Skip to main content
Log in

DCU-net: a deformable convolutional neural network based on cascade U-net for retinal vessel segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

To further improve retinal vessel segmentation accuracy, we propose a deformable convolutional neural network based on cascade U-Net for retinal vessel segmentation: DCU-Net. The overall structure of DCU-Net is composed of two U-Net. We introduce deformable convolution to build a feature extraction module, which enhances the modeling ability of the model for vessel deformation. For improving the efficiency of information transfer between U-Net models, we use a residual channel attention module to connect U-Net. DCUNet achieves excellent results on public datasets. On DRIVE and CHASE_DB1 datasets, the Acc reaches 0.9568, 0.9664, respectively, the AUC reaches 0.9810, and 0.9872, respectively. From the experimental results, the residual channel attention module and residual deformable convolution module greatly improve the retinal vessel segmentation accuracy. The comprehensive performance of our method is better than that of some state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alom M Z, Hasan M, Yakopcic C, et al. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation[J]. arXiv preprint arXiv:1802.06955, 2018.

  2. Araújo R J, Cardoso J S, Oliveira H P. A deep learning design for improving topology coherence in blood vessel segmentation[C]//international conference on medical image computing and computer-assisted intervention. Springer, Cham, 2019: 93–101.

  3. Azad R, Asadi-Aghbolaghi M, Fathy M, et al. Bi-directional ConvLSTM U-net with Densley connected convolutions[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. 2019: 0–0.

  4. Chakraborty C, Gupta B (2016) Adaptive filtering technique for chronic wound analysis under tele-wound network[J], J Comm, Navig Sensing Services (CONASENSE). 2016(1):57–76

  5. Chakraborty C, Gupta B, Ghosh SK (2015) Identification of chronic wound status under tele-wound network through smartphone[J]. Int J Rough Sets Data Anal (IJRSDA) 2(2):58–77

    Article  Google Scholar 

  6. Chakraborty C, Gupta B, Ghosh SK, Das DK, Chakraborty C (2016) Telemedicine supported chronic wound tissue prediction using classification approaches[J]. J Med Syst 40(3):68

    Article  Google Scholar 

  7. Feng S, Zhuo Z, Pan D, … Tian Q (2020) CcNet: a cross-connected convolutional network for segmenting retinal vessels using multi-scale features[J]. Neurocomputing 392:268–276

    Article  Google Scholar 

  8. Fu H, Xu Y, Lin S, et al. Deepvessel: retinal vessel segmentation via deep learning and conditional random field[C]//international conference on medical image computing and computer-assisted intervention. Springer, Cham, 2016: 132–139.

  9. Ghiasi G, Lin T Y, Le Q V. Dropblock: A regularization method for convolutional networks[C]//Advances in Neural Information Processing Systems. 2018: 10727–10737.

  10. Jégou S, Drozdzal M, Vazquez D, et al. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2017: 11–19.

  11. Jie H, Li S, Samuel A, Gang S, Enhua W (2020) Squeeze-and-Excitation Networks.[J]. IEEE Trans Patt Anal Mach Intell 42(8)

  12. Li Q, Feng B, Xie LP et al (2015) A cross-modality learning approach for vessel segmentation in retinal images[J]. IEEE Trans Med Imaging 35(1):109–118

    Article  Google Scholar 

  13. Li Q, Feng B, Xie LP et al (2015) A cross-modality learning approach for vessel segmentation in retinal images[J]. IEEE Trans Med Imaging 35(1):109–118

    Article  Google Scholar 

  14. Li R, Liu W, Yang L, … Li W (2018) DeepU-net: a deep fully convolutional network for pixel-level sea-land segmentation[J]. IEEE J Selected Topics Appl Earth Observ Remote Sensing 11(11):3954–3962

    Article  Google Scholar 

  15. Li X, Chen H, Qi X (2018) H-DenseU-net: hybrid densely connected U-net for liver and tumor segmentation from CT volumes[J]. IEEE Trans Med Imaging 37:2663–2674

    Article  Google Scholar 

  16. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks[J]. IEEE Trans Med Imaging 35(11):2369–2380

    Article  Google Scholar 

  17. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431–3440.

  18. Melinščak M, Prentašić P, Lončarić S (2015) Retinal vessel segmentation using deep neural networks[C]//10th international conference on computer vision theory and applications (VISAPP 2015)

  19. Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation[C]// 2016 fourth international conference on 3D vision (3DV). IEEE

  20. Ngo L, Han JH (2017) Multi-level deep neural network for efficient segmentation of blood vessels in fundus images[J]. Electron Lett 53(16):1096–1098

    Article  Google Scholar 

  21. Oktay O, Schlemper J, Folgoc LL, et al. Attention u-net: Learning where to look for the pancreas[J]. arXiv preprint arXiv:1804.03999, 2018.

  22. Owen CG, Rudnicka AR, Mullen R, … Paterson C (2009) Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program [J]. Invest Ophthalmol Vis Sci 50(5):2004–2010

    Article  Google Scholar 

  23. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]//international conference on medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234–241.

  24. Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting[J]. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  25. Staal J, Abràmoff MD, Niemeijer M et al (2004) Ridge-based vessel segmentation in color images of the retina[J]. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  26. Wang B, Qiu S, He H. Dual Encoding U-Net for Retinal Vessel Segmentation[M]// Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, 22nd international conference, Shenzhen, China, October 13–17, 2019, proceedings, part I. springer, Cham, 2019.

  27. Wu Y, Xia Y, Song Y, et al. Multiscale network followed network model for retinal vessel segmentation[C]//international conference on medical image computing and computer-assisted intervention. Springer, Cham, 2018: 119–126.

  28. Wu Y, Xia Y, Song Y, et al. Vessel-net: retinal vessel segmentation under multi-path supervision[C]//international conference on medical image computing and computer-assisted intervention. Springer, Cham, 2019: 264–272.

  29. Yan Z, Yang X, Cheng KT (2018) A three-stage deep learning model for accurate retinal vessel segmentation [J]. IEEE J Biomed Health Inform 23(4):1427–1436

    Article  Google Scholar 

  30. Yu F, Zhao J, Gong Y et al (2019) Annotation-Free Cardiac Vessel Segmentation via Knowledge Transfer from Retinal Images[J]. arXiv

  31. Zhang Y, Chung ACS. Deep supervision with additional labels for retinal vessel segmentation task[C]//international conference on medical image computing and computer-assisted intervention. Springer, Cham, 2018: 83–91.

  32. Zhou Z, Siddiquee MMR, Tajbakhsh N et al (2018) U-net++: a nested u-net architecture for medical image segmentation[M]//deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, pp 3–11

    Google Scholar 

  33. Xizhou Zhu, Han Hu, Stephen Lin, Jifeng Dai, “Deformable ConvNets v2: More Deformable, Better Results.” arXiv preprint arXiv: 1811.11168,2018.

  34. Zhuang J. Laddernet: Multi-path networks based on u-net for medical image segmentation [J]. arXiv preprint arXiv:1810.07810, 2018.

  35. Zuiderveld K (1994) Contrast limited adaptive histogram equalization [J]. Graphics Gems:474–485

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (61573182), and by the Fundamental Research Funds for the Central Universities (NS2020025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, Z., Guo, Y. et al. DCU-net: a deformable convolutional neural network based on cascade U-net for retinal vessel segmentation. Multimed Tools Appl 81, 15593–15607 (2022). https://doi.org/10.1007/s11042-022-12418-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12418-w

Keywords

Navigation