Skip to main content

Advertisement

Log in

Remote sensing scene classification with multi-spatial scale frequency covariance pooling

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

To address the problem of redundant learning in remote sensing scene classification, a method of multi-space-scale frequency covariance pooling (MSFCP) is proposed in this study. Specifically, a Gabor filter is introduced to the network which reduced redundant learning in ordinary convolution filters and enhanced the robustness of the network to external interference. Secondly, reducing redundant information in low-frequency components via dividing the feature map output by the first layer into high and low-frequencies and performing average pooling for low-frequency information. Next, the introduction of the Octave Convolution (OctConv) operation realized self-update and information interaction of high and low-frequency characteristics. Finally, the global covariance pooling is performed on the output feature map to enhance the representation ability of the entire network and boost the classification effect. Our method performed an accuracy value of 99.35 ± 0.28 (%) on the UC Merced Land Use dataset. The experimental results demonstrate that the proposed MSFCP method achieves better classification performance and lower network model complexity than other methods, which significantly reduces the demand for computing power. Hence, a good trade-off is achieved between experimental accuracy and computational resource consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chaib S, Gu Y, Yao H (2015) An informative feature selection method based on sparse PCA for VHR scene classification[J]. IEEE Geosci Remote Sens Lett 13(2):147–151. https://doi.org/10.1109/lgrs.2015.2501383

    Article  Google Scholar 

  2. Chan TH, Jia K, Gao S (2015) PCANet: a simple deep learning baseline for image classification?[J]. IEEE Trans Image Process 24(12):5017–5032. https://doi.org/10.1109/tip.2015.2475625

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen Y, Fang H, Xu B (2019) Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution[J]. arXiv preprint arXiv:1904.05049. arXiv:1904.05049v3

  4. Cheng G, Guo L, Zhao T (2013) Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA[J]. Int J Remote Sens 34(1):45–59. https://doi.org/10.1080/01431161.2012.705443

    Article  Google Scholar 

  5. Cheng G, Han J, Zhou P (2014) Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS J Photogramm Remote Sens 98:119–132. https://doi.org/10.1016/j.isprsjprs.2014.10.002

    Article  Google Scholar 

  6. Cheng G, Zhou P, Han J (2015) Auto-encoder-based shared mid-level visual dictionary learning for scene classification using very high resolution remote sensing images[J]. IET Comput Vis 9(5):639–647. https://doi.org/10.1049/iet-cvi.2014.0270

    Article  Google Scholar 

  7. Cheng G, Han J, Guo L (2015) Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images[J]. IEEE Trans Geosci Remote Sens 53(8):4238–4249. https://doi.org/10.1109/tgrs.2015.2393857

    Article  Google Scholar 

  8. Cheng G, Ma C, Zhou P (2016) Scene classification of high resolution remote sensing images using convolutional neural networks[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 767–770. doi:https://doi.org/10.1109/igarss.2016.7729193

  9. Cheng G, Han J, Lu X (2017) Remote sensing image scene classification: benchmark and state of the art[J]. Proc IEEE 105(10):1865–1883. https://doi.org/10.1109/tgrs.2017.2709802

    Article  Google Scholar 

  10. Cheriyadat AM (2013) Unsupervised feature learning for aerial scene classification[J]. IEEE Trans Geosci Remote Sens 52(1):439–451. https://doi.org/10.1109/tgrs.2013.2241444

    Article  Google Scholar 

  11. Deng J, Dong W, Socher R (2009) Imagenet: a large-scale hierarchical image database[C]//2009 IEEE conference on computer vision and pattern recognition. IEEE:248–255. https://doi.org/10.1109/cvprw.2009.5206848

  12. dos Santos JA, Penatti OAB, da Silva Torres R (2010) Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification[C]//VISAPP (2),203–208. doi:https://doi.org/10.5220/0002843402030208

  13. Fang Z, Li W, Zou J (2016) Using CNN-based high-level features for remote sensing scene classification[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2610–2613. doi:https://doi.org/10.1109/igarss.2016.7729674

  14. He K, Zhang X, Ren S (2016) Deep residual learning for image recognition[C]//proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. doi:https://doi.org/10.1109/cvpr.2016.90

  15. He N, Fang L, Li S, Plaza J, Plaza A (2020) Skip-connected covariance network for remote sensing scene classification. IEEE Trans Neural Networks Learn Syst 31(5):1461–1474

    Article  Google Scholar 

  16. Jain AK, Ratha NK, Lakshmanan S (1997) Object detection using Gabor filters[J]. Pattern Recogn 30(2):295–309. https://doi.org/10.1016/s0031-3203(96)00068-4

    Article  Google Scholar 

  17. Jiang B., Li X., Sun T. (2018). A decision-level fusion method based on convolutional neural networks for remote sensing scene classification[C]//2018 IEEE 3rd advanced information technology, electronic and automation control conference (IAEAC). IEEE, 128-132. doi:https://doi.org/10.1109/iaeac.2018.8577603.

  18. Kapoor R, Gupta R, Kumar R (2019) Fog removal in images using improved dark channel prior and contrast limited adaptive histogram equalization[J]. Multimed Tools Appl 78(16):23281–23307. https://doi.org/10.1109/cisp.2009.5301485

    Article  Google Scholar 

  19. Li P, Xie J, Wang Q (2017) Is second-order information helpful for large-scale visual recognition?[C]//proceedings of the IEEE international conference on computer vision, 2070–2078. doi:https://doi.org/10.1109/iccv.2017.228

  20. Li P, Xie J, Wang Q (2018) Towards faster training of global covariance pooling networks by iterative matrix square root normalization[C]//proceedings of the IEEE conference on computer vision and pattern recognition, 947–955. doi:https://doi.org/10.1109/cvpr.2018.00105

  21. Li X, Jiang B, Wang S (2019) A review and comparison of optical remote sensing scene classification[J]. Radio. Engineering 49(4):265–271. https://doi.org/10.3969/j.issn.1003-3106.2019.04.01

    Article  Google Scholar 

  22. Lin M, Chen Q, Yan S (2013) Network in network[J]. arXiv preprint arXiv:1312.4400. arXiv:1312.4400v3

  23. Liu Q, Hang R, Song H (2017) Learning multiscale deep features for high-resolution satellite image scene classification[J]. IEEE Trans Geosci Remote Sens 56(1):117–126. https://doi.org/10.1109/tgrs.2017.2743243

    Article  Google Scholar 

  24. Meshgini S, Aghagolzadeh A, Seyedarabi H (2012) Face recognition using gabor filter bank, kernel principle component analysis and support vector machine[J]. Int J Comput Theory Eng 4(5):767–771. https://doi.org/10.7763/ijcte.2012.v4.574

    Article  Google Scholar 

  25. Nanjun H, Leyuan F, Shutao L (2018) Remote Sensing Scene Classification Using Multilayer Stacked Covariance Pooling[J]. IEEE Trans Geosci Remote Sens. 1–12. doi:https://doi.org/10.1109/tgrs.2018.2845668

  26. Nogueira K, Penatti OAB, dos Santos JA (2017) Towards better exploiting convolutional neural networks for remote sensing scene classification[J]. Pattern Recognit 61:539–556. https://doi.org/10.1016/j.patcog.2016.07.001

    Article  Google Scholar 

  27. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Trans Pattern Analys Machine Intell 7:971–987. https://doi.org/10.1109/tpami.2002.1017623

    Article  MATH  Google Scholar 

  28. Othman E, Bazi Y, Alajlan N (2016) Using convolutional features and a sparse autoencoder for land-use scene classification[J]. Int J Remote Sens 37(10):2149–2167. https://doi.org/10.1080/01431161.2016.1171928

    Article  Google Scholar 

  29. Penatti OAB, Nogueira K, Dos Santos JA (2015) Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?[C]//proceedings of the IEEE conference on computer vision and pattern recognition workshops, 4451. doi:https://doi.org/10.1109/cvprw.2015.7301382

  30. Ren W, Ma L, Zhang J, et al. (2018) Gated fusion network for single image dehazing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3253–3261

  31. Ren W., Pan J., Zhang H., Cao X., Yang M.H. Single Image Dehazing via Multi-scale Convolutional Neural Networks with Holistic Edges[J]. Int J Comput Vis, 2020, 128(8), 128, 259.

  32. Sheng G, Yang W, Xu T (2012) High-resolution satellite scene classification using a sparse coding based multiple feature combination[J]. Int J Remote Sens 33(8):2395–2412. https://doi.org/10.1080/01431161.2011.608740

    Article  Google Scholar 

  33. Swain MJ, Ballard DH (1991) Color indexing[J]. Int J Comput Vis 7(1):11–32. https://doi.org/10.1007/BF00130487

    Article  Google Scholar 

  34. Wang EK, Li Y, Nie Z, Yu J, Liang Z, Zhang X, Yiu SM (2019) Deep fusion feature based object detection method for high resolutionoptical remote sensing images. Appl Sci 9(6):1130

    Article  Google Scholar 

  35. Wang S, Guan Y, Shao L (2020) Multi-granularity canonical appearance pooling for remote sensing scene classification. IEEE Trans Image Process 29:5396–5407

    Article  MathSciNet  Google Scholar 

  36. Wu H, Liu B, Su W (2016) Hierarchical coding vectors for scene level land-use classification[J]. Remote Sens 8(5):436. https://doi.org/10.3390/rs8050436

    Article  Google Scholar 

  37. Xu SH, Mu XD, Zhao P (2016) Scene classification of remote sensing image based on multi-scale feature and deep neural network[J]. Acta Geodaetica et Cartographica Sinica. China 45(7):834–840. https://doi.org/10.11947/j.AGCS.2016.20150623

    Article  Google Scholar 

  38. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems. ACM, 270–279. doi:https://doi.org/10.1145/1869790.1869829

  39. Yao W, Loffeld O, Datcu M (2016) Application and evaluation of a hierarchical patch clustering method for remote sensing images[J]. IEEE J Select Topics Appl Earth Observ Remote Sens 9(6):2279–2289. https://doi.org/10.1109/jstars.2016.2536143

    Article  Google Scholar 

  40. Zhang, Hua, et al (2016) Sketchnet: Sketch classification with web images." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

  41. Zhao B, Zhong Y, Zhang L (2016) A spectral–structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery[J]. ISPRS J Photogramm Remote Sens 116:73–85. https://doi.org/10.1016/j.isprsjprs.2016.03.004

    Article  Google Scholar 

  42. Zheng X, Sun X, Fu K (2012) Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint[J]. IEEE Geosci Remote Sens Lett 10(4):652–656. https://doi.org/10.1109/lgrs.2012.2216499

    Article  Google Scholar 

  43. Zhong Y, Zhu Q, Zhang L (2015) Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery[J]. IEEE Trans Geosci Remote Sens 53(11):6207–6222. https://doi.org/10.1109/tgrs.2015.2435801

    Article  Google Scholar 

  44. Zhu Q, Zhong Y, Zhao B (2016) Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geosci Remote Sens Lett 13(6):747–751. https://doi.org/10.1109/lgrs.2015.2513443

    Article  Google Scholar 

  45. Zhu Q, Hong Y, Zhang L (2017) Scene classification based on the fully sparse semantic topic model[J]. IEEE Trans Geosci Remote Sens 55(10):5525–5538. https://doi.org/10.1109/tgrs.2017.2709802

    Article  Google Scholar 

Download references

Acknowledgements

Firstly, the author would like to thank the provider of UC Merced Land Use dataset and the support of experimental equipment provided by the Institute of Artificial Intelligence Application of Central South University of Forestry and Technology. Meanwhile, the author would also like to thank the editor and anonymous reviewers for their constructive suggestions, which significantly improved this paper.

I hereby express gratitude to my dear partner Yuan Gao, without his effort, this paper cannot be accomplished. In the process of compilation, he made great contribution on data collecting and analyze. Besides, he completed the Section 4 and 5 by himself.

This work was supported by the National 948 Project of China: Forest Fire Prediction and Fire Fighting Resource Dispatching Technology under Grant 2014-4-09, National Natural Science Foundation of China (Grant no. 61602528), the Hunan Provincial Natural Science Foundation of China (Grant no. 2017JJ3527), and Graduate Innovation Fund of Central South University of Forestry and Technology (20183033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibin Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuan G is the Joint first author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Gao, Y., Chen, A. et al. Remote sensing scene classification with multi-spatial scale frequency covariance pooling. Multimed Tools Appl 81, 30413–30435 (2022). https://doi.org/10.1007/s11042-022-12603-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12603-x

Keywords

Navigation