on MRI. J Magn Reson Imaging 52(4):1227–1236

    Article  Google Scholar 

  12. Ali I, Cem D, Melike S (2016) Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci 102:317–324

    Article  Google Scholar 

  13. Ladgham A, Ladgham A, Hamdaoui F, Sakly A, Mtibaa A (2015) Fast MR brain image segmentation based on modified shuffled frog leaping Algorithm. SIViP 9(5):1113–1120

    Article  Google Scholar 

  14. Li C, Kao C-Y, Gore JC, Ding Z (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17:1940–1949

    Article  MathSciNet  MATH  Google Scholar 

  15. Jianwei He, Jiali P (2019) Image segmentation method based on improved fuzzy Chan-Vese model. Multimed Tools Appl 78(7):8669–8681

    Article  Google Scholar 

  16. Li BN, Qin J, Wang R (2016) Selective level set segmentation using fuzzy region competition. IEEE Access 4:4777–4788

    Article  Google Scholar 

  17. Pratondo A, Chui CK, Ong SH (2017) Integrating machine learning with region-based active contour models in medical image segmentation. J Vis Commun Image R 43:1–9

    Article  Google Scholar 

  18. Feng C, Zhao D (2018) MICO-S: multiplicative intrinsic component optimization with spatial constraint to suppress noise for magnetic resonance image segmentation. J Med Imaging Health Inf 8(8):1655–1659

    Article  Google Scholar 

  19. Alaa K, Victor S, Chang-Tsun Li (2017) Weighted level set evolution based on local edge features for medical image segmentation. IEEE Trans Image Process 26(4):1979–1991

    Article  MathSciNet  MATH  Google Scholar 

  20. Lan J, Zeng Y (2013) Multi-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogram. Optik Int J Light Electron Opt 124(18):3756–3760

    Article  Google Scholar 

  21. Lankton S, Tannenbaum A (2008) Localizing region-based active contours. Image Process IEEE Trans 17(11):2029–2039

    Article  MathSciNet  MATH  Google Scholar 

  22. Shaheen A, Iftekharuddin Khan M, Arastoo V (2011) Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI. IEEE Trans Inf Technol Biomed 15(2):206–213

    Article  Google Scholar 

  23. Ilunga-Mbuyamba E, Cruz-Duarte JM, Avina-Cervante JG (2016) Active contours driven by Cuckoo Search strategy for brain tumour images segmentation. Expert Syst Appl 56:59–68

    Article  Google Scholar 

  24. Yudong Z, Lenan W (2012) An MR brain images classifier via principal component analysis and kernel support vector machine. Progress Electromagn Res 130:369–388

    Article  Google Scholar 

  25. Min H, Jia W, Wang X-F, Jing-Ting Lu (2015) An intensity-texture model based level set method for image segmentation. Pattern Recogn 48:1547–1562

    Article  Google Scholar 

  26. Zhou Y, Shi WR, Chen W et al (2015) Active contours driven by localizing region and edge-based intensity fitting energy with application to segmentation of the left ventricle in cardiac CT images. Neurocomputing 156:199–210

    Article  Google Scholar 

  27. Li C, Xu C et al (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19:3243–3254

    Article  MathSciNet  MATH  Google Scholar 

  28. Kanas VG, Zacharaki EI, Davatzikos C et al (2015) A low cost approach for brain tumor segmentation based on intensity modeling and 3d random walker. Biomed Signal Process Control 22:19–30

    Article  Google Scholar 

  29. Khadidos A, Sanchez V, Li C-T (2017) Weighted level set evolution based on local edge features for medical image segmentation. IEEE Trans Image Process 26(4):1979–1991

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang L, Pan C (2014) Image-guided regularization level set evolution for MR image segmentation and bias field correction. Magn Reson Imaging 32:71–83

    Article  Google Scholar 

  31. Wang L, Wu H, Pan C (2013) Region-based image segmentation with local signed difference energy. Pattern Recognit Lett 34:637–645

    Article  Google Scholar 

  32. Udupa JK, Leblanc VR, Zhuge Y (2006) A framework for evaluating image segmentation algorithms. Comput Med Imaging Graph 30:75–87

    Article  Google Scholar 

  33. Foster B, Bagci U, Mansoor A (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96

    Article  Google Scholar 

  34. Vishnuvarthanan G, Rajasekaran MP, Subbaraj P, Vishnuvarthanan A (2016) An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl Soft Comput 38:190–212

    Article  Google Scholar 

  35. Steiger JH (2010) Structural model evaluation and Modification an interval estimation approach. Multivar Behav Res 25(2):173–180

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundations of China [Grant Number 6180120] and Dalian Youth Science and Technology Star [Grant Number 2019RQ021].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

6. Appendix A

Modeling of the proposed energy functional (10) and its solution. According to the gradient descent method, the proposed energy functional is defined as:

$$\begin{gathered} \frac{\partial \varphi }{{\partial t}} = - \frac{\partial E\left( \varphi \right)}{{\partial \varphi }} \\ = - \left( {\frac{{\partial E_{J} \left( \varphi \right)}}{\partial \varphi } + \frac{{\partial E_{A} \left( \varphi \right)}}{\partial \varphi } + \frac{{\partial E_{S} \left( \varphi \right)}}{\partial \varphi }} \right) \\ \end{gathered}$$
(13)

Each term used here is defined. For convenience, let

$$Den_{1} = \int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * H\left( {\varphi \left( {x,y} \right)} \right)dx} dy$$
(14)

and

$$Den_{2} = \int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \left( {1{ - }H\left( {\varphi \left( {x,y} \right)} \right)} \right)dx} dy$$
(15)
$$Num_{1} = \int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \left[ {I\left( {x,y} \right)H\left( {\varphi \left( {x,y} \right)} \right)} \right]dx} dy$$
(16)

and

$$Num_{2} = \int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \left[ {I\left( {x,y} \right)\left( {{1 - }H\left( {\varphi \left( {x,y} \right)} \right)} \right)} \right]dx} dy$$
(17)

Then, we can get:

$$\begin{gathered} J_{1} = \frac{{Num_{1} }}{{Den_{1} }} \\ = \frac{{\int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \left[ {I\left( {x,y} \right)H\left( {\varphi \left( {x,y} \right)} \right)} \right]dx} dy}}{{\int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * H\left( {\varphi \left( {x,y} \right)} \right)dx} dy}} \\ { = }\frac{{W\left( {I_{x,y}^{C} ,r} \right) * \left[ {I\left( {x,y} \right)H\left( {\varphi \left( {x,y} \right)} \right)} \right]}}{{W\left( {I_{x,y}^{C} ,r} \right) * H\left( {\varphi \left( {x,y} \right)} \right)}} \\ \end{gathered}$$
(18)

and

$$\begin{gathered} J_{2} = \frac{{Num_{2} }}{{Den_{2} }} \\ = \frac{{\int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \left[ {I\left( {x,y} \right)\left( {1{ - }H\left( {\varphi \left( {x,y} \right)} \right)} \right)} \right]dx} dy}}{{\int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \left( {1{ - }H\left( {\varphi \left( {x,y} \right)} \right)} \right)dx} dy}} \\ { = }\frac{{W\left( {I_{x,y}^{C} ,r} \right) * \left[ {I\left( {x,y} \right)\left( {1{ - }H\left( {\varphi \left( {x,y} \right)} \right)} \right)} \right]}}{{W\left( {I_{x,y}^{C} ,r} \right) * \left( {1{ - }H\left( {\varphi \left( {x,y} \right)} \right)} \right)}} \\ \end{gathered}$$
(19)

To solve the above equation, the following partial derivatives need to be calculated firstly:

$$\begin{gathered} \frac{{\partial J_{1} }}{\partial \varphi } = \frac{{Num_{1}^{\prime } Den_{1} - Num_{1} Den_{1}^{\prime } }}{{Den_{1}^{2} }} = \frac{{Num_{1}^{\prime } - J_{1} Den_{1}^{\prime } }}{{Den_{1} }} \\ = \frac{{\int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \left[ {I\left( {x,y} \right)\delta \left( {\varphi \left( {x,y} \right)} \right)} \right]dx} dy - J_{1} \int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \delta \left( {\varphi \left( {x,y} \right)} \right)dx} dy}}{{\int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * H\left( {\varphi \left( {x,y} \right)} \right)dx} dy}} \\ = \frac{{W\left( {I_{x,y}^{C} ,r} \right) * \left[ {I\left( {x,y} \right)\delta \left( {\varphi \left( {x,y} \right)} \right)} \right] - J_{1} \left[ {W\left( {I_{x,y}^{C} ,r} \right) * \delta \left( {\varphi \left( {x,y} \right)} \right)} \right]}}{{W\left( {I_{x,y}^{C} ,r} \right) * H\left( {\varphi \left( {x,y} \right)} \right)}} \\ \end{gathered}$$
(20)

and

$$\begin{gathered} \frac{{\partial J_{2} }}{\partial \varphi } = \frac{{Num_{2}^{\prime } Den_{2} - Num_{2} Den_{2}^{\prime } }}{{Den_{2}^{2} }} = \frac{{Num_{2}^{\prime } - J_{2} Den_{2}^{\prime } }}{{Den_{2} }} \\ = \frac{{ - \int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \left[ {I\left( {x,y} \right)\left( {1{ - }\delta \left( {\varphi \left( {x,y} \right)} \right)} \right)} \right]dx} dy + J_{2} \int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \left( {{\mathbf{1}}{ - }\delta \left( {\varphi \left( {x,y} \right)} \right)} \right)dx} dy}}{{\int_{\Omega } {W\left( {I_{x,y}^{C} ,r} \right) * \left( {{\mathbf{1}}{ - }H\left( {\varphi \left( {x,y} \right)} \right)} \right)dx} dy}} \\ = - \frac{{W\left( {I_{x,y}^{C} ,r} \right) * \left[ {I\left( {x,y} \right)\left( {1{ - }\delta \left( {\varphi \left( {x,y} \right)} \right)} \right)} \right] - J_{2} \left[ {W\left( {I_{x,y}^{C} ,r} \right) * \left( {{\mathbf{1}}{ - }\delta \left( {\varphi \left( {x,y} \right)} \right)} \right)} \right]}}{{W\left( {I_{x,y}^{C} ,r} \right) * \left( {{\mathbf{1}}{ - }H\left( {\varphi \left( {x,y} \right)} \right)} \right)}} \\ \end{gathered}$$
(21)

where \({\mathbf{1}}\) denotes a constant matrix with value 1;

So

$$\begin{gathered} \frac{{\partial E_{J} }}{\partial \varphi }{ = }2\left[ {\left( {I\left( {x,y} \right) - J_{1} \left( {W,c} \right)} \right) \cdot \frac{{\partial J_{1} }}{\partial \varphi }{ - }\left( {I\left( {x,y} \right) - J_{2} \left( {W,c} \right)} \right) \cdot \frac{{\partial J_{2} }}{\partial \varphi }} \right] \hfill \\ { = }2\left[ {\left( {I\left( {x,y} \right) - J_{1} \left( {W,c} \right)} \right) \cdot \frac{{W * \left( {I\delta } \right) - J_{1} \left( {W * \delta } \right)}}{W * H}{ + }\left( {I\left( {x,y} \right) - J_{2} \left( {W,c} \right)} \right) \cdot \frac{{W * \left( {I\left( {{\mathbf{1}} - \delta } \right)} \right) - J_{2} \left( {W * \left( {{\mathbf{1}} - \delta } \right)} \right)}}{{W * \left( {{\mathbf{1}} - H} \right)}}} \right] \hfill \\ \end{gathered}$$
(22)

Here, the parameters of some variables, i.e., \(W\), \(I\), \(H\), and \(\delta\) have been omitted to make them more descriptive.

Besides, by the interpretation of Euler Lagrange and integration, we get

$$\frac{{\partial E_{S} }}{\partial \varphi } = 2\delta \left( \varphi \right)\left( {Z_{1} H\left( \varphi \right) - Z_{2} \left( {1 - H\left( \varphi \right)} \right)} \right)\left( {Z_{1} + Z_{2} } \right)$$
(23)

and

$$\frac{{\partial E_{A} }}{\partial \varphi } = \delta \left( \varphi \right)$$
(24)

Theorem 1.

The proposed energy functional (10) is uniformly bounded in Sobolev space \(W^{k,p} \left( \Omega \right)\).

Theorem 2.

The convergence value is the minimum in the energy functional (10).

Proof.

From Theorem 1, there exists a minimal sequence \({\lbrace} \varphi_{n} {\rbrace} \in W^{k,p} \left( \Omega \right),n \in N\). By the property of Sobolev Space \(W^{k,p} \left( \Omega \right)\), one can get that there exists a convergent subsequence \(\varphi_{n}\) that converges to \(\varphi\), that is \(\varphi_{n} \to \varphi\).

Appendix B

Theorem 1.

The proposed energy functional (10) is uniformly bounded in Sobolev space \(W^{k,p} \left( \Omega \right)\).

Theorem 2.

The convergence value is the minimum in the energy functional (10).

Proof.

From Theorem 1, there exists a minimal sequence \({\lbrace}\varphi_{n} {\rbrace} \in W^{k,p} \left( \Omega \right),n \in N\). By the property of Sobolev Space \(W^{k,p} \left( \Omega \right)\), one can get that there exists a convergent subsequence \(\varphi_{n}\) that converges to \(\varphi\), that is \(\varphi_{n} \to \varphi\).

Let \(\Omega \to R\) be the bounded open subset, and \(\xi\) denote the integrable function in Sobolev space \(W^{k,p} \left( \Omega \right)\) (Sobolev space is defined as a vector space of functions equipped with a kp -norm). Then, the energy functional (10) is set as:

$$\begin{gathered} \xi { = }\sup {\lbrace}\left. {\int {\left( {E_{J} \left( \varphi \right) + E_{A} \left( \varphi \right) + E_{S} \left( \varphi \right)} \right) \cdot \nabla \varphi d\Omega } } \right|\varphi \\ = \left( {\varphi_{1} ,\varphi_{2} , \cdots ,\varphi_{N} } \right) \in W^{0,1} \left( \varphi \right)^{N} ,|\varphi |_{{W^{\infty } \left( \Omega \right)}} < 1{\rbrace } \\ \end{gathered}$$
(25)

where \(N\) is the maximum iteration of the level set \(\varphi\), \(d\Omega\) is the Lebesgue measure \(\Omega = \sup {{\lbrace}\Omega_{\varphi > 0} ,\Omega_{\varphi < 0} {\rbrace}}\), and

$$\nabla \varphi = \sum\limits_{i = 1}^{N} {\frac{{\partial \varphi_{i} }}{{\partial x_{i} }}}$$
(26)

Then, one can get that \(\xi \in W\left( \Omega \right)\), \(\nabla \xi \in W^{0,1} \left( \Omega \right)\), i.e.,

$$- \int {\left( {E_{J} \left( \varphi \right) + E_{A} \left( \varphi \right) + E_{S} \left( \varphi \right)} \right) \cdot \nabla \varphi d\Omega } = \int {\left( {\nabla \left( {E_{J} \left( \varphi \right) + E_{A} \left( \varphi \right) + E_{S} \left( \varphi \right)} \right)} \right) \cdot \varphi d\Omega }$$
(27)

and the corresponding bounded variation space \(BV\left( \Omega \right)\) is

$$BV\left( \Omega \right){ = }\left\{ {\left. \varphi \right|\varphi \in W^{0,1} \left( \Omega \right)} \right\}$$
(28)

By the characteristics of the space \(BV\left( \Omega \right)\), we can get that if \(\varphi \in BV\left( \Omega \right)\), then

$$\xi \left( {E_{J} ,E_{A} ,E_{S} } \right) = \int_{ - \infty }^{ + \infty } {W^{0,1} \left( {\partial \Omega_{\sigma } } \right)} d\sigma$$
(29)

Here, \(\partial \Omega_{\sigma }\) is the boundary and \(W^{0,1} \left( {\partial \Omega_{\sigma } } \right)\) denotes the length of \(\partial \Omega_{\sigma }\).

In conclusion, the proposed energy functional (10) is uniformly bounded in the Sobolev space \(W^{k,p} \left( \Omega \right)\).

Appendix C

Theorem 2.

The convergence value is the minimum in the energy functional (10).

Proof.

From Theorem 1, there exists a minimal sequence \({\lbrace}\varphi_{n} {\rbrace} \in W^{k,p} \left( \Omega \right),n \in N\). By the property of Sobolev Space \(W^{k,p} \left( \Omega \right)\), one can get that there exists a convergent subsequence \(\varphi_{n}\) that converges to \(\varphi\), that is \(\varphi_{n} \to \varphi\).

For the first item \(E_{J}\), by the properties of the uniform boundedness and the lower semicontinuous of the norm,

$$E_{J}^{ + } = \left( {I\left( {x,y} \right) - J_{1} \left( {W,c} \right)} \right) \le M_{1}$$
(30)

and

$$E_{J}^{ - } = \left( {I\left( {x,y} \right) - J_{2} \left( {W,c} \right)} \right) \le M_{2}$$
(31)

Consider that the characteristics of the window function \(W\) and the average intensities \(\left\{ {J_{1} ,J_{2} } \right\}\), we can get that

$$\frac{{W * \left( {I\delta } \right) - J_{1} \left( {W * \delta } \right)}}{W * H} \le M_{3}$$
(32)

and

$$\frac{{W * \left( {I\left( {{\mathbf{1}} - \delta } \right)} \right) - J_{2} \left( {W * \left( {{\mathbf{1}} - \delta } \right)} \right)}}{{W * \left( {{\mathbf{1}} - H} \right)}} \le M_{4}$$
(33)

where \(M_{i} ,i = 1, \cdots ,4\) are constants. For the other items, by the mandatory of the function \(\delta \left( \varphi \right) \cdot V\) (\(V\) is a constant) and taking the characteristics of the function \(E_{A}\) (\(V = Z_{1} H\left( \varphi \right) - Z_{2} \left( {1 - H\left( \varphi \right)} \right)\)) and \(E_{S}\) (\(V = 1\)) into account: \(\partial E_{A} \left( \varphi \right) \le M\), \(\partial E_{s} \left( \varphi \right) \le N\). Here, \(M\) and \(N\) are constants. In addition, BV space is compact, so \(\varphi_{n}\) is convergent to \(\varphi\). By Fatou’s lemma, we can get: \(\varphi \le \mathop {\lim }\limits_{n \to \infty } \inf \varphi_{n}\), and \(\varphi\) convergences and there exists a minimum. Therefore, the energy functional (10) is uniformly bounded, convergences and there exists a minimum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Yao, Y., Zhang, L. et al. Energy functional driven by multiple features for brain lesion segmentation. Multimed Tools Appl 81, 36195–36215 (2022). https://doi.org/10.1007/s11042-021-11620-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11620-6

Keywords

Navigation