Skip to main content
Log in

An improved atom search optimization for optimization tasks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Atom search optimization (ASO) is a newly developed metaheuristic algorithm inspired by molecular basis dynamics. The paramount challenge in ASO is that it is easily trapped into the local optima and premature convergence. To address these issues, this paper presented an improved atom search optimization with three strategies, global topology with secant factor, non-linear inertia weight and update learning. First, the global topology provides the best solution for each individual and enriches the information exchange of the population, and prevents premature convergence under the effect of the secant factor. Second, smooth properties of non-linear inertia weights are introduced to balance exploration and exploitation. Third, update learning provides more opportunities to jump out of the local optima. Thus, these three strategies are used to improve the performance of ASO, which is called GNUASO. Finally, the proposed GNUASO algorithm was evaluated in the CEC2017 benchmark functions and two real-world engineering problems, compared with some excellent algorithms to confirm the performance of the proposed GNUASO. Experimental results and statistical analysis show that the proposed GNUASO algorithm outperforms the other selected algorithms in CEC2017 benchmark functions and engineering design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

There are no data available for this paper.

References

  1. Agwa AM, El-Fergany AA, Sarhan GM (2019) Steady-state modeling of fuel cells based on atom search optimizer. Energies 12(10):1884

    Article  Google Scholar 

  2. Almagboul MA, Shu F, Qian Y, Zhou X, Wang J, Hu J (2019) Atom search optimization algorithm based hybrid antenna array receive beamforming to control sidelobe level and steering the null. AEU-Int J Electron Commun 111:152854

    Article  Google Scholar 

  3. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734

    Article  Google Scholar 

  4. Awad PJBNH, Ali MZ (2016) Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. International Journal of Intelligent Computing and Cybernetics

  5. Breiman L, Cutler A (1993) A deterministic algorithm for global optimization. Math Program 58(1-3):179–199

    Article  MATH  Google Scholar 

  6. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144

    MATH  Google Scholar 

  7. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144

    MATH  Google Scholar 

  8. Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci 46:229–247

    Article  Google Scholar 

  9. de Carvalho DF, Bastos-Filho CJA (2009) Clan particle swarm optimization. International Journal of Intelligent Computing and Cybernetics

  10. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  11. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50

    Article  Google Scholar 

  12. Dhiman G, Kumar V (2019) Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196

    Article  Google Scholar 

  13. Dorigo M, Stützle T (2003) The ant colony optimization metaheuristic: Algorithms, applications, and advances. In: Handbook of metaheuristics, Springer, pp 250–285

  14. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth international symposium on micro machine and human science, IEEE, pp 39–43

  15. Elaziz MA, Nabil N, Ewees AA, Lu S (2019) Automatic data clustering based on hybrid atom search optimization and sine-cosine algorithm. In: 2019 IEEE congress on evolutionary computation (CEC), IEEE, pp 2315–2322

  16. Engelbrecht AP (2013) Particle swarm optimization: Global best or local best?. In: 2013 BRICS congress on computational intelligence and 11th Brazilian congress on computational intelligence, IEEE, pp 124–135

  17. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: A novel optimization algorithm. Knowl-Based Systems 191:105190

    Article  Google Scholar 

  18. Figueiredo EM, Ludermir TB (2014) Investigating the use of alternative topologies on performance of the pso-elm. Neurocomputing 127:4–12

    Article  Google Scholar 

  19. Floudas CA (2013) Deterministic global optimization: theory, methods and applications, vol 37, Springer Science & Business Media

  20. Fu Y, Li Z, Qu C, Chen H (2020) Modified atom search optimization based on immunologic mechanism and reinforcement learning. Mathematical Problems in Engineering, vol 2020

  21. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf Sci 180 (10):2044–2064

    Article  Google Scholar 

  22. Ghosh KK, Guha R, Ghosh S, Bera SK, Sarkar R (2020) Atom search optimization with simulated annealing–a hybrid metaheuristic approach for feature selection. arXiv:2005.08642

  23. Goldstein H, Poole C, Safko J (2002) Classical mechanics

  24. Gupta S, Deep K (2019) A novel random walk grey wolf optimizer. Swarm Evol Comput 44:101–112

    Article  Google Scholar 

  25. Gupta S, Deep K, Heidari AA, Moayedi H, Chen H (2019) Harmonized salp chain-built optimization. Engineering with Computers, pp 1–31

  26. Hekimoğlu B (2019) Optimal tuning of fractional order pid controller for dc motor speed control via chaotic atom search optimization algorithm. IEEE Access 7:38100–38114

    Article  Google Scholar 

  27. Holland JH (1992) Adaptation in natural and artificial systems. 1975. Ann Arbor MI: University of Michigan Press and

  28. Houck CR, Joines J, Kay MG (1995) A genetic algorithm for function optimization: a matlab implementation. Ncsu-ie tr 95(09):1–10

    Google Scholar 

  29. Jain M, Maurya S, Rani A, Singh V (2018) Owl search algorithm: a novel nature-inspired heuristic paradigm for global optimization. J Intell Fuzzy Syst 34(3):1573–1582

    Article  Google Scholar 

  30. Jones JE (1924) On the determination of molecular fields.—ii. from the equation of state of a gas. Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character 106(738):463–477

    Google Scholar 

  31. Kamel S, Hamour H, Ahmed MH, Nasrat L (2019) Atom search optimization algorithm for optimal radial distribution system reconfiguration. In: 2019 International conference on computer, control, electrical, and electronics engineering (ICCCEEE), IEEE, pp 1–5

  32. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  33. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-International conference on neural networks, vol 4, IEEE, pp 1942–1948

  34. Kim M-J, Peng H (2007) Power management and design optimization of fuel cell/battery hybrid vehicles. J Power Sources 165(2):819–832

    Article  Google Scholar 

  35. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MATH  Google Scholar 

  36. Li X (2009) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169

    Google Scholar 

  37. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Applic 24(7-8):1867–1877

    Article  Google Scholar 

  38. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  39. Lin A, Sun W, Yu H, Wu G, Tang H (2019) Adaptive comprehensive learning particle swarm optimization with cooperative archive. Appl Soft Comput 77:533–546

    Article  Google Scholar 

  40. Lin M-H, Tsai J-F, Yu C-S (2012) A review of deterministic optimization methods in engineering and management. Mathematical Problems in Engineering

  41. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Transactions on Evolutionary Computation 8(3):204–210

    Article  Google Scholar 

  42. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  43. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  44. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  45. Peterson C, Söderberg B (1989) A new method for mapping optimization problems onto neural networks. Int J Neural Syst 1(01):3–22

    Article  Google Scholar 

  46. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  47. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) Bgsa: binary gravitational search algorithm. Nat Comput 9(3):727–745

    Article  MATH  Google Scholar 

  48. Rizk-Allah RM, Hassanien AE, Oliva D (2020) An enhanced sitting–sizing scheme for shunt capacitors in radial distribution systems using improved atom search optimization. Neural Comput Applic, pp 1–29

  49. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229

    Article  Google Scholar 

  50. Schweidtmann AM, Mitsos A (2019) Deterministic global optimization with artificial neural networks embedded. J Optim Theory Appl 180(3):925–948

    Article  MATH  Google Scholar 

  51. Shang Y, Wah BW (1996) Global optimization for neural network training. Computer 29(3):45–54

    Article  Google Scholar 

  52. Shim Y et al (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), vol 1, IEEE, pp 81–86

  53. Sexton RS, Dorsey RE, Johnson JD (1998) Toward global optimization of neural networks: a comparison of the genetic algorithm and backpropagation. Decis Support Syst 22(2):171–185

    Article  Google Scholar 

  54. Stone A (2013) The theory of intermolecular forces oUP oxford

  55. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4):341–359

    Article  MATH  Google Scholar 

  56. Sun R, Srinivasan M, Moll G-H, Yadappanavar V, Yang M (2006) Transportation planning with parallel optimization. US Patent App. 11/097,435

  57. Sun P, Zhang Y, Liu J, Bi J (2020) An improved atom search optimization with cellular automata, a lévy flight and an adaptive weight strategy. IEEE Access 8:49137–49159

    Article  Google Scholar 

  58. Too J, Abdullah AR (2020) Chaotic atom search optimization for feature selection. Arab J Sci Eng. pp 1–17

  59. Törn A, žilinskas A (1989) Global optimization. vol 350, Springer

  60. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  61. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press

  62. Yao T, Mandala SR, Do Chung B (2009) Evacuation transportation planning under uncertainty: a robust optimization approach. Netw Spat Econ 9 (2):171

    Article  MATH  Google Scholar 

  63. Zhan Z-H, Zhang J, Li Y, Chung HS-H (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern, Part B (Cybernetics) 39 (6):1362–1381

    Article  Google Scholar 

  64. Zhang Q, Wang R, Yang J, Lewis A, Chiclana F, Yang S (2019) Biology migration algorithm: a new nature-inspired heuristic methodology for global optimization. Soft Comput 23(16):7333–7358

    Article  Google Scholar 

  65. Zhao W, Wang L, Zhang Z (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl-Based Syst 163:283–304

    Article  Google Scholar 

  66. Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of China under Grant No. 61473054. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Contributions

Jie Bi participated in the draft writing and critical revision of this paper and participated in the data collection, analysis, and algorithm simulation. Yong Zhang participated in the concept, design, and interpretation of results and commented on the manuscript;

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of Interests

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, J., Zhang, Y. An improved atom search optimization for optimization tasks. Multimed Tools Appl 82, 6375–6429 (2023). https://doi.org/10.1007/s11042-022-13171-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13171-w

Keywords

Navigation