Skip to main content
Log in

Salient object detection based on multi-feature graphs and improved manifold ranking

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a salient object detection model based on multi-feature and modified manifold ranking is proposed. Different from traditional manifold ranking based models, the graphs in the proposed model are constructed by multiple features, and the energy function of manifold ranking is modified to accurately indicate the queries ranking process. Then, the four boundary regions of the image are ranked respectively based on multi-feature graphs with the improved ranking process to get the boundary based salient maps. And the final salient map is generated by integrating the boundary based maps with boundary connectivity prior. Qualitative and quantitative experiments on five public datasets demonstrate that the proposed model performs better than 10 state-of-the-art models under PR curve and Max F-measure measurements and provides robust and balanced results compared with the other models under MAE and AUC measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Borji A, Cheng MM, Jiang H, Li J (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12):5706–5722. https://doi.org/10.1109/TIP.2015.2487833

    Article  MathSciNet  Google Scholar 

  2. Callet PL, Benois-Pineau J (2017) Visual content indexing and retrieval with psycho-visual models Multimedia Systems and Applications. Springer, Cham

    Google Scholar 

  3. Chaabouni S, Benois-Pineau J, Amar CB (2019) ChaboNet: design of a deep CNN for prediction of visual saliency in natural video. J Vis Commun Image Represent 60:79–93. https://doi.org/10.1016/j.jvcir.2019.02.004

    Article  Google Scholar 

  4. Itti L, Koch C, Niebur E (1988) A model of saliency-based visual attention for rapid scence analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259. https://doi.org/10.1109/34.730558

    Article  Google Scholar 

  5. Achanta R, Süsstrunk S (2010) Saliency detection using maximum symmetric surround. International Conference on Image Processing, 2653–2656. https://doi.org/10.1109/ICIP.2010.5652636

  6. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915–1926. https://doi.org/10.1109/TPAMI.2011.272

    Article  Google Scholar 

  7. Jiang H, Wang J, Yuan Z, Liu T, Zheng N (2011) Automatic salient object segmentation based on context and shape prior. Proceedings of the British Machine Vision Conference. https://doi.org/10.5244/C.25.110

  8. Jiang P, Ling H, Yu J, Peng J (2013) Salient region detection by UFO: Uniqueness, focusness and objectness. IEEE International Conference on Computer Vision, 1976–1983. https://doi.org/10.1109/ICCV.2013.248

  9. Zhou D, Weston J, Gretton A, Bousquet O, Scholkopf B (2004) Ranking on data manifolds. Advances in Neural Information Processing Systems, 169–176

  10. Yang C, Zhang L, Lu H, Ruan X, Yang M (2013) Saliency detection via graph-based manifold ranking. IEEE Conference on Computer Vision and Pattern Recognition, 3166–3173. https://doi.org/10.1109/CVPR.2013.407

  11. Achanta R, Shaji A, Smith K, et al. (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282. https://doi.org/10.1109/TPAMI.2012.120

    Article  Google Scholar 

  12. Wang Y, Peng G (2019) Salient object detection via incorporating multiple manifold ranking. SIViP 13:1603–1610. https://doi.org/10.1007/s11760-019-01507-3

    Article  Google Scholar 

  13. Fu K, Gu I, Yang J (2018) Spectral salient object detection. Neurocomputing 275:788–803. https://doi.org/10.1016/j.neucom.2017.09.028

    Article  Google Scholar 

  14. Dollár P, Zitnick C (2013) Structured forests for fast edge detection. IEEE International Conference on Computer Vision, 1841–1848. https://doi.org/10.1109/ICCV.2013.231

  15. Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. IEEE Conference on Computer Vision and Pattern Recognition, 2814–2821. https://doi.org/10.1109/CVPR.2014.360

  16. Fawcett T (2006) An introduction to roc analysis. Pattern Recogn Lett 27(8):861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  MathSciNet  Google Scholar 

  17. Wei Y, Wen F, Zhu W, et al (2012 ) Geodesic saliency using background priors. European Conference on Computer Vision, 29–42. https://doi.org/10.1007/978-3-642-33712-3_3

  18. Zhou L, Yang Z, Yuan Q, et al. (2015) Salient region detection via integrating diffusion-based compactness and local contrast. IEEE Transactions Image Processing 24(11):3308–3320. https://doi.org/10.1109/TIP.2015.2438546

    Article  MathSciNet  Google Scholar 

  19. Tong N, Lu H, Zhang Y, et al. (2015) Salient object detection via global and local cues. Pattern Recogn 48(10):3258–3267. https://doi.org/10.1016/j.patcog.2014.12.005

    Article  Google Scholar 

  20. Zhang J, Sclaroff S, Lin Z, et al. (2015) Minimum barrier salient object detection at 80 fps, IEEE International Conference on Computer Vision, 1404–1412. https://doi.org/10.1109/iccv.2015.165

  21. Peng H, Li B, Ling H, et al. (2017) Salient object detection via structured matrix decomposition. IEEE Trans Pattern Anal Mach Intell 39(4):818–832. https://doi.org/10.1109/TPAMI.2016.2562626

    Article  Google Scholar 

  22. Zhou L, Yang Z, Zhou Z, et al. (2017) Salient region detection using diffusion process on a 2-layer sparse graph. IEEE Trans Image Process 26 (12):5882–5894. https://doi.org/10.1109/TIP.2017.2738839

    Article  MathSciNet  Google Scholar 

  23. Zhu X, Chang T, Wang P, et al. (2018) Saliency detection via affinity graph learning and weighted manifold ranking. Neurocomputing 312:239–250. https://doi.org/10.1016/j.neucom.2018.05.106

    Article  Google Scholar 

  24. Tang C, Wang P, Zhang C, et al. (2017) Salient object detection via weighted low rank matrix recovery. IEEE Signal Processing Letters 24(4):490–494. https://doi.org/10.1109/LSP.2016.2620162

    Article  Google Scholar 

  25. Cheng MM, Zhang GX, Mitra NJ, et al. (2011) Global contrast based salient region detection. IEEE Conference on Computer Vision and Pattern Recognition, 409–416. https://doi.org/10.1109/CVPR.2011.5995344

  26. Yan Q, Xu L, Shi J, et al. (2013) Hierarchical saliency detection. IEEE Conference on Computer Vision and Pattern Recognition, 1155–1162. https://doi.org/10.1109/CVPR.2013.153

  27. Borji A (2015) What is a salient object? A dataset and a baseline model for salient object detection. IEEE Trans Image Process 24(2):742–756. https://doi.org/10.1109/TIP.2014.2383320

    Article  MathSciNet  Google Scholar 

  28. Judd T, Ehinger K, Durand F, Torralba A (2009) Learning to predict where humans look. IEEE International Conference on Computer Vision, 2106–2113. https://doi.org/10.1109/ICCV.2009.5459462

  29. Li Y, Hou X, Koch C, Rehg JM, Yuille AL (2014) The secrets of salient object segmentation. IEEE Conference on Computer Vision and Pattern Recognition, 280–287. https://doi.org/10.1109/CVPR.2014.43

  30. Li G, Yu Y (2018) Contrast-oriented deep neural networks for salient object detection. IEEE Transactions on Neural Networks and Learning Systems 29(12):6038–6051. https://doi.org/10.1109/TNNLS.2018.2817540

    Article  Google Scholar 

  31. Dong B, Zhou Y, Hu C, Fu K, Chen G (2021) BCNet: Bidirectional collaboration network for edge-guided salient object detection. Neurocomputing 437:58–71. https://doi.org/10.1016/j.neucom.2021.01.034

    Article  Google Scholar 

  32. Fu K, Zhao Q, Gu I, et al. (2019) Deepside: a general deep framework for salient object detection. Neurocomputing 356:69–82. https://doi.org/10.1016/j.neucom.2019.04.062

    Article  Google Scholar 

  33. Zhang P, Lin W, Zeng Y, Lei Y, Lu H (2021) Looking for the detail and context devils: high-resolution salient object detection. IEEE Transactions on Image Process 30:3204–3216. https://doi.org/10.1109/TIP.2020.3045624

    Article  Google Scholar 

  34. Pang Y, Zhang X, Zhang L, Lu H (2020) Multi-scale Interactive Network for Salient Object Detection. IEEE Conference on Computer Vision and Pattern Recognition, 9410–9419. https://doi.org/10.1109/CVPR42600.2020.00943

  35. Ji W, Li X, Wei L, Wu F, Zhuang Y (2020) Context-Aware Graph Label Propagation Network for Saliency Detection. IEEE Trans Image Process 29:8177–8186. https://doi.org/10.1109/TIP.2020.3002083

    Article  Google Scholar 

  36. Wang L, Lu H, Ruan X, Yang MH (2015) Deep networks for saliency detection via local estimation and global search. IEEE Conference on Computer Vision and Pattern recognition, 3183–3192. https://doi.org/10.1109/CVPR.2015.7298938

  37. Wang T, Zhang L, Lu H, Sun C, Qi J (2016) Kernelized subspace ranking for saliency detection. European Conference on Computer Vision, 450–466. https://doi.org/10.1007/978-3-319-46484-8_27

  38. Islam MA, Kalash M, Bruce NDB (2018) Revisiting salient object detection: Simultaneous detection, ranking, and subitizing of multiple salient objects. IEEE Conference on Computer Vision and Pattern recognition, 7142–7150. https://doi.org/10.1109/CVPR.2018.00746

  39. Qin X, Zhang Z, Huang C, Gao C, Dehghan M, Jagersand M (2019) Basnet: Boundary-aware salient object detection. IEEE Conference on Computer Vision and Pattern recognition, 7479–7489IEEE Conference on Computer Vision and Pattern recognition, 7479–7489. https://doi.org/10.1109/CVPR.2019.00766

  40. Achanta R, Hemami S, Estrada F, Süsstrunk S (2009) Frequency-tuned salient region detection. IEEE Conference on Computer Vision and Pattern recognition, 1597–1604. https://doi.org/10.1109/CVPR.2009.5206596

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China(61976237, 61673404, 61922072), Zhongyuan Qianren Project (ZYQR201810162), and the Key Scientific Research Projects in Colleges and Universities of Henan Province (Grant Nos. 19A120014, 20A120013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhao Wang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, T., Li, Z. et al. Salient object detection based on multi-feature graphs and improved manifold ranking. Multimed Tools Appl 81, 27551–27567 (2022). https://doi.org/10.1007/s11042-022-12839-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12839-7

Keywords

Navigation