Skip to main content
Log in

Hyperspectral image classification via parallel multi-input mechanism-based convolutional neural network

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, Convolutional Neural Networks (CNNs) have succeeded in Hyperspectral Image Classification and shown excellent performance. However, the implicit spatial information between features, which significantly affect the classification performance of CNNs, are neglected in most existing CNN models. To address this issue, we propose a parallel multi-input mechanism-based CNN (PMI-CNN) fully exploiting the implicit spectral-spatial information in Hyperspectral Images. PMI-CNN employs four parallel convolution branches to extract spatial features with different levels, feature maps from each branch are spliced, and used as the classifier’s input. The proposed PMI-CNN’s classification performance is examined on three benchmark datasets and compared with six competing models. Experimental results show that PMI-CNN has better classification performance via exploiting spectral-spatial information. Compared with other models, the classification accuracy of PMI-CNN on the Indian Pines dataset is significantly improved, varying between 1.23%-25.36%. Likewise, the PMI-CNN, performed on the other two benchmark datasets, achieves 0.54%-12.26% and 0.96%-8.38% advantages in overall accuracy over the other six models, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ghamisi P, Yokoya N, Li J, Liao W, Liu S, Plaza J, Rasti B, Plaza A (2017) Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci Remote Sens Mag 5(4):37–78. https://doi.org/10.1109/MGRS.2017.2762087

    Article  Google Scholar 

  2. Yokoya N, Grohnfeldt C, Chanussot J (2017) Hyperspectral and Multispectral Data Fusion: A comparative review of the recent literature. IEEE Geosci Remote Sens Mag 5(2):29–56. https://doi.org/10.1109/MGRS.2016.2637824

    Article  Google Scholar 

  3. Luo F, Huang H, Duan Y, Liu J, Liao Y (2017) Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery. Remote Sens 9(8):790. https://doi.org/10.3390/rs9080790

  4. Deng X, Zhu Z, Yang J, Zheng Z, Huang Z, Yin X, Wei S, Lan Y (2020) Detection of citrus huanglongbing based on Multi-Input neural network model of UAV hyperspectral remote sensing. Remote Sens 12(17):2678. https://doi.org/10.3390/rs12172678

    Article  Google Scholar 

  5. Akbari H, Kosugi Y, Kojima K, Tanaka N (2010) Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging. IEEE Trans Biomed Eng 57(8):2011–2017. https://doi.org/10.1109/tbme.2010.2049110

    Article  Google Scholar 

  6. Su W, Sun D (2018) Fourier transform infrared and raman and hyperspectral imaging techniques for quality determinations of powdery foods: a review. Compr Rev Food Sci Food Saf 17:104–122. https://doi.org/10.1111/1541-4337.12314

    Article  Google Scholar 

  7. Plaza A, Plaza J, Martin G (2009) Incorporation of spatial constraints into spectral mixture analysis of remotely sensed hyperspectral data. In: 2009 IEEE international workshop on machine learning for signal processing, Grenoble, pp 1–6. https://doi.org/10.1109/mlsp.2009.5306202

  8. Audebert N, Le Saux B, Lefevre S (2019) Deep learning for classification of hyperspectral data: a comparative review. IEEE Geosci Remote Sens Mag 7(2):159–173. https://doi.org/10.1109/MGRS.2019.2912563

    Article  Google Scholar 

  9. Yang D, Bao W (2017) Group Lasso-Based band selection for hyperspectral image classification. IEEE Geosci Remote Sens Lett 14(12):2438–2442. https://doi.org/10.1109/lgrs.2017.2768074

    Article  Google Scholar 

  10. Benediktsson J, Ghamisi P (2015) Spectral-Spatial Classification of hyperspectral remote sensing images artech. House, Boston

  11. Bahria S, Essoussi N, Limam M (2011) Hyperspectral data classification using geostatistics and support vector machines. Remote Sens Lett 2(2):99–106. https://doi.org/10.1080/01431161.2010.497782

    Article  Google Scholar 

  12. Blanzieri E, Melgani F (2008) Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans Geosci Remote Sens 46(6):1804–1811. https://doi.org/10.1109/tgrs.2008.916090

    Article  Google Scholar 

  13. Ham J, Yangchi C, Crawford M, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492–501. https://doi.org/10.1109/tgrs.2004.842481

    Article  Google Scholar 

  14. Du P, Bai X, Tan K, Xue Z, Samat A, Xia J, Li E, Su H, Liu W (2020) Advances of four machine learning methods for spatial data handling: a review. J Geovis Spat Anal 4(1):13. https://doi.org/10.1007/s41651-020-00048-5

    Article  Google Scholar 

  15. Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63. https://doi.org/10.1109/tit.1968.1054102

    Article  Google Scholar 

  16. Zhang Y, Cao G, Li X, Wang B (2018) Cascaded random forest for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 11(4):1082–1094. https://doi.org/10.1109/JSTARS.2018.2809781

    Article  Google Scholar 

  17. Xia J, Yokoya N, Iwasaki A (2016) Hyperspectral image classification with canonical correlation forests. IEEE Trans Geosci Remote Sens 55 (1):421–431. https://doi.org/10.1109/tgrs.2016.2607755

    Article  Google Scholar 

  18. Ergul U, Bilgin G (2019) HCKBOost: Hybridized composite kernel boosting with extreme learning machines for hyperspectral image classification. Neurocomputing 334:100–113. https://doi.org/10.1016/j.neucom.2019.01.010

    Article  Google Scholar 

  19. Bayliss J D, Gualtieri J A, Cromp R F, Selander J M (1998) Analyzing hyperspectral data with independent component analysis. In: SPIE Proceedings of the 26th AIPR Workshop: exploiting new image sources and sensors. https://doi.org/10.1117/12.300050, vol 3240, pp 133–143

  20. Rodarmel C, Shan J (2002) Principal component analysis for hyperspectral image classification. Surv Land inf Syst 62(2):115–122

    Google Scholar 

  21. Ji S, Ye J (2008) Generalized linear discriminant analysis: a unified framework and efficient model selection. IEEE Trans Neural Netw 19(10):1768–1782. https://doi.org/10.1109/tnn.2008.2002078

    Article  Google Scholar 

  22. Cheng G, Yang C, Yao X, Guo L, Han J (2018) When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs. IEEE Trans Geosci Remote Sens 56(5):2811–2821. https://doi.org/10.1109/TGRS.2017.2783902

    Article  Google Scholar 

  23. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep Learning-Based classification of hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2094–2107. https://doi.org/10.1109/jstars.2014.2329330

    Article  Google Scholar 

  24. Zhong Y, Fei F, Liu Y, Zhao B, Jiao H, Zhang L (2017) SatCNN: satellite image dataset classification using agile convolutional neural networks. Remote Sens Lett 8(2):136–145. https://doi.org/10.1080/2150704X.2016.1235299

    Article  Google Scholar 

  25. Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J Sens 2015:1–12. https://doi.org/10.1155/2015/258619

    Article  Google Scholar 

  26. Li W, Wu G, Zhang F, Du Q (2016) Hyperspectral image classification using deep Pixel-Pair features. IEEE Trans Geosci Remote Sens 55(2):844–853. https://doi.org/10.1109/TGRS.2016.2616355

    Article  Google Scholar 

  27. Paoletti M, Haut J, Plaza J, Plaza A (2017) A new deep convolutional neural network for fast hyperspectral image classification. ISPRS-J Photogramm Remote Sens 145(A):120–147. https://doi.org/10.1016/j.isprsjprs.2017.11.021

    Google Scholar 

  28. Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks In. https://doi.org/10.1109/IGARSS.2015.7326945, vol 2015. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, pp 4959–4962

  29. Pan B, Shi Z, Xu X (2017) R-VCANet: A New Deep-Learning-Based Hyperspectral Image Classification Method. IEEE J Sel Top Appl Earth Observ Remote Sens 10(5):1975–1986. https://doi.org/10.1109/jstars.2017.2655516

    Article  Google Scholar 

  30. Lee H, Kwon H (2016) Contextual deep CNN based hyperspectral classification. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) - Contextual deep CNN based hyperspectral classification, pp 3322–3325. https://doi.org/10.1109/igarss.2016.7729859

  31. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251. https://doi.org/10.1109/TGRS.2016.2584107

    Article  Google Scholar 

  32. Yang J, Zhao Y, Chan J (2017) Learning and transferring deep joint Spectral-Spatial features for hyperspectral classification. IEEE Trans Geosci Remote Sens 55(8):4729–4742. https://doi.org/10.1109/TGRS.2017.2698503

    Article  Google Scholar 

  33. Xu Y, Zhang L, Du B, Zhang F (2018) Spectral-Spatial Unified networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56 (10):5893–5909. https://doi.org/10.1109/TGRS.2018.2827407

    Google Scholar 

  34. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  35. Srivastava R, Greff K, Schmidhuber J (2015) Training very deep networks. In: Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS), Montreal, pp 2377–2385

  36. Wang D, Du B, Zhang L, Chu S (2020) Hyperspectral image classification based on multi-scale information compensation. Remote Sens Lett 11 (3):293–302. https://doi.org/10.1080/2150704X.2019.1711238

    Article  Google Scholar 

  37. Ren J, Wang R, Liu G, Wang Y, Wu W (2021) An SVM-based Nested Sliding Window Approach for Spectral–Spatial Classification of Hyperspectral Images. Remote Sens 13(1):114. https://doi.org/10.3390/rs13010114

    Article  Google Scholar 

  38. Huang G, Liu Z, Maaten L, Weinberger K (2017) Densely connected convolutional networks. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR), Honolulu, pp 2261–2269. https://doi.org/10.1109/cvpr.2017.243

  39. Bahria S, Essoussi N, Limam M (2011) Hyperspectral data classification using geostatistics and support vector machines. Remote Sens Lett 2(2):99–106. https://doi.org/10.1080/01431161.2010.497782

    Article  Google Scholar 

  40. Xu Y, Zhang L, Du B, Zhang F (2018) Spectral-Spatial Unified networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56 (10):5893–5909. https://doi.org/10.1109/TGRS.2018.2827407

    Google Scholar 

  41. Wang Z-Y, Xia Q-M, Yan J-W, Xuan S-Q, Su J-H, Yang C-F (2019) Hyperspectral image classification based on spectral and spatial information using multi-scale ResNet. Appl Sci 9(22):4890. https://doi.org/10.3390/app9224890

    Article  Google Scholar 

Download references

Funding

This paper was supported by the Open Fund of Hubei Key Laboratory of Intelligent Geo-Information Processing (Grant No. ZRIGIP-201801).

Author information

Authors and Affiliations

Authors

Contributions

All the authors made significant contributions to the work. Huan Zhong, Li Li designed the research, analysed the results, accomplished the validation work, and finished the final paper writing. Jiansi Ren, Wei Wu, and Ruoxiang Wang provided advice for the preparation and revision of the paper.

Corresponding author

Correspondence to Jiansi Ren.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; and in the decision to publish the results.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, H., Li, L., Ren, J. et al. Hyperspectral image classification via parallel multi-input mechanism-based convolutional neural network. Multimed Tools Appl 81, 24601–24626 (2022). https://doi.org/10.1007/s11042-022-12494-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12494-y

Keywords

Navigation