
https://doi.org/10.1007/s11042-022-11960-x

Towards enhanced PDFmaldocs detection
with feature engineering: design challenges

Ahmed Falah1 · Shiva Raj Pokhrel1 · Lei Pan1 ·Anthony de Souza-Daw2

Received: 18 April 2020 / Revised: 4 March 2021 / Accepted: 4 January 2022 /

© The Author(s) 2022

Abstract
In this paper, we perform an in-depth analysis of a large corpus of PDF maldocs to iden-
tify the key set of significantly important features and help in maldoc detection. Existing
industry-based tools for the detection are inefficient and cannot prevent PDF maldocs
because they are generic and depend primarily on a signature-based approach. Besides, sev-
eral other methods developed by academics suffer heavily from reduced effectiveness. The
feature-set using machine learning classifiers is prone to various known attacks, such as
mimicry and parser confusion. Also, we discover that increasingly more malicious files i)
contain evasive and obfuscated JavaScript code, ii) include hidden contents (mostly out-
side the objects), iii) have a corrupted document structure, and iv) usually contain short
JavaScript code blocks. We utilise maldoc attacks’ evolution over a decade to highlight the
essential features (e.g., concept drifts) that impact detectors and classifiers.

Keywords PDF Maldoc · Concept drifts · Feature engineering · Malware evolution ·
Malware detection

1 Introduction

Despite the continuous security refinements over the years, PDF has always been a
favoured attack vector for cybercriminals to distribute malware and initiate their attack cam-

� Ahmed Falah
aa.falah@hotmail.com

Shiva Raj Pokhrel
shiva.pokhrel@deakin.edu.au

Lei Pan
l.pan@deakin.edu.au

Anthony de Souza-Daw
tonydesouza-daw@melbournepolytechnic.edu.au

1 Deakin University, Melbourne, Australia
2 Melbourne Polytechnic, Melbourne, Australia

Published online: 17 May 2022

Multimedia Tools and Applications (2022) 81:41103–41130

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-11960-x&domain=pdf
http://orcid.org/0000-0001-6359-8570
mailto: aa.falah@hotmail.com
mailto: shiva.pokhrel@deakin.edu.au
mailto: l.pan@deakin.edu.au
mailto: tonydesouza-daw@melbournepolytechnic.edu.au

paigns [23]. Potential malicious actions executed through PDF malware include credential
harvesting, backdoor and rootkits installation, data leakage, web browser compromising, in
addition to phishing and social engineering attacks. Primary important factors towards this
ensuing vulnerabilities as illustrated in Fig. 1 are as follows: (i) The universality of PDF,
being the de-facto document exchange format, working across multiple platforms ensures
increased distribution and reach. This popularity has leveraged in the opportunistic and
mass-distributed attacks; (ii) Users often perceive PDF files as safe document files that are
incapable of delivering malware or being utilised in attacks; (iii) The PDF standard contains
ambiguity in implementing features related to code execution.

Nevertheless, there are ambiguous rules particularly on how they should be implemented
and used. Besides, there is the flexibility of reader applications in interpreting, display-
ing and executing contents. When something is overlooked or intentionally omitted, reader
applications or other tools (e.g. [7, 28]) can correct errors by suppressing rendering fea-
tures of an open file, resulting in corrupting a display. Such corrective actions used by
cybercriminals to evade detection will present a victim with a functioning document that
is displayed correctly while performing its malicious intended action. The combination of
being widely used in a corrective reader by unaware users makes malicious PDF documents
(will be referred to as “PDF maldoc” onwards) detection a highly challenging task. Further-
more, there are several types of obfuscation and evasion techniques [15, 20, 25, 30], that
increase the complexity of the detection and render any signature-based or heuristics-based
anti-malware obsolete, as reported in [6].

To improve how features are chosen for PDF maldoc classifiers and detectors, in this
paper, we analyse a large corpus of PDF files that span over a substantial period. We aim
to precisely understand how a PDF maldoc exploits before compromising a target and how
concept drifts impact maldoc behaviour’s efficacy. More specifically, our primary research
objectives are as follows:

Fig. 1 The number of disclosed Adobe Reader vulnerabilities from 1999 to 2019. The graph illustrates
that the PDF-related vulnerabilities are exponentially increasing (data source: https://www.cvedetails.com/
product/497/Adobe-Acrobat-Reader.html?vendor id=53)

41104 Multimedia Tools and Applications (2022) 81:41103–41130

https://www.cvedetails.com/product/497/Adobe-Acrobat-Reader.html?vendor_id=53
https://www.cvedetails.com/product/497/Adobe-Acrobat-Reader.html?vendor_id=53

1. To identify the main features needed for efficient detection of a PDF maldoc, without
being susceptible to evasion and adversarial machine learning attacks.

To this end, we conduct an in-depth analysis of over 200 files to discover how PDF maldoc
attacks have evolved and changed after 2008.

2. To analyse the similarity of logical structure with the malicious operation.

3. To investigate the similarity of logical structure or malicious content with the attacking
tools.

In-depth investigations of the research objectives 2) and 3) allow us to identify better
relevant spaces that should be monitored for efficient detection.

After its release as an open format by Adobe in 2008, a multitude of PDF-related vulner-
abilities and exploits were rapidly discovered and disclosed (recall Fig. 1), challenging both
the academic and industry research communities to investigate and address the problem.

The primary enabler of such attacks is that the features examined by these classifiers
(PDF maldoc detectors) are controllable to an extent by an attacker or a malware writer. For
example, leaving out some fields from the “info” dictionary, the number of capital letters
in the title, the count of corrupted objects, and the types and count of encoding methods are
all usually associated with malicious files.

The primary drawback of existing tools is the susceptibility to evasion attacks. Another
drawback is the focus on efficiency at the cost of effectiveness. Few dynamic-based
approaches have been proposed to reduce the overhead incurred in the setup and operation.
However, dynamically analysing such a PDF maldoc adds an extra layer on requirements
than the malware dynamic analysis, because it requires the setup and installation of several
versions of applications (e.g. Adobe Reader, Foxit Reader, Nitro PDF reader). Signature-
based detection, for example, is the industry standard [5], but is susceptible to various types
of evasion [2].

In summary, our main contributions in this paper are three-fold.

C1. Our analyses explain several cybersecurity attack techniques and patterns that cyber-
criminals often exploit not only to perform their attacks but also to avoid or evade its
detection efficiently. To this end, we adopt free, open-source, easy to use and widely
available analysis tools to perform an in-depth analysis of hundreds of malicious PDF
documents to discover the attack approaches. . As a result, we have been successful
in producing better understandings of how attacks often execute in such systems.

C2. We demonstrate with evidence of how PDF maldocs have evolved in the past ten
years, including the preferred attack vectors and approaches. We found that the mal-
doc authors are gradually scaling down the size of their deployment code from
shellcode to downloaders, then to URLs.

C3. We provide a clean-sheet summary of five popular attack techniques along with
a dozen of obfuscation techniques. We propose a novel source of indicator of
compromise (IoC) represented by the default settings of the widely-used attack
framework Metasploit. This investigation provides us with invaluable insights into
the traditional signature-based applications in terms of attacking semantics and
human-comprehensible rules.

41105Multimedia Tools and Applications (2022) 81:41103–41130

2 State of the art

The literature on the PDF maldoc attacks is rich. Of particular relevance to this work, dis-
cussed next, are the analysis, tools and techniques proposed to detect PDF maldocs, concept
drifts and visualisation.

Nissim et al. [18] highlighted obfuscation techniques leveraged by PDF maldoc authors,
which thwart automated analysis and detection techniques and further complicate manual
analysis. This includes spreading malicious code across multiple objects, using PDF fil-
ters, white space, and comments. Other techniques include using a “Names” dictionary
to gather around scattered malicious code pieces across the document. Additionally, mali-
cious content can be hidden in peculiar locations such as annotations’ fields (comments)
or document metadata. In addition, [18] classified PDF-based attacks as i) JavaScript code
attacks include heap spraying, downloading a malicious file or document using shellcodes.
and can either be inside the PDF or retrieved from a remote host to further complicate the
detection; ii) Embedded file attacks leveraged by embedding malicious files, which allows
for highly sophisticated attack (such as multiple files dropping/extraction, or the reverse
mimicry attack proposed by [15]), and iii) URI and form submission attacks include a typi-
cal downloader role for the PDF maldocs. Several techniques are used to retrieve malicious
content from the Internet, such as using the /submitForm command or URL. Table 1
summarises the PDF maldoc detectors published in the recent years.

To detect malicious PDF files, [24] extracted features from documents’ metadata and
file structure and utilised a random forest classifier with their own PDF parser. Smutz and
Stavrou [24] studied 202 features such as /Font and /JavaScript.

Liu et al. [13] reported that current defences against malicious PDF are ineffective, sus-
ceptible to evasion and computationally expensive to be utilised online and proposed a
context-aware JavaScript detection method utilising static and run-time features.

Using a software engineering concept, [29] proposed a detection method based on
behavioural discrepancies on diverse platforms, motivated by the fact that a PDF document
behaves similarly on different platforms. In contrast, the behaviour of a malicious docu-
ment will diverge on different platforms. Li et al. [12] identified a drawback in all malicious
detection tools that extract JavaScript, which is their reliance on 3rd-party extraction tools
that strictly follow the Acrobat standard. Scofield et al. [22] found that the size of the train-
ing dataset does not naturally result in better detection, and few research are conducted to
derive the lower bound of a dataset to achieve high detection accuracy. Hence, a detection
method is proposed by [22] based on dynamic analysis.

Endignoux et al. [7] stated that PDF readers attempt to correct errors and accept some
malformed documents. This is arguably a drawback. Although this feature provides robust-
ness and ease of use to users, it is exploitable by attackers. Auto-repaired errors include
the modifications mentioned above. Nissim et al. [19] enhanced their previous proposal
[18] and proposed active learning (AL) based system. The new system allows the constant
retraining of the PDF maldoc detection module and the antivirus signature database. Falah
et al. [9] proposed a feature engineering approach that uses few features but yields higher
results. The approach relies on continuously evaluating features to derive relevant weights
and discarding features that do not improve the classification process.

Visualising results with t-SNE, t-Distributed Stochastic Neighbor Embedding (extension
of [10]) for retaining the local structure of the data while also revealing some important
global structure has been quite useful.

41106 Multimedia Tools and Applications (2022) 81:41103–41130

Ta
bl
e
1

A
su

m
m

ar
y

of
de

di
ca

te
d

PD
F

m
al

do
c

de
te

ct
or

s
an

d
fe

at
ur

e-
se

te
xa

m
in

ed

A
na

ly
si

s
St

at
ic

D
yn

am
ic

Ja
va

Sc
ri

pt

To
ol

s/
fe

at
ur

e
M

et
ad

at
a

Ta
gs

St
ru

ct
ur

al
O

bf
us

ca
tio

n
M

al
fo

rm
ed

B
eh

av
iu

or
R

un
tim

e
Sy

st
em

ca
ll

R
un

tim
e

A
bs

tr
ac

t
E

nt
ro

py

&
ke

yw
or

ds
pa

th
s

ob
je

ct
di

sc
re

pa
nc

ie
s

m
on

ito
ri

ng
in

vo
ca

tio
n

fe
at

ur
es

in
te

rp
re

ta
tio

n

PD
Fr

at
e

[2
4]

✓
✓

–
–

–
–

–
–

–
–

–

[1
3]

-
-

–
✓

–
–

–
–

✓
–

–

Sl
ay

er
[1

4]
✓

✓
–

–
✓

–
–

–
–

–
–

N
at

h
[1

7]
–

–
–

✓
–

–
–

–
–

–
✓

H
ID

O
ST

[2
7]

–
–

✓
–

–
–

–
–

–
–

–

Pl
at

pa
l[

29
]

–
–

–
–

–
✓

✓
–

–
–

–

Sc
of

ie
ld

[2
2]

✓
✓

–
–

–
–

–
✓

–
–

–

SA
FE

-P
D

F[
11

]
–

–
–

–
–

–
–

–
–

✓
–

41107Multimedia Tools and Applications (2022) 81:41103–41130

3 Experiment details

As shown in Fig. 2, our experimental setups are explained as follows. As an overview,
we started with collecting a large corpus of PDF maldocs from VirusTotal, the Contagio
datadump, Google search, and personal files. Following that, we sorted and categorised all
the available maldocs by the year when they were first seen. We then clustered our datasets
to identify logical relationships between all samples in our datasets. Then, we performed
an in-depth analysis of carefully-chosen samples that represent all the different classes of
attack approaches. The data collected in the previous step help us to identify and categorise
popular attack approaches, create a timeline that depicts how PDF maldocs evolved, and
identify important features. Finally, we analysed clean and legitimate files to ensure that the
previous step’s feature-set is non-existent in clean files.

Table 2 provides the details of our datasets. VirusTotal provided 10603 PDF maldocs and
0 benign files (Dataset V)1.

3.1 Dataset sorting and categorisation

We attempted to generate usable data and opted for using PDF maldocs in active attacks
settings. To achieve this, we included the files that contain the “First Seen In The Wild”
property from the VirusTotal reports. This action ruled out all benign files and 3919 PDF
maldocs from the V dataset not containing the “First Seen In The Wild” property (recall
Table 2). We then excluded all files from the C dataset, including malicious and benign
files. Malicious files from the C dataset have high redundancy with the V dataset. Benign
files were used in the final step of this experiment. A detailed breakdown of all years and
files first encountered that year has been provided in Table 3. Such modified dataset (now
called V’) contains 6619 PDF maldocs (Table 4).

3.2 Feature engineering

Initially, we assume that PDF maldocs with identical or similar logical structure behave sim-
ilarly, including their malicious content. Therefore, we extracted structural features using
the PDFiD tool developed by Didier Stevens. The PDFiD scans the file to extract elements
or objects which comprise a PDF file. The tool ‘PDFiD’ returns basic structural features
such as the number of object declaration keyword; obj, endobj, streams, trailers,
and pages. In addition to structural features, dangerous PDF tags are visible, including
tags and keywords that are frequently used in exploitation and malicious content delivery.
This includes objects that contain JavaScript, Actions, Forms, EmbeddedFiles,
Launch, URLs, GoTo, and other known vulnerable components. The scanning result
shows that the PDF maldoc contains only one page and is built using six objects. Within the
PDF maldoc, obfuscated JavaScript and OpenAction objects can be seen. PDFiD scans for a
total of 24 object types. Seventeen of these are considered dangerous. Therefore, cybercrim-
inals attempt to obfuscate the presence of these objects. Such obfuscation can be detected
by PDFiD and is shown in parentheses.

1The dataset was collected in December 2016, but and includes files as old as 2008 and as new as 2017. We
collected more than 20,000 PDF files from the Contagio datadump (Dataset C), which includes 11107 PDF
maldocs and 9087 benign files. Our dataset also includes 2218 benign files that we acquired from Google
searches and our files (Dataset P).

41108 Multimedia Tools and Applications (2022) 81:41103–41130

Fig. 2 A high-level overview of our experimental flow. We first collect PDF maldocs, extract features then
cluster all files, analyse various samples from several clusters. We also perform a rigorous analysis of clean
files to validate the malicious features

Table 2 documents collections. The dataset was collected in December 2016, but and includes files as old as
2008 and as new as 2017

Source PDF files Symbol

Benign Malicious

VirusTotal 0 10603 V

Contagio 9087 11107 C

Personal 2218 0 P

Total 11305 21710 -

Table 3 A breakdown of PDF maldocs and the year in which they were first seen in the V’ dataset

Year Maldocs Year Maldocs

2008 8 2013 3

2009 2472 2014 2

2010 1552 2015 12

2011 2568 2016 21

2012 19 2017 57

Total 6619

41109Multimedia Tools and Applications (2022) 81:41103–41130

Table 4 A comparison between our clean and malicious datasets, in regards of the average and median
number of objects and pages

Count C’ Clean V’ Malicious

Mean Median Mean Median

Object 90.3 45 17.6 9

Page 6.1 3 1.7 1

A total of 41 features were used in the first part of our experiment, which consists of the
original 24 PDFiD objects (features) and the 17 obfuscated objects. Considering obfuscated
objects as independent features from their original objects seemed logical because legitimate
PDF documents do not contain any obfuscated keywords or object declarations, which is
usually only seen on PDF maldocs.

3.3 Visualising results

We attempted to identify logical relationships between all PDF maldocs in the V’ dataset
to examine structural features’ relevancy to malicious behaviour. Our feature-set contain
observable imbalance, where every single PDF maldoc contains a variable number of basic
blocks, such as obj, endobj, stream, endstream, xref, and trailer. On the other
hand, each block contains only a handful of dangerous tags. For example, the obj keyword
ranges from 22,000 counts (in the largest file in our corpus) to only 1, with a mean of 17.6
and a median of 9. The keyword endobj has a mean of 17.56 and a median of 9. Stream
and endstream have a mean of 4.7 and a median of 2. Dangerous tags, however, occur
significantly less often; JavaScript, the primary attack vector in PDF maldocs has an
average of 1.25, OpenAction with an average of 0.6, acroform 0.22, launch 0.02,
embeddedfile 0.73.

We have applied the term frequency-inverse document frequency (tf–idf) algorithm to
address the observed imbalance. This operation regulated our dataset such that the items
with the highest weights were embeddedfile, objstm (object streams), acroform,
XFA, OpenAction, and JavaScript with the following average: 1.5, 0.4, 0.33, 0.27,
0.26, and 0.21, respectively. To assist with results visualisation, we applied Principal Com-
ponent Analysis (PCA) and reduced the dimensions to 3 (plot a 3D figure). However, this
step does not reveal factual findings. Therefore, we conducted further clustering using
ssdeep. However, such clustering is based on content similarity, by setting a rigid threshold
(≈ 75) resulted in clusters of mostly identical files.

The previous step’s observations persuaded us to perform further analysis, starting with
a different clustering approach. We then chose t-SNE because of its high performance and
accuracy. Figure 3 illustrates the final results. The t-SNE algorithm performs dimensionality
reduction while preserving the maximum amount of information and neighbour relations.
We have applied the algorithm on the V’ dataset and experimented with various perplexity
values. Finally, we found out that the distinctness and isolation of clusters increase with the
increase in the value.

We have observed at least ten random PDF maldocs from each cluster. We analysed a
higher number of files from distinct clusters (circular-shaped clusters that contain a core,
inner- and outer-circles, and outliers at times). A total of 131 files were analysed in this step.

41110 Multimedia Tools and Applications (2022) 81:41103–41130

Fig. 3 PDF maldcos clustering result. They were clustered according to when they were First Seen In The
Wild, using t-SNE. Higher perplexity produced explicit clusters. Sample colours signify the year in which a
sample was first seen in the wild by VirusTotal. Structurally similar PDF maldocs coalesce in the same cluster

4 Results and discussions

Importantly, we found no direct relationship between the logical structure of a PDF mal-
doc with its malicious behaviour. However, we observe that files with similar structures
have been usually generated by the same tool. The findings are applicable to both attack
scenarios:

1 A PDF as a decoy: asking the victim to allow dropping then executing an embedded
file, or encouraging the user to click on a URL.

2 A PDF maldoc for exploitation and payload delivery, usually via a vulnerable function
and then executing the shellcode.

Our analysis has indicated that files belonging in the same cluster are very similar both
structurally and operationally. More specifically, files clustered together originate from
the same source, whether it is the same tool used to generate the file or the same attack
group/cybercriminal that applies the same attack technique.

41111Multimedia Tools and Applications (2022) 81:41103–41130

4.1 In-Depth analysis

Our E dataset contains a total of 218 PDF maldocs spanning over 2008-2017. The pay-
load of 87 PDF maldocs (40%) attempts to download an executable from the Internet then
execute it. Some shellcodes download multiple executables, save them, execute them then
delete them, while others do not delete. All of these shellcodes target Windows environ-
ments, utilising “winexec” and making references to Windows’ temp files. The second
most common category, which represents 19% of our dataset, was “Unknown shellcode”.
Our analysis did not reach a confident conclusion when analysing these. Some of which
were shellcodes targeting different environments, others were shellcodes that were parts of
attacks that required other files or components which were not accessible to us. The final
type was shellcodes that were designed to cause a denial of service, crashing the reader
or the computer running them. We encountered some shellcodes that initiate a network
connection to a remote host in addition to these two categories (Fig. 4).

The next type of encountered approach was URL or phishing downloaders with 19%.
The PDF maldoc is a decoy that contains some text enticing the user to click on a URL that
performs the next step in the attack campaign, most commonly downloading an executable
to the victim’s computer. The most popular approach to performing that was inserting a
blurry image that contains the colour theme of popular cloud storage or sharing platforms

Fig. 4 A bar chart representing all PDF maldoc categories we encountered during our analysis. The most
common attack approach is “Shellcode downloader” with 40% of our E dataset

41112 Multimedia Tools and Applications (2022) 81:41103–41130

(e.g. Google Drive, DropBox, OneDrive, AdobeCloud). The decoy file usually contains
text stating that this document is secured and can only be accessed via the provided link.
Naturally, not a single URL of the attached was functional, so we could not verify if the
URL is indeed a downloader or only used to collect login credentials by asking the user to
verify their identity before accessing the file.

The last major category from our dataset was “Dropper” with 17%. A dropper PDF mal-
doc contains a malicious attachment (usually an executable masquerading as another PDF)
within the decoy PDF file, which does not perform any malicious action. JavaScript
and OpenAction are used to “drop” the file. However, due to security changes by Adobe,
performing this requires user interaction. The user must agree to the file being saved to
the disk. A text message is usually displayed asking the user to accept this and disregard
the security warning displayed. Once the file is dropped, the file is automatically executed
via a JavaScript function. Other types of encountered droppers include macro-enabled doc-
uments (which usually carry out the next stage of the attack campaign by downloading
an executable), IRC zombie, malicious HTML, VBS script and cryptocurrency malware
(Razy).

The other categories of attack approaches make up a total of only 4% of our dataset. They
include 4 Exploit proof of concepts. They contain detailed information (embedded through-
out the code) of how the attacks work. Three files we analysed contain social engineering
attacks: tax-related forms requesting “urgent” information or funds to be physically mailed
to various addresses. Two files were clean but incorrectly labelled as malicious by various
tools. Finally, one file contained only a PowerShell downloader. Launch is used to execute
a command line terminal(cmd) command which in turn launches a hidden PowerShell that
downloads an executable.

We observed that the vast majority of our analysed files were generated using the
Metasploit framework, particularly in 2015 and upwards. Disregarding the “URL-phishing”
category, as they can be generated using a wide array of tools, the remaining categories use
the following:

1 Dropper: The dropper category uses either the “adobe pdf embedded exe” or
“adobe pdf embedded exe nojs” Metasploit modules.

1a) adobe pdf embedded exe: An ApacheBench file is embedded and
encoded inside an object, usually using FlateDecode. A single-line JavaScript
script is used to export(drop) the file. OpenAction is used to run the code,
and an AdditionalAction (AA) is used to launch a command line ter-
minal (cmd) command that locates then executes the dropped file. A variance
here is used where the JavaScript function properties are changed to save
then execute the dropped file directly, without the need for the additional and
launch actions. An example of this attack can be seen in Section 4.2.2, and
Figs. 9 and 10. This attack’s Metasploit module path is:

exploit/windows/fileformat/adobe pdf embedded exe.
1b) adobe pdf embedded exe nojs: An executable is placed between the

file header and the first object, encoded as a hexadecimal string. A launch
action is then used to start a command line terminal (cmd) window which cre-
ates a new VB script that retrieves the hexadecimal string from the top of the
PDF maldoc, convert it into an executable, save it to the disk, start the exe-
cutable then deletes the vb script. This attack approach offers great obscurity
and helps evade JavaScript-based detectors and other types of detectors that

41113Multimedia Tools and Applications (2022) 81:41103–41130

rely on inspecting objects’ content and logical structures. Parsers are also inca-
pable of detecting the malicious content here, which requires manual inspec-
tion using a different set of tools such as hex editors. An example of this attack
can be seen in Section 4.2.2 and Figs. 11 and 12. This attack’s Metasploit
module path is: exploit/windows/fileformat/adobe pdf embedded exe.

2 Shellcodes: We encountered several types of shellcodes, utilising several exploits that
have been implemented on Metasploit:

2a) Exploits: We encountered several exploits, which include: adobe
utilprintf, adobe reader u3d, adobe collectemailinfo,
adobe cooltype sing, adobe geticon, adobe jbig2decode,
adobe libtiff, and adobe toolbutton.

2b) Payloads: The two dominant payloads encountered by us were
download exec and reverse tcp.

To test the effectiveness of anti-malware engines on VirusTotal, we created several PDF
maldocs using the Metasploit framework. We avoided any encoding or obfuscation and used
default settings as realistically possible. We then submitted the generated PDF maldocs to
VirusTotal for inspection, and the results were shocking. The report in Fig. 5 shows that only
18 engines managed to detect a PDF maldoc with an exploit for CVE-2012-4914 (Cool
PDF Image Stream - Remote Buffer Overflow [16]) and Meterpreter pay-
load delivered via reverse TCP with no obfuscation. Several other documents were
generated and submitted to VirusTotal with similar results. The results highlight how
potentially easy it is to avoid detection by an anti-malware application, particularly to a
determined and highly skilled attacker. Especially that both the exploit and the payload have
existed for several years, and all anti-malware applications should have extracted all relevant
Indicators of compromise (IoC).

The fundamental objective of performing manual in-depth investigation and thorough
analysis is to minimise the error rate and avoid any false-positives or false negatives that
are not considered by the celebrated automated analysis tools, such as PDFrate [24] and

Fig. 5 We generated a PDF maldoc using the Metasploit framework, which contains an exploit for CVE-
2012-4914 and meterpreter via reverse-tcp payload with no obfuscation. The maldoc was detected by 18/55
anti-malware engines on VirusTotal

41114 Multimedia Tools and Applications (2022) 81:41103–41130

Slayer [14]. Besides, we have clearly demonstrated in one of our previous works [8] that
the 23% and 21% false positive and negative rates respectively is prevalent in such analysis.
However, the win of performing tedious manual analysis and detailed investigation, despite
taking significantly longer time and more effort, is that it always guarantees the negligible
occurrence of the inaccurate information and therefore ameliorates their subsequent adverse
impacts.

4.2 Prominent attack vectors

In this section, we review the various attack vectors, including Downloader shellcodes,
both types of dropped embedded files, command-line terminal commands used to perform
various actions, and JavaScript code.

4.2.1 JavaScript snippets

We encountered multiple JavaScript code snippets that are vastly diverse in complexity,
obfuscation, and operation. The example code in Figs. 6 and 7 have the shellcode in the first
and only stage, using Unicode encoding (%uxxxx). Neither requires any deobfuscation nor
contain any analysis traps. Automatic analysis works directly against these two examples.
Other techniques include using XFA and a TIFF ImageField, utilising base64 encod-
ing to deliver a payload, as shown in Fig. 8. While the used technique is an improvement
over the previous two, requiring a significant amount of manual analysis, it is still straight-
forward to analyse and extract the payload. Other techniques include staged attacks, where
the initial JavaScript code is straightforward (but not without analysis traps) and only con-
tains some string manipulation functions. Executing that stage reveals the next level that
contains further and more advanced analysis traps. Upon deobfuscation, the last and final
stage is revealed, usually containing either a downloader or a remote connection.

4.2.2 Droppers and embedded files

Standard dropping This technique is performed using the adobe pdf embedded exe
Metasploit module and makes use of the following PDF tags: /EmbeddedFiles,
/JavaScript, /Launch and /OpenAction. The chain of events that are used in
the exploitation is as follows: The Catalog dictionary(root object) contains /OpenAction
that automatically runs the JavaScript code upon opening the PDF maldoc. The JavaScript
code in Fig. 9 uses the exportDataObject function, which according to Adobe Acrobat
SDK [1] “Extracts the specified data object to an external file.” The “nLaunch” property

Fig. 6 Deobfuscated JavaScript code that delivers a reverse TCP payload

41115Multimedia Tools and Applications (2022) 81:41103–41130

Fig. 7 Deobfusated JavaScript code that exploits the collectEmailInfo vulnerability (CVE-2007-5659) to
deliver a reverse TCP payload

was set to zero, which means the exported file will not be executed after it is saved to an
external file. Executing the saved file is done using the launch action in Fig. 10. This
command launches a command prompt utility, attempt to locate the dropped file (named
“template.pdf” which is the default file name of this module on Metasploit). As per
Acrobat’s security settings, there will be a security warning to the user when the file is get-
ting saved; however, the attacker is allowed to modify the message partially. This is shown
in the last two lines in the figure, encouraging the user to click “open” in order to view the
encrypted content. This command can only be executed successfully after the attachment
was dropped and saved to the victim’s machine. To ensure that this is the order of events,
an AdditionalAction (/AA) is utilised in the setting of page one, which is used to
launch this command. This makes the order of the events as follows: 1- PDF maldoc is
opened. 2- OpenAction executes JavaScript. 3- JavaScript drops the attachment to the
computer. 4- AdditionalAction launches a command line terminal command to locate
and execute the dropped file. It is worth mentioning that an executable can not be exported
in PDF files by default, which is why this executable is disguised as a PDF.

Non-standard dropping Fig. 11 shows how the adobe pdf embedded exe nojs:
performs nonstandard embedding on an executable. A hexadecimal string is injected just

Fig. 8 A payload delivered through an XFA form, using TIFF image and base64 encoding

41116 Multimedia Tools and Applications (2022) 81:41103–41130

Fig. 9 The JavaScript function used to export an EmbeddedFile to the disk

below the file header (first line in the file), and before the first object. 300kb of hexadecimal
string was omitted. The figure also shows how hexadecimal encoding is used within objects,
which is a standard procedure by PDF maldoc writers to complicate manual analysis fur-
ther. However, such encoding is rarely effective, as it only replaces ASCII characters with
their corresponding hex values. The majority of analysis tools perform the conversion auto-
matically, which allows the successful extraction of malicious content. Figure 12 shows the
commands used to carry on the attack. The commands create a Visual Basic (VBS) script
that retrieves the string, decodes it, saves it as an executable, and then executes it. The VBS
script is then deleted to cover up any tracks.

4.2.3 Shellcodes

The most common shellcodes encountered are remote network connection (Fig. 13) and
downloaders (Fig. 14).

Remote network connection: LoadLibraryA is used to load ws2 32.dll into
the process memory, which is initiated using WSAStartup and then created with
WSASocket. A connection then is established to the target IP address. This shellcode
targets Windows 8.1.

Downloaders: Urlmon.dll is loaded through LoadLibraryA. The temp file path is
retrieved via GetTempPathA. A file this is downloaded via URLDownloadToAFileA
and saved in the temp file. Finally, the downloaded file is executed using WinExec.

Fig. 10 The launch command used to execute the exported file

41117Multimedia Tools and Applications (2022) 81:41103–41130

Fig. 11 Injecting an executable between the file header and the first object

4.3 Analysis traps and evasion

We encountered several analysis traps employed by PDF maldoc writers, intending to thwart
automatic analysis and complicate manual analysis. The following paragraphs review the
regularly encountered techniques:

PDF-specific JavaScript functions and keywords: Objects, functions and properties that
only used in the PDF JavaScript SDK and are not used in other versions of JavaScript
such as the one used by SpiderMonkey and V8. When these items are analysed using these
engines, they will return errors. While some of these are not PDF-exclusive keywords and
are used in browsers, their context and usage are different within a PDF.

– app: refers to the JavaScript application. The address this during analysis, a new vari-
able can be declared and assigned a value, e.g. app = 1. Often paired with “Doc”, which
refers to the reader application.

– this: Refers to the current object. Usually used to refer to the PDF document, a page,
a field. Addressing this trap requires analysing the context in which it is being used
then manually retrieving the data it refers to.

– callee: Refers to the entity that called a function. Usually used to check the calling
function’s length (callee.length). If the calling function was modified as part of
the analysis, a different action could be executed by the called function. To address this

Fig. 12 The script used to retrieve the injected malicious hexadecimal string, decode it then execute it

41118 Multimedia Tools and Applications (2022) 81:41103–41130

Fig. 13 A screenshot of emulating a shellcode that is attempting to make a remote connection to an IP address

trap, the new length value must be calculated and manually entered. Alternatively, the
entire statement can be removed, given that it does not impact the outcome.

– Annotations: This includes “getAnnots” and “syncAnnots”: both functions
are used to retrieve long strings embedded in PDF annotations (comments/feedback) or
one of its properties, such as ‘subject’ (comment’s author).

– Event: Usually used to detect particular actions, such as mouse clicks. Event is
frequently paired with Target.

Content retrieval: While some PDF maldoc writers embed some string within a JavaScript
code block, others hide it within other objects and then retrieve it using various techniques,
including but not limited to what was explained above under “Annotations”. A challenging
technique we encountered was using a name dictionary (used to referencing objects by name
rather than number), paired with XFA form to scan the file structure and locate the object
and string. Using the object name threw us off initially, as we assumed the object name was
a legitimate JavaScript method, and we attempted to interpret what the code was trying to
do. Only later did we realise that this step was only retrieving content from another object.

Fig. 14 Emulation output of a downloader shellcode

41119Multimedia Tools and Applications (2022) 81:41103–41130

Stringmanipulation: This is a standard evasive strategy employed by PDF maldoc writers
to evade signature-based detection. Shellcodes and other types of strings are manip-
ulated (usually, junk code is inserted), then using string manipulation methods, junk
code is stripped off, revealing the desired string or the final payload. This includes
unescape(), replace(), reverse(), indexOf(), join(), substring(),
concat(), charAt(), fromCharCode(), and so on.

Mixing different types of encoding: Mixing various types of encoding is widely used by
PDF maldoc writers, such as applying Unicode encoding (%uxxxx) to part of the string,
while other parts use hexadecimal encoding (\x). We encountered a more advanced form of
this, where the string was encoded using Unicode. However, the (%) and (u) we replaced
with their hex value equivalents (\x25 and \x75 respectively). The text appeared as fol-
lows: “\x25\x75EBFA” which translates to “%uEBFA”. While this often does not cause
any issues to the trained eye, it does slow down the analysis process, as the analyst will need
to do some manual editing.

Code and string fragmentation: In this technique, the JavaScript code is fragmented over
several objects. The first part that is executed retrieves the second part, and so on. At times,
the string that is manipulated is embedded within the object that also contains the next
stage. Execution reveals the following stage. At other times, the string is embedded within
different objects, requiring an additional retrieval operation.

We encountered some other techniques that include using binary and octal characters,
ROP-based shellcodes. Massive code blocks that include over a million line of code, which
is usually associated with the BMP\RLE vulnerability (CVE-2013-2729).

4.4 Maldoc evolution

Figure 15a a) summarises the evolution of PDF maldocs and the change of attack approaches
between 2008 and 2018. Figure 15b b) Shows the distribution of attack vectors of 2015.
The usage of shellcodes sharply dropped at some point between 2013 and 20152 with only
11% presence in our dataset. This trend continued in 2016, further dropping the popularity
of shellcodes to 4%, while URLs increased to 64%. The year 2017 saw a huge decline in the
popularity of URLs (down to 33%) in favour of droppers, which surged to 52%, showing a
growth of over 45%. We were not able to collect any PDF maldocs that appeared in 2018
or 2019 from malware repositories. However, we collected some PDF maldocs sent to our
emails, which only included URLs without other attack vectors. In addition to the drop in
the popularity of shellcodes, their operation has changed from the downloader role to being
utilised in backdoor and remote host connections. This phenomenon is partially due to the
increased popularity of the Metasploit framework.

The year 2010 was pivotal to the security of the PDF standard, with Adobe releasing
Acrobat X that incorporated a protected mode, isolating the execution and rendering of a
PDF file from the host computer. It is our belief that 2010 was the point when the effi-
ciency of shellcodes as an attack vector started to decline. However, that did not reflect in
its utilisation in cyberattacks until later.

2 Our dataset contains only 3 and 2 files from 2013 and 2014 respectively, rendering any data acquired from
analysing them intangible.

41120 Multimedia Tools and Applications (2022) 81:41103–41130

(a) PDF maldoc evolution and attack approach changes from 2008 to 2018.

(b) A pie chart showing that the preferred attack vector in 2015 is URL.

Fig. 15 Trend of a significant change of approaches used by PDF maldoc writers

4.5 Influential features

During our analysis, we encountered several indicators that are usually associated with PDF
maldocs and rarely seen in legitimate PDF documents, including code with analysis traps,
faulty PDF structure, hidden content and short JavaScript.

JavaScript code that contains some or all of the analysis traps explained above in
Section 4.3 fall in this category. Legitimate JavaScript code blocks are highly readable and
easily executed using automatic analysis engines such as D8. The presence of obfuscation
itself is an indicator of compromise, and any file containing traps or obfuscation should
automatically be considered questionable. Employing analysis traps and obfuscation assists
with evading automatic and signature-based detectors.

The majority of modern readers are quite flexible and can auto-repair faulty documents
and fix minor errors. Malware writers are exploiting this fact. Failing to render a document
when inspecting a PDF maldoc using a strict tool is an indicator of compromise. Cor-
rupted structures allow evading speciality tools that parse PDF objects (follow the chain of
execution of a PDF, ignoring some objects with errors).

41121Multimedia Tools and Applications (2022) 81:41103–41130

Hidden Content is placed between the “endobj” of an object and declaration of the
next object “obj”, instead of placing content within objects. Similar to “Corrupted PDF
structure”, this technique allows evading speciality tools to parse error-free objects only.

Whether the attack vector was a shellcode or a dropper, JavaScript code blocks are usu-
ally very short in PDF maldocs. In the case of a shellcode, the JavaScript code only retrieves
a string from another location and performs a simple code manipulation operation reveal-
ing the second stage of the attack. On the other hand, droppers only use JavaScript to save
the file to the victim’s disk. Malicious application technique helps evade JavaScript-only
detectors, which are not uncommon. It also helps with cloaking notorious keywords that are
consistently associated with PDF maldocs, such as eval and unescape.

4.6 Feature validation

We investigated a large number of clean PDF documents from the C’ dataset. Specifically,
documents containing structural features are often associated with malicious content, such
as JavaScript, EmbeddedFiles, Launch, OpenAction and forms.

The majority of documents we investigated contain government forms. In these docu-
ments, JavaScript is primarily used to (i) check the reader version. (ii) launch a pop-up
message that instructs the user on how the form can be used and filled. Occasionally,
the forms also contained attachments like EmbeddedFiles. JavaScript code was used
to assist the users in opening those attachments. All JavaScript code blocks are executed
entirely in a single stage instead of malicious JavaScript that executes stage-wisely. Nat-
urally, the code was unambiguous and free of obfuscation, evasive behaviour, or analysis
traps. We did not detect any hidden content. However, it is worth mentioning that we did
encounter short JavaScript blocks while inspecting clean files, which were used exclusively
to prevent executing JavaScript from the cache using “no-cache”. No string manipulation
functions were encountered in clean files.

4.7 The signaturemalicious structure

During our analysis, we observed a recurring pattern: 1-page documents that contain 7-
9 objects, 1 stream, 1 JavaScript object, and 1 OpenAction tag. We call that
the signature malicious structure of PDF documents. Out of 6619 PDF maldocs in our
V’ dataset, 3743 match this pattern. This makes up 56.5% of all samples in the dataset.
Ordinarily, a file of this pattern works in this manner: The stream object carries the
JavaScript code in an encoded form. When the user opens the file, the OpenAction
will automatically execute the JavaScript object, which in turn delivers the payload.
Non-coincidentally, PDF maldocs generated using the Metasploit framework using default
settings also follow the same structural pattern, confirming our previous observation that
most PDF maldocs in the dataset are generated using Metasploit. In the C’ (clean PDF)
dataset, the average object count is 90.3, and a median of 45 objects. The average number
of pages in each document is 6.1, and a median of 3. By comparison, the average object
count in the V’ (malicious) dataset is 17.6, and a median of 9. The average number of pages
is 1.7, and a median of 1.

A basic PDF document that only contains “Hello World” requires 7 objects, not
including a JavaScript stream or object. Adding any more content in a PDF doc-
ument requires more objects, as can be seen in the C’ dataset. PDF documents in this dataset
are legitimate business documents used in real-life correspondence with actual content,
hence the high count of objects. On the other hand, malicious documents contain the bare

41122 Multimedia Tools and Applications (2022) 81:41103–41130

minimum of required objects to build functioning documents capable of delivering their
designated payload. Customarily, in a legitimate PDF document, a JavaScript object must
be accompanied by many objects containing contents that the JavaScript code interacts with
and operates on. The average count of objects in clean PDF documents that have legitimate
JavaScript is 176, nearly double the average count of all clean files in the dataset.

Therefore, a PDF document with a low object count and a JavaScript object has a
high probability of being malicious. However, as the number of objects is totally under
a malicious actor’s control, we did not add this feature to the feature list highlighted in
Section 4.5.

4.8 Discussion and future directions

Concept drift In contrast to closest existing works [4, 15, 26, 30], this paper is the first
to address concept drifts in maldoc detectors, regardless of the source or cause of concept
drift. Others’ focus was primarily on the attacks against maldoc classifiers such as evasion
techniques employed by maldoc authors to evade detection. They worked on a specific tool
at a time, motivating the next generation of maldoc detectors. However, we focused on the
PDF maldoc itself and its evolution in response to advancements in the field. We aim to
expand further the feature-set identified in this work to develop an improved PDF parser
that is not prone to evasion and parser confusion attacks.

Data sampling To ensure the higher integrity of our research output and avoid generating
data with high noise, we decided to exclude any PDF maldoc that did not have the “First
Seen in the Wild” property from the VirusTotal report. By doing that, we have eliminated
any PDF maldoc that was not a part of a real-world attack or was created as an experiment
or while practising using an attack tool. This step decreased our dataset size from 10,603
PDF maldoc to 6,619 — a reduction of approximately 37%.

For example, the report’s property includes both month and year, but we cluster by year
only, mainly because Adobe releases major updates biennially (every two years), introduc-
ing considerable changes that could impact PDF maldoc production. Clustering by month
would have increased the number of produced clusters by 1200%, a significant complexity
increase with extremely high noise and no tangible benefits.

The PDF 2.0. International Organization for standards (ISO) released the PDF 2.0 stan-
dard as ISO 32000-2:2017. Several new features were introduced, others were significantly
revised. The new updates that are of concern to cyberattacks include:

Deprecating XFA: XFA (XML Forms Architecture) is capable of executing JavaScript
code, it is used as an alternative carrier of JavaScript code (in place of /JS and
/JavaScript objects). Out of 6619 PDF maldocs in our dataset, 729 contain
XFA forms, and 706 of those do not contain any /JS or /JavaScript, where
JavaScript is embedded in the XFA forms exclusively. We expect that deprecating
XFA will have little to no impact on the security of PDF documents because AcroForms
are still sanctioned and will be used as an alternative method of delivering malicious
JavaScript code.
Deprecating Flash and Shockwave: Both are deprecated in the new standard version
2.0, however, RichMedia has been used as a replacement since Acrobat 9.0, for legit-
imate and malicious purpose. Therefore, we believe that such change has a negligible
impact on the security of the PDFs.

41123Multimedia Tools and Applications (2022) 81:41103–41130

Newly introduced features: We did not encounter nor analyse any legitimate PDF
documents or PDF maldocs that conform with the 2.0 standard. Thus we cannot make
an informed and scientifically-backed judgement on whether they can be exploited and
utilised in PDF maldoc attacks. However, we provide a brief review of the features that
we expect might impact the way PDF maldocs are generated.

1. Displaying a thumbnail requires executing parts of the file. Given the way a PDF file is
rendered, this step could execute malicious content.

2. While the full details of this are not yet available, the combination of both commands
appear to change the focus of the PDF document opened to “RichMedia” content,
which may carry and execute malicious content.

3. Security wrapper for EmbeddedFile allows a PDF document with a mechanism that
is not declared by the standard to be embedded into another “wrapper” document that
provides instructions on how the embedded document can be executed. Further details
and analysis are required to verify how this could impact the security of PDF documents
and whether it can be exploited in PDF maldoc attacks.

4. Geospatial data is not a new feature, but it has been significantly improved. Once again,
it could still be utilised in PDF maldoc spying and tracking attacks.

5. With Backward compatibility, a new PDF document could still be generated as an older
version (i.e. PDF 1.3). Most PDF readers are capable of reading a document using
an older standard. While backwards compatibility is a high flexibility factor, it could
severely hinder new security techniques.

Feature extraction was one of the first challenges we encountered while choosing an
appropriate tool that can efficiently and effectively parse a PDF document and extract the
desired features. Several articles in the literature [3, 14] reported the drawbacks of the
PDFiD tool. However, during our testing phase, we found out that PDFiD provided very
efficient and highly accurate results. The batch processing feature, coupled with the XML
format of the report, allowed us to quickly and efficiently convert the reports into a feature
matrix. It was not uncommon that we found ourselves relying on other tools to re-scan and
re-parse some PDF maldocs whose results seemed off or unrealistic. On some occasions,
no tools managed to get the job done, and we had to rely on old fashioned hex editors and
online converters to decode well-obfuscated PDF maldocs manually. To address this, we
plan to develop a PDF parser in future that not only addresses drawbacks of the current
parsers but is capable of detecting malicious features that were reported in Section 4.5.

Our V’ dataset reported in Table 3 contains significant imbalance. The majority of our
PDF maldocs were identified as 2009-2011 PDF maldocs. Although these PDF maldocs
could provide useful information, their relevance to today’s PDF maldoc attacks would be
rather limited. This is because these PDF maldocs were generated to attack the older ver-
sions of Adobe Acrobat (pre Acrobat X), and as the attack approach changed significantly
since the release. Thus, we decided to analyse a limited number of PDF maldocs from 2009-
2011, that is, around 25 documents per year. This provided all the required information to
conduct our analysis without wasting an excessive amount of time on potentially superflu-
ous tasks. Another issue was the lack of PDF maldocs identified as 2013-2014 maldocs. We
believe that the attack trend shift started at some point during this time frame and evolved
into what we reported as the trend in 2015. Acquiring more 2013 and 2014 PDF maldocs
could have shed more light on the attack trend change and helped us extract any conclusive
information.

41124 Multimedia Tools and Applications (2022) 81:41103–41130

4.9 Potential evolution of PDFmaldocs

In Section 1, we indicated that in 2019, a total of 262 PDF-related vulnerabilities had been
disclosed so far. Nearly double the number of vulnerabilities disclosed in 2018. According
to the MITRE Corporation, 133 of these 262 vulnerabilities are “code execution”, 17 are
overflow, 6 are “bypass” and 3 are “gain information” vulnerabilities. Except for the last
vulnerability type, all others could lead to remote arbitrary code execution. Table 5 provides
the breakdown of all severity and vulnerability types. Observe that shellcode-embedded
PDF maldocs could be making a comeback shortly, given the increase in the newly identified
number of vulnerabilities in PDF reader applications.

Despite the figures above and the expected shellcode return, we expect that URL-type
PDF maldocs will rise once again and overcome dropper-type PDF maldoc in opportunistic
attacks due to (i) Low overhead in attack preparation. PDF maldocs can be generated with a
variety of free and readily available tools, (ii) Low complexity. Generating ULR-embedded
PDF maldocs requires little to no technical skills. (iii) Ease of evasion. In addition, as it is
now possible to disable JavaScript, users are being advised to disable it as a precaution.

Targeted attacks are diverse in their scenario and heavily rely on the information collected
from the victim’s environment, particularly the underlying operating system and version and
reader application and version. PDF maldocs are still continuously utilised in APT attacks,
mainly to provide backdoor access to victims. We predict that injection-based PDF maldocs
will dominate due to the efficiency of the approach.

Another attack vector that can not be ruled out is the “PowerShell-based” approach. With
the proliferation and the rapid increase of the use of PowerShell and fileless malware [21],
their utilisation in PDF maldocs is no exception.

As reported earlier, the Metasploit framework was used to generate the majority of the
PDF maldocs that we analysed. Due to this popularity and the way it has changed how
cyberattacks are performed, we believe that monitoring the framework could provide a sig-
nificant boost to the defence and cybersecurity efforts. Default exploits and module settings
could serve as an excellent source of malware/PDF maldoc signatures.

4.10 Summary

To summarise, we have performed an in-depth analysis of hundreds of clean and malicious
PDF documents, and we found the following:

– 40% of malicious PDF documents contained a shellcode downloaded, 19% contained
an unknown shellcode, 19% contained a phishing URL, and 17% contained a dropped
malware. the remaining categories contain exploit PoC files, social engineering attacks,
clean files and PowerShell downloaders, which make up around 4% of total files.

Table 5 A breakdown of PDF-related vulnerabilities disclosed in 2019 so far

Severity Vulnerability Type Low Medium High Critical

Code execution 1 2 5 125

Overflow 0 5 1 11

Bypass 0 2 0 4

Gain information 0 1 2 0

41125Multimedia Tools and Applications (2022) 81:41103–41130

– In the shellcode category, several exploits were encountered, such as
adobe utilprintf, adobe reader u3d, adobe collectemailinfo,
adobe cooltype sing, adobe geticon, adobe jbig2decode,
adobe libtiff, and adobe toolbutton.

– In the dropper category, the most popular attack was generated using the
adobe pdf embedded exe and adobe pdf embedded exe nojs Metasploit
modules. The most popular payloads download exec and reverse tcp.

– A multitude of traps and evasion techniques were encountered which are added to
the code intentionally to thwart automatic extraction and emulation of the code,
the most notable of which include: app, this, callee, Annotations and
events.

– Content retrieval is heavily used, where the malicious code is embedded in another
location besides the object, the contains the JavaScript code.

– String manipulation is one of the most popular techniques to evade both automated
detection and manual analysis. This technique relies on using methods that change what
appears to be an in-suspicious and unusable embedded input into functioning malicious
content.

– Another popular technique is mixing different encoding techniques, which significantly
complicates the manual process, resulting in the need to performing multiple manual
processes to deobfuscate the code.

– In Section 4.4 we reviewed how the PDF maldoc scene has changed over the years. In
Section 4.8 we review our take on various topics that relate to the PDF maldoc scene,
and in Section 4.9, we present our prediction of how the PDF maldoc will evolve in the
upcoming years.

5 Deobfuscation procedure

Compared with executable malware, the deobfuscation procedure in PDF maldoc is sig-
nificantly more straightforward, as the main objective in this scenario is to extract the
“shellcode”, and the full understanding of the JavaScript code is not mandatory. However,
to successfully perform deobfuscation, a few points might need to be addressed, depending
on how sophisticated the code is. Figure 16 provides a high-level overview of the process.

In its most basic form, a shellcode is not hidden and can be located instantly, as
shown in Listing 1. No modifications were made to the code to locate the shellcode.
In PDFStreamDumper, examine stream objects (blue headings), once located, click on
“Javascript UI” then “Format Javascript”.

This shellcode can be emulated by highlighting it then pressing
“Shellcode Analysis” and choosing “scDbg” (shellcode debugger). Pressing
“Launch” in the next window reveals the output in Listing 2.

The output suggests that the shellcode makes a call to the library urlmon from which
the function URLDownloadToFileA is called, which downloads a bitstream from the
Internet and saves them to a file, according to Microsoft. The downloaded file is called
ILeD.dll in this case. Finally, the file is executed using the WinExec and register the dll as
a command in the registry using regsvr32.

Often, the process is not as straightforward and is broken down into several stages to
evade detection. This can be seen when there is a very large string embedded within a
variable, or a small JavaScript code lock is used to retrieve it from another location that hides

41126 Multimedia Tools and Applications (2022) 81:41103–41130

Fig. 16 Deobfuscation procedure

Listing 1 A variable that contains a shellcode

Listing 2 A variable that contains a shellcode

41127Multimedia Tools and Applications (2022) 81:41103–41130

Listing 3 Using the document model to call and retrieve strings

the code, such as the document title or comments, as shown in Listings 3 and 4 respectively.
If the string is within a variable, the next step of the obfuscation is to run the code in a
sandbox environment, revealing the next stage. At this point, an analyst should attempt to
locate the shellcode then emulate it.

Should the string be hidden elsewhere, said string would need to be manually retrieved.
This is because JavaScript code emulators do not include all the required PDF JavaScript
libraries and functions. Thus, the code will have to be modified to read and execute the code
from a variable which the analyst needs to add.

This code line in Listing 3 is used to retrieve some string from “this.info.title”. The
keywordthis refers to the PDF document. Part of which is the info dictionary, which provides
metadata for the document, and is the parent object of the title object, which is the target of
this statement and where the string is hidden.

Listing 4 shows another JavaScript code block that is used to retrieve a string from
annots: annotations, which are comments.

Once the string is retrieved and added to the modified code, the next attack stage
should be revealed. However, advanced maldoc authors can add analysis traps to any stage
of the attack. These analysis traps need to be addressed manually. We cover analysis
traps in Section 4.3. For detailed analysis procedure, please see https://github.com/Aafalah/
PDF-maldoc-detection.

6 Conclusion

With the growing advances of sophisticated machine learning techniques, attackers could
potentially generate PDF maldocs and modify them. To address the issues timely, we have
conducted a comprehensive analysis of PDF maldocs and discovered that the main feature
associated with PDF maldocs is the obfuscated code and evasive behaviour. Regardless of
what the payload of PDF maldocs carry, exhibiting evasive behaviour is always an indication
of malice. Other such indicators include corrupted PDF structure, short JavaScript code
blocks, and hidden content. We considered PDF maldocs from 2008 to 2017 and identified
the change in attack landscapes and approaches. Moreover, we also shed light on potential
future directions and impending issues in the field.

Listing 4 A short JavaScript code used to retrieve a string hidden within comments

41128 Multimedia Tools and Applications (2022) 81:41103–41130

https://github.com/Aafalah/PDF-maldoc-detection
https://github.com/Aafalah/PDF-maldoc-detection

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adobe Systems Incorporated (2007) JavascriptTM for acrobat® api reference, available online at https://
www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/js api reference.pdf. Accessed Sep 2019

2. Carlin D, O’Kane P, Sezer S (2019) A cost analysis of machine learning using dynamic runtime opcodes
for malware detection. Comput Secur 85:138–155

3. Carmony C, Hu X, Yin H, Bhaskar AV, Zhang M (2016) Extract Me If You Can: Abusing PDF Parsers
in Malware Detectors. In: NDSS, pp 1–15

4. Dang H, Huang Y, Chang E-C (2017) Evading Classifiers by Morphing in the Dark. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security. Dallas, Texas, USA:
ACM, pp 119–133

5. Ding Y, Wu R, Zhang X (2019) Ontology-based knowledge representation for malware individuals and
families, Computers & Security, p 101574

6. Ehteshamifar S, Barresi A, Gross TR, Pradel M (2019) Easy to fool? testing the anti-evasion capabilities
of pdf malware scanners. arXiv:1901. 05674

7. Endignoux G, Levillain O, Migeon J-Y (2016) Caradoc: A pragmatic approach to pdf parsing and
validation. In: Security and Privacy Workshops (SPW). IEEE, pp 126–139

8. Falah A, Pan L, Abdelrazek M, Doss R (2018) Identifying drawbacks in malicious pdf detectors. In:
International conference on future network systems and security. Springer, pp 128–139

9. Falah A, Pan L, Huda S, Pokhrel SR, Anwar A (2021) Improving malicious pdf classifier with feature
engineering: a data-driven approach. Futur Gener Comput Syst 115:314–326

10. Hinton GE, Roweis ST (2003) Stochastic neighbor embedding. In: Advances in neural information
processing systems, pp 857–864

11. Jordan A, Gauthier F, Hassanshahi B, Zhao D (2018) Safe-pdf: Robust detection of javascript pdf
malware using abstract interpretation. arXiv:1810.12490

12. Li M, Liu Y, Yu M, Li G, Wang Y, Liu C (2017) Fepdf: A robust feature extractor for malicious pdf
detection. In: 2017 IEEE Trustcom/BigDataSE/ICESS, pp 218–224

13. Liu D, Wang H, Stavrou A (2014) Detecting malicious javascript in pdf through document instru-
mentation. In: Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International
conference on. IEEE, pp 100–111

14. Maiorca D, Ariu D, Corona I, Giacinto G (2015) A structural and content-based approach for a precise
and robust detection of malicious pdf files. In: Information systems security and privacy (ICISSP), 2015
International conference on. IEEE, pp 27–36

15. Maiorca D, Corona I, Giacinto G (2013) Looking at the bag is not enough to find the bomb: an eva-
sion of structural methods for malicious pdf files detection. In: Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security. ACM, pp 119–130

16. Metasploit (2013) Cool pdf image stream - remote buffer overflow, available online at https://www.
exploit-db.com/exploits/24876. Accessed Sep 2019

17. Nath HV, Mehtre BM (2015) Ensemble learning for detection of malicious content embedded in pdf
documents. In: 2015 IEEE International conference on signal processing, informatics, communication
and energy systems (SPICES), pp 1–5

18. Nissim N, Cohen A, Glezer C, Elovici Y (2015) Detection of malicious pdf files and directions for
enhancements: a state-of-the art survey. Comput Secur 48:246–266

19. Nissim N, Cohen A, Moskovitch R, Shabtai A, Edri M, BarAd O, Elovici Y (2016) Keeping pace with
the creation of new malicious pdf files using an active-learning based detection framework. Secur Inf
5(1):1

41129Multimedia Tools and Applications (2022) 81:41103–41130

http://creativecommons.org/licenses/by/4.0/
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/js_api_re ference.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/js_api_re ference.pdf
http://arxiv.org/abs/1901. 05674
http://arxiv.org/abs/1810.12490
https://www.exploit-db.com/exploits/24876
https://www.exploit-db.com/exploits/24876

20. Park J, Kim H (2017) k-depth mimicry attack to secretly embed shellcode into pdf files. In: International
conference on information science and applications. Springer, pp 388–395

21. Pontiroli SM, Martinez FR (2015) The tao of.net and powershell malware analysis. In: Virus bulletin
conference, pp 1–26

22. Scofield D, Miles C, Kuhn S (2017) Fast model learning for the detection of malicious digital doc-
uments. In: Proceedings of the 7th Software Security, Protection, and Reverse Engineering / Software
Security and Protection Workshop, ser. SSPREW-7. New York, NY, USA: ACM, pp 3:1–3:8

23. Singh P, Tapaswi S, Gupta S (2020) Malware detection in PDF and office documents: a survey. Inf Secur
J: A Glob Perspect 29(3):134–153

24. Smutz C, Stavrou A (2012) Malicious PDF detection using metadata and structural features. In: Proceed-
ings of the 28th annual computer security applications conference. ACM, pp 239–248. Accessed Aug
2019

25. Smutz C, Stavrou A (2016) When a tree falls: using diversity in ensemble classifiers to identify evasion
in Malware detectors. In: NDSS, pp 1–15

26. Šrndić N, Laskov P (2014) Practical evasion of a learning-based classifier: a case study. In: Security and
Privacy (SP), 2014 IEEE Symposium on. IEEE, pp 197–211. Accessed Aug 2019

27. Šrndić N, Laskov P (2016) Hidost: a static machine-learning-based detector of malicious files. EURASIP
J Inf Secur 2016(1):22

28. Wüst K, Tsankov P, Radomirović S, Dashti MT (2017) Force open: Lightweight black box file repair.
Digit Investig 20:S75–S82

29. Xu M, Kim T (2017) PlatPal: Detecting Malicious Documents with Platform Diversity. In: USENIX
Security Symposium, pp 271–287

30. Xu W, Qi Y, Evans D (2016) Automatically evading classifiers. In: NDSS, pp 21–24

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

41130 Multimedia Tools and Applications (2022) 81:41103–41130

	Towards enhanced PDF maldocs detection with feature engineering: design challenges
	Abstract
	Introduction
	State of the art
	Experiment details
	Dataset sorting and categorisation
	Feature engineering
	Visualising results

	Results and discussions
	In-Depth analysis
	Prominent attack vectors
	JavaScript snippets
	Droppers and embedded files
	Standard dropping
	Non-standard dropping

	Shellcodes
	Remote network connection:
	Downloaders:

	Analysis traps and evasion
	PDF-specific JavaScript functions and keywords:
	Content retrieval:
	String manipulation:
	Mixing different types of encoding:
	Code and string fragmentation:

	Maldoc evolution
	Influential features
	Feature validation
	The signature malicious structure
	Discussion and future directions
	Concept drift
	Data sampling

	Potential evolution of PDF maldocs
	Summary

	Deobfuscation procedure
	Conclusion
	References

