Skip to main content
Log in

The identities of n-dimensional s-transform and applications

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The Stockwell transform is a signal processing tool based on Fourier transform (FT) with a specific window function. The important properties of 1-dimensional (1-D) and 2-dimensional (2-D) S-transform (ST) are available in the literature. This paper includes the generalized case of these ST as n-dimensional (n-D) ST. First, a definition of n-D ST is given followed by the definitions of its important properties. This definition of n-D ST utilizes the approach of separable function to achieve its closed-form definition starting from the conventional definition for 1-D ST. Thereafter, these analytical concepts are being utilized in filtering the unwanted component and the performance of the proposed technique is compared with the discrete cosine transform (DCT) based filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Drabycz SD, Stockwell RG, Mitchell JR (2009) Image texture characterization using the discrete orthonormal S-transform. J Digit Imaging 22(6):696–708

    Article  Google Scholar 

  2. Mansinha L, Stockwell RG, Lowe RP (1997) Pattern analysis with two-dimensional spectral localization application of the two-dimensional S-transform. Physica A 239:286–295

    Article  Google Scholar 

  3. Nithya B, Sankari YB, Manikantan K, Ramachandran S (2015) Discrete orthonormal Stockwell transform based feature extraction for pose-invariant face recognition. Procedia Comput Sci 45:290–299

    Article  Google Scholar 

  4. Nowak I (2015) Continuous wavelet transform on n-dimensional spheres. Appl Comput Harmon Anal 39:248–276

    Article  MathSciNet  Google Scholar 

  5. Ranjan R, Singh AK, Jindal N (2018) Formulation of some useful theorem for S-transform. Optik- Int J Light Electron Optics 168:913–919

    Article  Google Scholar 

  6. Ranjan R, Jindal N, Singh AK (2019) A sampling theorem for fractional S-transform with error estimation. Digital Signal Process 93:138–150

    Article  Google Scholar 

  7. Ranjan R, Jindal N, and Singh AK (2019) Convolution theorem with its derivatives and multiresolution analysis for fractional S-transform, Circ, Syst Signal Process. 1–24.

  8. Ranjan R, Jindal N, and Singh AK (2019) A sampling theorem with error estimation for S-transform. Integral Transforms Special Funct. 1–21

  9. Ranjan R, Jindal N, Singh AK (2020) Fractional S-transform and its properties: a comprehensive survey. Wireless Personal Comm 113:2519–2541

    Article  Google Scholar 

  10. Sahoo BC, Thomas O, Misra D, Newby G (2007) Using the one-dimensional S-transform as a discrimination tool in the classification of hyperspectral images. Can J Remote Sens 33(6):551–560

    Article  Google Scholar 

  11. Schimmel M, Gallart J (2005) The inverse S-transform in filters with time-frequency localization. IEEE Trans Signal Process 53:4417–4422

    Article  MathSciNet  Google Scholar 

  12. Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the S-transform complex spectrum. IEEE Trans Signal Process 44:998–1001

    Article  Google Scholar 

  13. Upadhyay SK, Yadav RN, Debnath L (2009) The n-dimensional continuous wavelet transformation on Gelfand and Shilov type spaces. Surveys Math Appl 4:239–252

    MathSciNet  MATH  Google Scholar 

  14. Wang Y, Orchard J (2008) Symmetric discrete orthonormal Stockwell transform. AIP Confer Proceed 1048(1):585–588

    Article  Google Scholar 

  15. Weishi M, Jinghuai G (2009) Statistical denoising of signals in the S-transform domain. Comput Geosci 35(6):1079–1086

    Article  Google Scholar 

  16. Zidelmal Z, Hamil H, Moukadem A, Amirou A, Abdeslam DQ (2017) S-transform based on compact support kernel. Digital Signal Process 62:137–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Ranjan.

Ethics declarations

Conflict of interests

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. The views that are expressed in this article are solely those of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Linearity Property:

$$ S\left\{{\alpha}_1{S}_1+{\alpha}_2{S}_2\right\}\left(t,\nu \right)={\alpha}_1S\left\{{S}_1\left(t,\nu \right)\right\}+{\alpha}_2S\left\{{S}_2\left(t,\nu \right)\right\} $$
(25)
$$ ={\int}_{-\infty}^{\infty }{\alpha}_1{S}_1(t)\frac{\mid \nu \mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left(\tau -t\right)}^2{\nu}^2}{2}\right)\exp \left(-i2\pi \nu t\right) dt+{\int}_{-\infty}^{\infty }{\alpha}_2{S}_2(t)\frac{\mid \nu \mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left(\tau -t\right)}^2{\nu}^2}{2}\right)\exp \left(-i2\pi \nu t\right) dt $$
(26)
$$ ={\alpha}_1{\int}_{-\infty}^{\infty }{s}_1(t)\frac{\mid \nu \mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left(\tau -t\right)}^2{\nu}^2}{2}\right)\exp \left(-i2\pi \nu t\right) dt+{\alpha}_2{\int}_{-\infty}^{\infty }{s}_2(t)\frac{\mid \nu \mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left(\tau -t\right)}^2{\nu}^2}{2}\right)\exp \left(-i2\pi \nu t\right) dt $$
(27)
$$ ={\alpha}_1S\left\{{S}_1\left(t,\nu \right)\right\}+{\alpha}_2S\left\{{S}_2\left(t,\nu \right)\right\} $$
(28)

In general, for n-dimension ST can be defined as

$$ S\left\{{\alpha}_1{S}_1+{\alpha}_2{S}_2+\dots +{\alpha}_n{S}_n\right\}\left(t,\nu \right)={\alpha}_1S\left\{{S}_1\left(t,\nu \right)\right\}+{\alpha}_2S\left\{{S}_2\left(t,\nu \right)\right\}+\dots +{\alpha}_nS\left\{{S}_n\left(t,\nu \right)\right\} $$
(29)

Appendix B

Proof of Shifting property:

$$ S\left\{{t}_1,{t}_2,{\nu}_1,{\nu}_2\right\}={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }S\left({t}_1,{t}_2\right)\frac{\mid {\nu}_1\Big\Vert {\nu}_2\mid }{2\pi}\exp \left(\frac{-\left\{{\left({\tau}_1-{t}_1\right)}^2{\nu}_1^2+{\left({\tau}_2-{t}_2\right)}^2{\nu}_2^2\right\}}{2}\right)\exp \left(-j2\pi \left({t}_1{\nu}_1+{t}_2{\nu}_2\right)\right){dt}_1{dt}_2 $$
(30)

Suppose, S(t) function is shifted by ζ then,

$$ S\left\{{\tau}_1,{\tau}_2,{\nu}_1,{\nu}_2\right\}={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }S\left({t}_1+{\zeta}_1,{t}_2+{\zeta}_2\right)\frac{\mid {\nu}_1\Big\Vert {\nu}_2\mid }{2\pi}\exp \left(\frac{-\left\{{\left({\tau}_1-{t}_1\right)}^2{\nu}_1^2+{\left({\tau}_2-{t}_2\right)}^2{\nu}_2^2\right\}}{2}\right)\exp \left(-j2\pi \left({t}_1{\nu}_1+{t}_2{\nu}_2\right)\right){dt}_1{dt}_2 $$
(31)
$$ ={\int}_{-\infty}^{\infty}\frac{\mid {\nu}_1\mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left({\tau}_1-{t}_1\right)}^2{\nu}_1^2}{2}\right)\exp \left(-j2\pi {t}_1{\nu}_1\right){\int}_{-\infty}^{\infty }S\left({t}_1+{\zeta}_1,{t}_2+{\zeta}_2\right)\frac{\mid {\nu}_2\mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left({\tau}_2-{t}_2\right)}^2{\nu}_2^2}{2}\right)\exp \left(-j2\pi {t}_2{\nu}_2\right){dt}_2{dt}_1 $$
(32)

Suppose, t2 + ζ2 = y and dt2 = dy then

$$ ={\int}_{-\infty}^{\infty}\frac{\mid {\nu}_1\mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left({\tau}_1-{t}_1\right)}^2{\nu}_1^2}{2}\right)\exp \left(-j2\pi {t}_1{\nu}_1\right){\int}_{-\infty}^{\infty }S\left({t}_1+{\zeta}_1,y\right)\frac{\mid {\nu}_2\mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left({\tau}_2-y+{\zeta}_2\right)}^2{\nu}_2^2}{2}\right)\exp \left(-j2\pi \left(y-{\zeta}_2\right){\nu}_2\right){dydt}_1 $$
(33)

Suppose, t1 + ζ1 = x and dt2 = dx then

$$ {\displaystyle \begin{array}{l}={\int}_{-\infty}^{\infty}\frac{\mid {\nu}_1\mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left({\tau}_1-x+{\zeta}_1\right)}^2{\nu}_1^2}{2}\right)\exp \left(-j2\pi \left(x-{\zeta}_1\right){\nu}_1\right){\int}_{-\infty}^{\infty }S\left(x,y\right)\frac{\mid {\nu}_2\mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left({\tau}_2-y+{\zeta}_2\right)}^2{\nu}_2^2}{2}\right)\\ {}\kern2em \exp \left(-j2\pi \left(y-{\zeta}_2\right){\nu}_2\right) dydx\end{array}} $$
(34)
$$ {\displaystyle \begin{array}{l}=\exp \left(j2\pi \left({\zeta}_1{\nu}_1+{\zeta}_2{\nu}_2\right)\right){\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }S\left(x,y\right)\frac{\mid {\nu}_1\mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left({\tau}_1+{\zeta}_1-x\right)}^2{\nu}_1^2}{2}\right)\exp \left(-j2\pi x{\nu}_1\right)\frac{\mid {\nu}_2\mid }{\sqrt{2\pi }}\exp \left(\frac{-{\left({\tau}_2+{\zeta}_2-y\right)}^2{\nu}_2^2}{2}\right)\\ {}\kern2em \exp \left(-j2\pi y{\nu}_2\right) dydx\end{array}} $$
(35)
$$ {\displaystyle \begin{array}{l}=\exp \left(j2\pi \left({\zeta}_1{\nu}_1+{\zeta}_2{\nu}_2\right)\right){\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }S\left(x,y\right)\frac{\mid {\nu}_1\mid }{\sqrt{2\pi }}\frac{\mid {\nu}_2\mid }{\sqrt{2\pi }}\exp \left(\frac{-\left\{{\left({\tau}_1+{\zeta}_1-x\right)}^2{\nu}_1^2+{\left({\tau}_2+{\zeta}_2-y\right)}^2{\nu}_2^2\right\}}{2}\right)\\ {}\kern2em \exp \left(-j2\pi \left({\nu}_1x+{\nu}_2y\right)\right) dydx\end{array}} $$
(36)
$$ =\exp \left(j2\pi \left({\zeta}_1{\nu}_1+{\zeta}_2{\nu}_2\right)\right)S\left\{x,y,{\nu}_1,{\nu}_2\right\} $$
(37)

Similarly, for n-dimensional ST can be defined as

$$ S\left\{{t}_1\pm {\zeta}_1,{t}_2\pm {\zeta}_2,\dots, {t}_n\pm {\zeta}_n,{\nu}_1,{\nu}_2,\dots, {\nu}_n\right\}=\exp \left(\pm j2\pi \left({\zeta}_1{\nu}_1+{\zeta}_2{\nu}_2+\dots +{\zeta}_n{\nu}_n\right)\right)\mathcal{S}\left\{h\left({t}_1,{t}_2,\dots, {t}_n,{\nu}_1,{\nu}_2,\dots, {\nu}_n\right)\right\} $$
(38)

Appendix C

Proof of Scaling Property:

$$ S\left\{{t}_1,{t}_2,{\nu}_1,{\nu}_2\right\}={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }S\left({t}_1,{t}_2\right)\frac{\mid {\nu}_1\Big\Vert {\nu}_2\mid }{2\pi}\exp \left(\frac{-\left\{{\left({\tau}_1-{t}_1\right)}^2{\nu}_1^2+{\left({\tau}_2-{t}_2\right)}^2{\nu}_2^2\right\}}{2}\right)\exp \left(-j2\pi \left({t}_1{\nu}_1+{t}_2{\nu}_2\right)\right){dt}_1{dt}_2 $$
(39)
$$ S\left\{{a}_1{t}_1,{a}_2{t}_2,{\nu}_1,{\nu}_2\right\}={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }S\left({a}_1{t}_1,{a}_2{t}_2\right)\frac{\mid {\nu}_1\Big\Vert {\nu}_2\mid }{2\pi}\exp \left(\frac{-\left\{{\left({\tau}_1-{t}_1\right)}^2{\nu}_1^2+{\left({\tau}_2-{t}_2\right)}^2{\nu}_2^2\right\}}{2}\right)\exp \left(-j2\pi \left({t}_1{\nu}_1+{t}_2{\nu}_2\right)\right){dt}_1{dt}_2 $$
(40)

Suppose, a1t1 = pand a2t2 = q, hence \( {dt}_1=\frac{dp}{\mid {a}_1\mid } \) and \( {dt}_2=\frac{dq}{\mid {a}_2\mid } \), then

$$ =\frac{1}{\mid {a}_1\Big\Vert {a}_2\mid }{\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }S\left(p,q\right)\frac{\mid {\nu}_1\Big\Vert {\nu}_2\mid }{2\pi}\exp \left(\frac{-\left({\left({\tau}_1-\frac{p}{a_1}\right)}^2{\nu}_1^2+{\left({\tau}_2-\frac{q}{a_2}\right)}^2{\nu}_2^2\right)}{2}\right)\exp \left(-j2\pi \left(\frac{p{\nu}_1}{a_1}+\frac{q{\nu}_2}{a_2}\right)\right) dpdq $$
(41)
$$ =\frac{1}{\mid {a}_1\Big\Vert {a}_2\mid }{S}_h\left\{{a}_1{\tau}_1,{a}_2{\tau}_2,\frac{\nu_1}{a_1},\frac{\nu_2}{a_2}\right\} $$
(42)
$$ =\frac{1}{\mid \mathrm{detM}\mid }{S}_h\left\{\left({a}_1{\tau}_1,{a}_2{\tau}_2,{M}^{-T}\nu \right)\right\} $$
(43)

where, \( M=\left[\begin{array}{cc}{a}_1& 0\\ {}0& {a}_2\end{array}\right] \)and detM = a1a2 ≠ 0

$$ {M}^T=\left[\begin{array}{cc}{a}_1& 0\\ {}0& {a}_2\end{array}\right] $$
(44)
$$ \mathrm{Or},\kern0.5em {M}^{-T}=\left[\begin{array}{cc}\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{${a}_1$}\right.& 0\\ {}0& \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{${a}_2$}\right.\end{array}\right] $$
(45)

where T is the transpose of the matrix

$$ \mathcal{S}\left\{h\left({a}_1{\tau}_1,{a}_2{\tau}_2,{\nu}_1,{\nu}_2\right)\right\}=\frac{1}{\mid \mathrm{detM}\mid }{S}_h\left\{\left({a}_1{\tau}_1,{a}_2{\tau}_2,{M}^{-T}\nu \right)\right\} $$
(46)

Similarly, for n-dimensional ST can be defined as

$$ \mathcal{S}\left\{h\left({a}_1{t}_1,{a}_2{t}_2,\dots, {a}_n{t}_n,{\nu}_1,{\nu}_2,\dots, {\nu}_n\right)\right\}=\frac{1}{\mid {a}_1\mid, \mid {a}_2\mid, \dots, \mid {a}_n\mid }{S}_h\left\{\left({a}_1{\tau}_1,{a}_1{\tau}_2,\dots, {a}_1{\tau}_n,\frac{\nu_1}{a_1},\frac{\nu_2}{a_2},\dots, \frac{\nu_n}{a_n}\right)\right\} $$
(47)

Appendix D

Proof of Complex Conjugate Property:

$$ S\left\{h\left({t}_1,{t}_2\right)\right\}={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty}\left\{{\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }{S}_h\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)d{t}_1d{t}_2\right\}\exp \left(j2\pi \left({t}_1{\nu}_1+{t}_2{\nu}_2\right)\right)d{\nu}_1d{\nu}_2 $$
(48)

Taking complex conjugate represented as ‘*’ in both sides, give

$$ {S}^{\ast}\left\{h\left({t}_1,{t}_2\right)\right\}={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty}\left\{{\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }{S}_h^{\ast}\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)d{t}_1d{t}_2\right\}\exp \left(-j2\pi \left({t}_1{\nu}_1+{t}_2{\nu}_2\right)\right)d{\nu}_1d{\nu}_2 $$
(49)

Substituting ν1 =  − ν1 and ν2 =  − ν2 then

$$ ={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty}\left\{{\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }{S}_h^{\ast}\left({t}_1,{t}_2,-{\nu}_1,-{\nu}_2\right)d{t}_1d{t}_2\right\}\exp \left(j2\pi \left({t}_1{\nu}_1+{t}_2{\nu}_2\right)\right)d{\nu}_1d{\nu}_2 $$
(50)
$$ ={S}^{-1}\left\{{H}^{\ast}\left({t}_1,{t}_2,-{\nu}_1,-{\nu}_2\right)\right\} $$
(51)

In general, n-dimensional ST can be defined as

$$ {S}^{\ast}\left\{h\left({t}_1,{t}_2,\dots, {t}_n\right)\right\}={S}^{-1}\left\{{H}^{\ast}\left({t}_1,{t}_2,\dots, {t}_n,-{\nu}_1,-{\nu}_2,\dots, -{\nu}_n\right)\right\} $$
(52)

Similar to the 1-dimension case, it S(t)is even then S{S(t, ν)}is even and if S(t)is real and even then S{S(t, ν)}is real and even.

Appendix E

Proof of Time Reversal Property:

By using the definition of ST, the function h(−t1, −t2) can be expressed as

$$ S\left\{h\left(-{t}_1,-{t}_2\right)\right\}={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }h\left(-{t}_1,-{t}_2\right)\frac{\mid {\nu}_1\Big\Vert {\nu}_2\mid }{2\pi}\exp \left(\frac{-\left\{{\left({\tau}_1+{t}_1\right)}^2{\nu}_1^2+{\left({\tau}_2+{t}_2\right)}^2{\nu}_2^2\right\}}{2}\right)\exp \left(-j2\pi \left({t}_1{\nu}_1+{t}_2{\nu}_2\right)\right)d{t}_1d{t}_2 $$
(53)

Substituting−t1 = u1 − t2 = u2, anddt1 =  − du1, dt2 =  − du2 in (53),

$$ ={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }h\left({u}_1,{u}_2\right)\frac{\mid {\nu}_1\Big\Vert {\nu}_2\mid }{2\pi}\exp \left(\frac{-\left\{{\left({\tau}_1-{u}_1\right)}^2{\nu}_1^2+{\left({\tau}_2-{u}_2\right)}^2{\nu}_2^2\right\}}{2}\right)\exp \left(-j2\pi \left(-{u}_1{\nu}_1-{u}_2{\nu}_2\right)\right)d{u}_1d{u}_2 $$
(54)
$$ ={\int}_{-\infty}^{\infty }{\int}_{-\infty}^{\infty }h\left({u}_1,{u}_2\right)\frac{\mid {\nu}_1\Big\Vert {\nu}_2\mid }{2\pi}\exp \left(\frac{-\left\{{\left({\tau}_1-{u}_1\right)}^2{\nu}_1^2+{\left({\tau}_2-{u}_2\right)}^2{\nu}_2^2\right\}}{2}\right)\exp \left(j2\pi \left({u}_1{\nu}_1+{u}_2{\nu}_2\right)\right)d{u}_1d{u}_2 $$
(55)

Therefore,

$$ S\left\{h\left(-{t}_1,-{t}_2\right)\right\}\overset{ST}{\leftrightarrow }{S}_h^{\ast}\left(-{u}_1,-{u}_2,{\nu}_1,{\nu}_2\right) $$
(56)

Similarly, for n-dimensional, the ST can be defined as

$$ S\left\{h\left(-{t}_1,-{t}_2,\dots, {t}_n\right)\right\}\overset{ST}{\leftrightarrow }{S}_h^{\ast}\left(-{t}_1,-{t}_2,\dots, {t}_n,{\nu}_1,{\nu}_2,\dots, {\nu}_n\right) $$
(57)

Appendix F

Proof of Time-derivatives Property:

Considering the definition of n-dimensional IST of h(t)can be written as

$$ h\left(t,\nu \right)=\underset{\Re^n}{\int}\left(\underset{\Re^n}{\int }{S}_h\left(t,\nu \right) d t\right)\exp \left(j2\pi t\nu \right) d\nu $$
(58)

For n = 2, the IST of h(t)can be defined as

$$ h\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)=\underset{\Re^2}{\int}\left(\underset{\Re^2}{\int }{S}_h\left({u}_1,{u}_2,{\nu}_1,{\nu}_2\right){du}_1{du}_2\right)\exp \left(j2\pi \left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\right)d{\nu}_1d{\nu}_2 $$
(59)

Comparing (59) with the definition of FT, after that differentiating it with respect to time in both sides as

$$ \frac{d^2}{dt_1{dt}_2}\left\{h\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\right\}=\frac{d^2}{dt_1{dt}_2}\left\{\underset{\Re^2}{\int}\left(\underset{\Re^2}{\int }{S}_h\left({u}_1,{u}_2,{\nu}_1,{\nu}_2\right){du}_1{du}_2\right)\exp \left(j2\pi \left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\right)d{\nu}_1d{\nu}_2\right\} $$
(60)
$$ =\underset{\Re^2}{\int}\left(\underset{\Re^2}{\int }{S}_h\left({u}_1,{u}_2,{\nu}_1,{\nu}_2\right){du}_1{du}_2\right)\frac{d^2}{dt_1{dt}_2}\exp \left(j2\pi \left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\right)d{\nu}_1d{\nu}_2 $$
(61)
$$ =\underset{\Re^2}{\int}\left(\underset{\Re^2}{\int }{S}_h\left({u}_1,{u}_2,{\nu}_1,{\nu}_2\right){du}_1{du}_2\right)\left\{j2\pi \left({\nu}_1,{\nu}_2\right)\right\}\exp \left(j2\pi \left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\right)d{\nu}_1d{\nu}_2 $$
(62)
$$ =j2\pi \left({\nu}_1,{\nu}_2\right){S}_h\left({u}_1,{u}_2,{\nu}_1,{\nu}_2\right) $$
(63)

Therefore,

$$ \frac{d^2}{dt_1{dt}_2}\left\{h\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\right\}\overset{ST}{\leftrightarrow }j2\pi \left({\nu}_1,{\nu}_2\right){S}_h\left({u}_1,{u}_2,{\nu}_1,{\nu}_2\right) $$
(64)

Similarly, for n-dimensional ST can be defined as

$$ \frac{d^n}{d{t}_1d{t}_2\dots d{t}_n}\left\{h\left({t}_1,{t}_2,\dots, {t}_n,{\nu}_1,{\nu}_2,\dots, {\nu}_n\right)\right\}\overset{ST}{\leftrightarrow }j2\pi \left({\nu}_1,{\nu}_2,\dots, {\nu}_n\right){S}_h\left({u}_1,{u}_2,\dots, {u}_n,{\nu}_1,{\nu}_2,\dots, {\nu}_n\right) $$
(65)

Appendix G

Proof of Parseval’s theorem:

Using the expression of inverse ST for two dimensional h(t) [2] as

$$ h\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)=\underset{{\mathfrak{R}}^2}{\int}\left(\underset{{\mathfrak{R}}^2}{\int }{S}_h\left({u}_1,{u}_2,{\nu}_1,{\nu}_2\right)d{u}_1d{u}_2\right)\exp \left(j2\pi \left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\right)d{\nu}_1d{\nu}_2 $$
(66)

Similarly, taking the complex conjugate of (66),

$$ {h}^{\ast}\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)=\underset{{\mathfrak{R}}^2}{\int}\left(\underset{{\mathfrak{R}}^2}{\int }{S}_h^{\ast}\left({u}_1,{u}_2,{\nu}_1,{\nu}_2\right)d{u}_1d{u}_2\right)\exp \left(-j2\pi \left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\right)d{\nu}_1d{\nu}_2 $$
(67)

Now, the LHS of Parseval’s theorem is written as

$$ {\displaystyle \begin{array}{c}\underset{{\mathfrak{R}}^2}{\int }h\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right){h}^{\ast}\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)d{t}_1d{t}_2=\underset{{\mathfrak{R}}^2}{\int }h\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\underset{{\mathfrak{R}}^2}{\int}\left(\underset{{\mathfrak{R}}^2}{\int }{S}_h^{\ast}\left({u}_1,{u}_2,{\nu}_1,{\nu}_2\right)d{u}_1d{u}_2\right)\\ {}\kern3em \exp \left(-j2\pi \left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\right)d{\nu}_1d{\nu}_2d{t}_1d{t}_2\end{array}} $$
(68)

Now, by the convergence property of ST into FT, once the ST is integrated foru1, u2 variable, that is

$$ {H}^{\ast}\left({\nu}_1,{\nu}_2\right)=\underset{{\mathfrak{R}}^2}{\int }{S}_h^{\ast}\left({u}_1,{u}_2,{\nu}_1,{\nu}_2\right)d{u}_1d{u}_2 $$
(69)

Substituting (69) into (68) and rearranging the terms

$$ =\underset{{\mathfrak{R}}^2}{\int }{H}^{\ast}\left({\nu}_1,{\nu}_2\right)\underset{{\mathfrak{R}}^2}{\int}\left\{h\left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\exp \left(-j2\pi \left({t}_1,{t}_2,{\nu}_1,{\nu}_2\right)\right)d{t}_1d{t}_2\right\}\kern0.1em d{\nu}_1d{\nu}_2 $$
(70)
$$ =\underset{{\mathfrak{R}}^2}{\int }H\left({\nu}_1,{\nu}_2\right){H}^{\ast}\left({\nu}_1,{\nu}_2\right)d{\nu}_1d{\nu}_2 $$
(71)

Therefore, after transformation, the energy is preserved. Hence, it is written as

$$ \underset{{\mathfrak{R}}^2}{\int }{\left|h\left({t}_1,{t}_2\right)\right|}^2d{t}_1d{t}_2=\underset{{\mathfrak{R}}^2}{\int }{\left|H\Big({\nu}_1,{\nu}_2\Big)\right|}^2d{\nu}_1d{\nu}_2 $$
(72)

Similarly, for n-dimensional, the ST can be defined as

$$ \underset{{\mathfrak{R}}^n}{\int }{\left|h\left({t}_1,{t}_2,\dots, {t}_n\right)\right|}^2d{t}_1d{t}_2\dots d{t}_n=\underset{{\mathfrak{R}}^n}{\int }{\left|H\Big({\nu}_1,{\nu}_2,\dots, {\nu}_n\Big)\right|}^2d{\nu}_1d{\nu}_2\dots d{\nu}_n $$
(73)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Jindal, N. & Singh, A.K. The identities of n-dimensional s-transform and applications. Multimed Tools Appl 81, 16661–16677 (2022). https://doi.org/10.1007/s11042-022-12757-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12757-8

Keywords

Navigation