Skip to main content
Log in

Regularized label relaxation with negative technique for image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multiclass classification is a challenging task in the field of pattern recognition. Recently, linear regression (LR) and a number of its variants play a key role in classification problems. However, most of these methods manage to transform the training samples into a rigorous binary label matrix, which result in little freedom to fit the samples adequately. In addition, these variants cannot obtain a robust classification performance when dealing with noisy and contaminated data. In order to address the problems, we propose a new learning framework, which holds the following extraordinary advantages. First, a negative ε dragging technique is introduced to release the binary label matrix, which has more freedom to fit the samples and reduces the class margins between different classes for getting robust results from noisy data. Second, the manifold learning, as a regularized item, is applied to construct the class compactness graph, which can prevent the overfitting problem. In this paper, the proposed algorithm is designed based on the ℓ2, 1-norm loss function as it takes both superiorities of the systemic representation of ℓ2-norm and the discriminative nature of the ℓ1-norm. A large number of experiments show that our method has a good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bemporad A (2016) A quadratic programming algorithm based on nonnegative least squares with applications to embedded model predictive control. IEEE Trans Autom Control 61(4):1111–1116

    Article  Google Scholar 

  2. Cao J, Lin Z (2015) Extreme learning machines on high dimensional and large data applications: a survey. Math Probl Eng 2015:1–13

    MATH  Google Scholar 

  3. Cao J, Zhao Y, Lai X et al (2015) Landmark recognition with sparse representation classification and extreme learning machine. J Franklin Institute Eng Appl Math 352(10):4528–4545

    Article  MathSciNet  Google Scholar 

  4. Chen C, He B, Ye Y et al (2016) The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math Program 155(1):57–79

    Article  MathSciNet  Google Scholar 

  5. Cohen A, Migliorati G (2017) Optimal weighted least-squares methods. SMAI J Comput Math 3:181–203

    Article  MathSciNet  Google Scholar 

  6. Davis D, Yin W (2017) Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions. Math Oper Res 42(3):783–805

    Article  MathSciNet  Google Scholar 

  7. Deng Y-J, Li H-C, Pan L, Emery WJ et al (2018) Modified Tensor Locality Preserving Projection for Dimensionality Reduction of Hyperspectral Images. IEEE Geosci Remote Sens Lett 15(2):277–281

    Article  Google Scholar 

  8. Du B, Zhang M, Zhang L et al (2017) PLTD: patch-based low-rank tensor decomposition for hyperspectral images. IEEE Trans Multimedia 19(1):67–79

    Article  Google Scholar 

  9. Du L, Zhou P, Shi L et al (2015) Robust multiple kernel K-means using ℓ 2;1 -norm, Int Conf Art Intell:3476–3482

  10. Fang X, Xu Y, Li X et al (2015) Learning a nonnegative sparse graph for linear regression. IEEE Trans Image Process 24(9):2760–2771

    Article  MathSciNet  Google Scholar 

  11. Fernández-Delgado M, Cernadas E, Barro S et al (2014) Do we need hundreds of classifiers to solve real world classification problems. J Mach Learn Res 15(1):3133–3181

    MathSciNet  MATH  Google Scholar 

  12. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  13. He K, Peng Y, Liu S et al (2020) Regularized negative label relaxation least squares regression for face recognition. Neural Process Lett 51(3):2629–2647

    Article  Google Scholar 

  14. Huang GB, Mattar M, Berg T, Learned-Miller E (2008) ‘Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments’, Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition

  15. Huang X, Qiao H, Zhang B et al (2018) Supervised Polarimetric SAR image classification using tensor local discriminant embedding. IEEE Trans Image Process 27(6):2966–2979

    Article  MathSciNet  Google Scholar 

  16. Jiang Z, Lin Z, Davis LS (2013) Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell 35(11):2651–2664

    Article  Google Scholar 

  17. Kan M, Shan S, Zhang H et al (2016) Multi-view discriminant analysis. IEEE Trans Pattern Anal Mach Intell 38(1):188–194

    Article  Google Scholar 

  18. Lai Z, Xu Y, Jin Z et al (2014) Human gait recognition via sparse discriminant projection learning. IEEE Trans Circ Syst Video Technol 24(10):1651–1662

    Article  Google Scholar 

  19. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. Comput Vision Patt Recogn 2:2169–2178

    Google Scholar 

  20. Łȩski J (2003) Ho--Kashyap classifier with generalization control. Pattern Recogn Lett 24(14):2281–2290

    Article  Google Scholar 

  21. Liu G, Lin Z, Yan S et al (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  22. Liu Z, Wang J, Liu G et al (2019) Discriminative low-rank preserving projection for dimensionality reduction. Appl Soft Comput 85:105768

    Article  Google Scholar 

  23. Liu Z, Lai Z, Ou W et al (2020) Structured optimal graph based sparse feature extraction for semi-supervised learning. Signal Process 170:107456

    Article  Google Scholar 

  24. Luo D, Ding C, Huang H (2010) Towards Structural Sparsity: An Explicit l2/l0 Approach. Int Conf Data Mining:344–353

  25. Martinez AM (1998) The AR face database

    Google Scholar 

  26. Nie F, Huang H, Cai X et al (1813-1821) ‘Efficient and robust feature selection via joint ℓ2,1-norms minimization’. Neural Inf Process Systems, 2010, pp

  27. Nie F, Wang H, Huang H et al (2013) Adaptive loss minimization for semi-supervised elastic embedding. Int Joint Conf Artif Intell:1565–1571

  28. Peng Y, Liu S, Lei T et al (2018) Negative ε dragging technique for pattern classification. IEEE Access 6:488–494

    Article  Google Scholar 

  29. Peng Y, Sehdev P, Liu S et al (2018) l2,1-norm minimization based negative label relaxation linear regression for feature selection. Pattern Recogn Lett 116:170–178

    Article  Google Scholar 

  30. Raghavendra U, Acharya UR, Fujita H et al (2016) Application of Gabor wavelet and locality sensitive discriminant analysis for automated identification of breast cancer using digitized mammogram images. Appl Soft Comput 46:151–161

    Article  Google Scholar 

  31. Song K, Nie F, Han J et al (2017) Parameter free large margin nearest neighbor for distance metric learning’. Nat Conf Artif Intell:2555–2561

  32. Sun L, Ji S, Ye J (2016) Partial Least Squares:43–62

  33. Tang Y (2007) Zhang, Y-Q., Huang, Z.: ‘development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis’. IEEE/ACM Trans Comput Biol Bioinform 4(3):365–381

    Article  Google Scholar 

  34. Wang W, Aggarwal V, Aeron S (2018) Tensor train neighborhood preserving embedding. IEEE Trans Signal Process 66(10):2724–2732

    Article  MathSciNet  Google Scholar 

  35. Wen J, Lai Z, Zhan Y et al (2016) The L2,1-norm-based unsupervised optimal feature selection with applications to action recognition. Pattern Recogn 60(60):515–530

    Article  Google Scholar 

  36. Xiang S, Nie F, Meng G et al (2012) Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Netw 23(11):1738–1754

    Article  Google Scholar 

  37. Xu Y, Lu Y (2015) Adaptive weighted fusion. Neurocomputing 168:566–574

    Article  Google Scholar 

  38. Xu Y, Li X, Yang J et al (2014) Integrating conventional and inverse representation for face recognition. IEEE Trans Syst Man Cybern 44(10):1738–1746

    Google Scholar 

  39. Xu Y, Fang X, Li X et al (2014) Data uncertainty in face recognition. IEEE Trans Syst Man Cybern 44(10):1950–1961

    Google Scholar 

  40. Yan S, Xu D, Zhang B et al (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  41. Zhang Y, Zhang Z, Qin J et al (2018) Semi-supervised local multi-manifold Isomap by linear embedding for feature extraction. Pattern Recogn 76:662–678

    Article  Google Scholar 

  42. Zhang Z, Li F, Zhao M et al (2017) Robust neighborhood preserving projection by nuclear/L2,1-norm regularization for image feature extraction. IEEE Trans Image Process 26(4):1607–1622

    Article  MathSciNet  Google Scholar 

  43. Zhu B, Liu JZ, Cauley SF et al (2018) Image reconstruction by domain-transform manifold learning. Nature 555(7697):487–492

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No.61873155), Transfer and Promotion Plan of Scientific and Technological Achievements of Shaanxi Province (No.2019CGXNG-019), the National Natural Science Foundation of Shaanxi Province (No.2018JM6050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Peng.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Peng, Y., Liu, S. et al. Regularized label relaxation with negative technique for image classification. Multimed Tools Appl 81, 41131–41149 (2022). https://doi.org/10.1007/s11042-022-12417-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12417-x

Keywords

Navigation