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Abstract
With the proliferation of IoT technology, it is anticipated that healthcare services, partic-
ularly for the elderly persons, will become a major thrust area of research in the coming
days. Aim of this work is to design a fit-band containing multiple sensors to provide remote
healthcare services for the elderly persons. An application has been designed to capture
health data from the fit-band, pre-process the data and then send them to cloud for further
analysis. A wireless Bluetooth enabled connection is proposed to establish communica-
tions between sensors and the application for data transmission. In the proposed application,
there are three different front-end interfaces for three different users: system administrator,
patient and doctor. The data collected from the patient’s fit-band are sent to a cloud data
storage, where the data will be analyzed to detect anomaly (e.g., heart attack, sleep apnea,
etc.). A Convolution Neural Network (CNN) model is proposed for anomaly detection. For
the classification of anomaly, a Long Short Term Memory (LSTM) model is proposed. In
the presence of anomaly, the system immediately connects a doctor through a phone call. A
prototype system termed as Shubhchintak has been developed in Android/IOS environment
and tested with a number of users. The fit-band provides data tracking with an overall accu-
racy of 99%; the system provides a response with 3000 requests in less than 100 ms. Also,
Shubhchintak provides a real-time feedback with an accuracy of 97%. Shubhchintak is also
tested by patients and doctors of a nearby hospital. Shubhchintak is shown to be a simple to
use, cost effective, comfortable, and efficient system compared to the existing state of the
art solutions.
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1 Introduction

In today’s world, there are nearly 703 million elderly persons (aged 65 years or above) who
form a significant 9.2% of world population (World population on ageing, United Nations,
2019). In the developing countries, like India, the percentage of senior citizens is increasing
day by day and the share of the population of elderly persons in India is projected to increase
to 20% in 2050 (United Nations, 2019). Besides this, health technology is rapidly evolving
and has become an important part of our lives. CISCO [30] reported that 70 million devices
or things are already linked to the Internet (in 2020) throughout the world. But this rapidly
growing technology has its adverse effects too. The younger generation is too busy with
their personal lives. They have no time to take care of their guardians. According to the
World Health Organization (WHO) [4], elderly persons need immense care as 39.5% (27.7
million people in 2019) elderly persons died of Cardio-Vascular diseases like hypertension,
strokes and diabetes due to negligence, sedentary lifestyle and improper food diet. Number
of people with diabetes have been rapidly increasing from 108 million in 1980 to 533 million
in 2019. But 65% senior citizens all over the world are often neglected and they feel helpless
when medical emergencies arise because they are alone.

Of late, wearable technologies and mobile applications have taken health and fitness
industries by storm [5–7, 26, 28, 57] (https://www.samsung.com/global/galaxy/galaxy-fit/).
There are plenty of software products (in terms of features and functionalities) are in the
market which can keep a regular check on our real time health conditions. Several software
companies have developed their software SDK’s [23, 24, 27]. They have developed several
new mobile health apps for Ionic and Versa smartwatches. Some of the apps are developed
on Fitbit’s SDK [19]. Their names, merits, demerits, and usage are shown in Table 1.

In addition, there exist several Android-based applications like Apple Watch, Fitbit track-
ers, Jawbone band, Google Fit, Moov Now, Mi band, GOQii band, Nike Running, Runtastic,
etc. These products track steps, basic metabolic rate (BMR), heart rate through a fitness
band and display them using an application which is supposed to alert only the users but
not caregivers. Moreover, wearable devices are very clumsy sometimes and they cause suf-
ficient irritation. In some cases, data collection needs an active network connection; so,
if internet is not available, the monitoring system cannot work. According to the survey
report of AIMS 2019 [35], 90% of the existing healthcare monitoring solutions are mainly
focussed on tracking and monitoring data without any feedback and the rest 10% solutions

Table 1 Existing healthcare applications and their functionalities

Name Merits Demerits Usage

Aetna [36] Provides information on
health conditions; gives
them step-by-step guid-
ance to treat conditions

One has to feed one’s
own data manually

Primary prevention

Healthify Me [54] Determined calory, pro-
vide proper diet plan
from nutritionists

Have to pay the experts
for every solution

Elderly care

Diplomat pharmacy [3] Provides medication,
prescription reminders

Works based on the
existing data without
any classification

Oncology care man-
agement platform

Dexcom [49] Real-time glucose mon-
itoring

Decreases the comfort
level in tracking time

Useful for diabetes
patient
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provide feedback directly from the experts. These better solutions (with feedback) are very
costly and in most cases, they need some manual intervention to feed information.

But all these solutions are still unable to address some major challenges. What if a person
gets a heart attack suddenly and he or she is unable to call the doctor? How can the caregivers
assess current health condition of old persons if they lack specific medical expertise? How
can a hospital be be alerted if an elderly person is in critical emergency? If we think on a
large scale, these problems also exist in hospitals situated in a rural area where there is a
dearth of doctors, nurses, and health workers.

This work aims to overcome the above drawbacks. We design a fit-band which con-
tains ECG, Temperature, Blood Pressure, Blood Oxygen Level Detector, Accelerometer,
and Gyroscope sensors. Then, the collected data is sent to an Android/IOS platform through
Bluetooth connectivity; so, there is no need for an active internet connection at all. After
that, the process is divided into two parts: one for the non prime admin and another for the
prime admin. The basic difference is non-prime users can monitor up to 5 elders at a time
but for the prime users, there is no such restriction on the number of elders being moni-
tored. The application has a trained Machine Learning (ML) model for anomaly detection
and pre-trained NLP tool for feedback to help the non-prime users. For prime users, the
system is expected to deal with huge data. So, the system first sends the data to a cloud
and there is a pre-trained ML model for anomaly detection and to predict health condi-
tions. There is also a pre-trained NLP tool for chatbot to help the users by giving helpful
advice based on their health conditions. If any anomaly is detected, the admin will get a
notification and an SMS alert about the health condition of the users. There is also an SOS
alarm to draw the attention of the neighborhood to help the users. If any serious anomaly is
detected (e,g., heart-attack, sleep apnea, etc), the system will also automatically call a doc-
tor and inform the admin about the condition. The proposed system is called Shubhchintak.
Figure 1 depicts the features of Shubhchintak.

The main contributions of this work are listed below.

1. A smart low-cost solution having several unique features for monitoring elderly people
is proposed.

2. A fit-band which contains ECG monitor, temperature monitor, blood pressure moni-
tor, blood oxygen level detector, accelerometer, and gyroscope sensors with Bluetooth
connectivity has been designed.

3. The proposed system incorporates real-time anomaly detection and feedback mechanism.
4. Doctors call on emergency, comfort of the elderly people and 3-way monitoring (users,

admin, doctor) are considered.

The rest of the paper is organized as follows. Section 2 gives a state of the art survey and
highlights the gaps. Section 3 describes the detailed methodology and algorithms to develop
the application. In Section 4, outcomes are investigated, several executions are assessed and
a comparison with similar approaches are presented. Section 5 concludes with a discussion
on future extentions of the work.

2 Literature review

For the past few decades, several computational approaches have been developed across the
world to study remote health monitoring. Recently, advances in technology have introduced
telehealth systems to monitor health conditions of aging adults at their own residences.
Moreover, different sensors are used in the remote monitoring system to record the health
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Fig. 1 Features of Shubhchintak healthcare application system

conditions of an aging adult for necessary measures. One’s health condition depends on sev-
eral factors like heart rate, blood pressure, body temperature, the oxygen level of blood etc.
In 2003, Maiolo et al. [37] proposed a novel methodology to study the feasibility of the tele-
monitoring system for patients with severe respiratory illness. In that work, they investigated
the feasibility of a telemonitoring service for patients with severe respiratory diseases. In
2004, Scalvini et al. [47] assessed the feasibility of nurse-led, home-based electrocardiogra-
phy (ECG) monitoring for patients with chronic heart failure (CHF). This study considered
seventy-four CHF patients and a fixed telephone line is used for ECG data transmission to a
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service station. The study conclued that following up CHF patients using a nurse-led telecar-
diology program is feasible and useful. In 2006, Vitacca et al. [53] proposed a methodology
to study the feasibility of telemedicine for home monitoring of patients with chronic respi-
ratory failure and with mechanical ventilation assistance. They worked with pulsed arterial
saturation (pSat) data of 45 patients and the facility was connected to a receiving station
using a telephone modem for human teleconsultation. In 2007, keyhole plan recognition
model for Alzheimer’s patients was proposed by Bouchard et al. [15]. They claimed that
82% calls successfully recorded the pSat data and the study concluded that it was feasibile to
home monitor the patients of chronic respiratory failure. This work is based on lattice theory
and action description logic to formalize the plausible incoherent intentions of the patient.
In 2008, Keong and Yuce proposed a Low data rate ultra wide band ECG monitoring system
[33]. In 2009, Bansal et al. [10] described a novel approach as a computer-based wireless
system for online acquisition, monitoring and digital processing of ECG wave forms. Later
in 2010, Atoui et al. [8] proposed a neural-network model for deriving standard 12-Lead
ECGs from serial three-lead ECGs. In 2011, Bergmann et al. [14] proposed Body-worn sen-
sor design for patients and clinicians and in 2012, Barnwell et al. [13] presented a novel
solution of image-guided optimization of the ECG trace in cardiac MRI.

In 2015 Bansal et al. [11] proposed a novel methodology for detecting cardiac disorders
as a remote health monitoring system. Catarinucci et al. [16] proposed an IoT-aware archi-
tecture for a smart healthcare system. Matthew et al. [17] proposed an IoT-based affordable
remote health monitoring system for the elderly people using smart mobile devices and
Baig et al. [9] proposed a novel mobile healthcare application. Also, Khoi et al. [34] pro-
posed IReHMo for remote health monitoring. In 2016, Mallick et al. proposed a novel
methodology for heart rate monitoring using fingertips through an Arduino-based software.
By refining this mechanism, Srinivasulu et al. [48] proposed a measurement and wireless
data transmission-based heart rate monitoring using a pulse sensor. Ghosh et al. [21] pro-
posed a remote health monitoring system using IoT. In 2017, remote health monitoring
regained its popularity. Valliappan et al. [50] proposed a low-cost design for a wearable
remote health monitoring and alert system for elderly heart patients. Majumder et al. [38]
discussed and compared different health monitoring systems in terms of wearable sensors.
Nienholed et al. [39] proposed a novel solution based on a sensor system to identify a set
of prescribed patient activities for home care treatment of elderly people. Patient activities
data for an entire day are treated as big data and these are processed using different data
analysis techniques. Pardeshi et al. [42] published a review of Raspberry Pi-based remote
health monitoring systems. Later, Garbhapu et al. [20] proposed a low cost IoT-based sin-
gle sensor node remote health monitoring system. In 2018, Saha et al. [45] proposed an
advanced IoT-based remote health monitoring system, integrated with home automation
and an alarm system. Later, Verma et al. [52] published a novel article on Fog assisted-IoT
enabled patient health monitoring system in smart homes. In 2019, AI-khafajiy et al. [2],
proposed a novel solution for health monitoring of the elderly through wearable sensors. In
that work, they basically focused on AAL (Ambient Assistive Living) and AML(Automated
Machine Learning). In this article, specific disorders are detected by tracking and analyzing
people’s physiological data. It has a better cost redundancy but it is unable to provide feed-
back based on the analyzed data. Later, in 2019, Duran-Vega et al. [18] proposed a remote
health monitoring system using an IoT-based system for elderly adults that comprises wear-
able devices and mobile applications. It uses a biometric bracelet connected to a mobile
application to visualize the health condition. In this research, feedback and performance
analysis are not reported.
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In 2020, Yeri et al. [59] presented a detailed review on IoT-based real-time health mon-
itoring systems to showcase the shortcomings of the existing methodologies and suggested
future improvements. Based on that, Vedaei et al. [51] proposed an IoT-based system to
monitor the physical distance in post covid pandemic. Moreover, it tracks cough rate, body
temperature, blood oxygen saturation, and respiratory rate. However, it does not work with
a stable 4G/5G/Wi-Fi connection and the system does not have any feedback mechanism.
Ghosh et al. [22] also proposed a real-time energy efficient health monitoring system. The
fit-band used in this sytem can work upto 18 hours without recharge but the system is not
sufficiently intelligent. Wu et al. [56] designed a healthcare application to measure differ-
ent physiological signals like photoplethysmography (PPG), electrocardiogram (ECG), and
body temperature with rigid flex structure. However, it is noted that a mobile gateway is
essential to use this system. Huifeng et al. [29] proposed a continuous health monitoring
system which is dedicated for a sports person; the system monitors heart rate, step counts,
and BMR but does not have any feedback mechanism and lacks doctors-on-time feature.
Hosseinzadeh et al. [25] proposed an IoT-based environment to collect vital health data
through smart healthcare technology and the collected data are analyzed using machine
learning algorithms to check vital signs and detect biological and behavioral changes of
disabled or elderly persons. But, this system is not comfortable to users as they have to
wear several sensors or have to lie down on a bed for remote tracking. Zhong and Li [60]
designed and developed a health monitoring system to recognize the physical activities
and monitor health conditions of college students through the connection of heterogeneous
economically-efficient wearable gadgets in an open environment. But, it needs sufficient
domain knowledge to use. Recently, in 2021 Saha et al. [46] obtained a working prototype
having temperature sensor (DS18B20) and Arduino for health monitoring. However, tem-
perature alone cannot provide details of all health conditions. Pandya et al. [41] proposed a
smart aging wellness sensor networks for anomaly detection and generating alerts in near
real time. But, the system is very bulky, it requires a continuous internet connection and
anomaly detection accuracy is not good. Juyal et al. [31] proposed an IoT-based health mon-
itoring system for skin diseases; however, sensors have a complex circuitry so that it is not
comfortable to wear the gadget. Bansal et al. [12] proposed health care services using organ
simulation though it is not in real-time; but it is the most developed application till date.

All methods discussed in this survey are mainly focused on accurate remote health
monitoring. The challenges is that a lot of manpower is still required for continuous and

Table 2 Distinguishable features of Shubhchintak, the proposed application

Features State of the art approaches Shubhchintak

Manufacturing cost High Low

Data transfer Internet/Wi-Fi Bluetooth

Features Heart rate, BMR, Sleep hours,
Steps count

Heart rate, Step count, Blood oxygen level,
BMR, Monthly health condition Tempera-
ture, ECG

Feedback mechanism No Yes

Anomaly detection Very poor Efficient

Doctors-on-emergency No Yes

SOS alarm Yes Yes

Offline simulation No Yes
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uninterrupted monitoring. Otherwise, if an emergency occurs, patients will be unable to
inform relevant persons and may die. To overcome this shortcoming, the proposed system
Shubhchintak is attributed with some notable features. Besides monitoring, it also provides
feedback. This feedback (based on the analysis of the monitored data) is real-time and works
even when users are offline or when users are not wearing the fit-band. It also generates an
SOS alarm to alert the neighbors, message the admin to inform him/her about the situation
and call a doctor immediately (i.e., have the intelligence to tackle the emergency situation),
to save his/her life in a medical emergency. So, there is no need for constant monitoring in
our proposed system. This systems also helps elders who need utmost care in a comfortable
manner in COVID-19 pandemic. Shubhchintak is a very low-cost solution as well. The dis-
tinguishable features of Shubhchintak over the state of the art approaches are reported in
the Table 2.

3 Proposedmethodology

The proposed method to take care of the elderly people is as follows. It has three main phases
namely, data collection, anomaly detection, and feedback generation. A brief overview of
the proposed methodology is shown in Fig. 2. The phases are described in details in the
following.

3.1 Data collection

In this work, a fitness band has been designed and developed to collect the information
needed for proper monitoring and feedback. This fitness band contains an Accelerom-
eter (ADXL335), Gyroscope (L3GD20H), Pulse Sensor (EC-0567), temperature sensor
(ADA165), and a blood oxygen level detector. Figure 3 gives a brief overview of the sensors
and Fig. 4 gives a brief overview of the circuit diagram of the proposed fitness band.

The circuit diagram (Fig. 4) shows the connection between six different sensors and
NodeMCU module. The NodeMCU version 2 microcontroller is chosen for the smart band
which is driven by ESP8266 microcontroller by Expressive systems. It is a low-cost module
with integrated WIFI connectivity. In this circuit, the sensors and the module are charged
using a 3v to 5v source based on requirements from external power source and necessities
of the components. The data pins from the sensors are connected to the data pins in the
NodeMCU module. Besides that, the NodeMCU module has 8 data pins (D1-D8) and a
ground pin. The ground connection of all the 6 sensors is collectively connected to this
ground pin of NodeMCU. The data provided by each sensor is connected to one of the 8 pins
in the NodeMCU module. The data pin of the accelerometer sensor is connected to the D0
pin of the NodeMCU Module. Similarly, the pulse sensor, temperature sensor, gyroscope
sensor, blood oxygen detector sensor, and the ECG sensor are connected to D1, D2, D3,
D4, D5 data pins respectively of the NodeMCU module. The microcontroller unit (i.e., the
NodeMCU module) performs a calculation based on the data received from the sensors and
passes the result to the decision controller. It consists of predefined functions that take action
based on the result of the module.

Different sensors used to design the fitness band are discussed in the following.

Accelerometer A thin, small, low power, 3 axis sensor named ADXL335/GY is used. By
using tilt-sensing, it can measure static acceleration of gravity as well as dynamic accelera-
tion that occurs due to motion, vibrations and shock. This sensor consists of 5 pins, which
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Fig. 2 A system-level architecture of Shubhchintak
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Fig. 3 Brief Overview of sensors (a) accelerometer, (b) gyroscope, (c) ECG sensor, (d) pulse sensor, (e)
blood oxygen level detector, (f) human body temperature sensor

are: i) GND: this pin is connected to ground, ii) VCC: this is connected to + 3.3V, iii) X-
This is connected to analog pin(A0), iv) Y-NIL and v) Z-NIL.

ECG sensor A small sensor named AD8232 ECG is used for recording electrical signals of
the heart and the output can be obtained in an analog form. To obtain clear signal from the
PR and QT intervals, the module acts as an op-amp. LO+ and LO- are connected to digital
pins and the output pin provides analog signal; so, it is connected to the analog pin.

Temperature sensor LM35 sensor can measure temperature in the range of − 55◦C to
150◦C. It provides an analog voltage proportional to the temperature. Higher the tempera-
ture, the higher is the output voltage. The output is converted to digital form using ADC for
processing in the microprocessor.

Gyroscope sensor The sensor named LSM6DS3 is used for detecting motion. Its full scale
acceleration ranges along ±2/ ± 4/ ± 8/ ± 16g and angular rate ranges along ±125/ ±
250/ ± 500/ ± 1000/ ± 2000 dps

Blood oxygen detector A sensor, named MAX30100 is used for blood oxygen detection.
It works using 1.8V and 3.3V power supplies. It has two LEDs, one is red and the other
is infrared for measuring oxygen levels in the blood. It uses the principle that oxygenated
blood absorbs more infrared light and passes more red while deoxygenated blood absorbs
red light and passes more infrared light. The sensor reads the absorption levels for both
lights and provides an output.

3.2 Application development

Google Fit API consists of a Fitness Store, where data cloud stores health data of all speci-
fied users from their wearable devices and the android phones [27]. The sensor framework
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Fig. 4 A brief overview of the circuit diagram to design the fitness band

is a wholistic representation of sensors and fitness types like step count and heart rate, which
has the ability to query and interact with the database. We have used Android Studio for the
development of the propoosed app using Google Fit API.

37146 Multimedia Tools and Applications (2022) 81:37137–37163



To build the application the following steps are to be carried out.

1. Create a new project by adding the dependencies in the Gradle file. Add the dependen-
cies ‘play-services-fitness’ and ‘play-services-auth’ in the apps Gradle file.

2. Create the API client as follows. Create a FitnessOptions instance, declar-
ing the data types and access type. The Data Types needed for the proposed
application are ‘AGGREGATE-HEART-RATE-SUMMARY’, ‘TYPE-STEP-COUNT-
CUMULATIVE’, and ‘TYPE-STEP-COUNT-DELTA’.

3. Get an instance of the Account object to be used with the API. Check if the user has
previously granted the necessary data access, and if not, initiate the authorization flow.
If the user is using the app for the first time then, they have to give access to their Gmail
account.

4. The application has to subscribe to the required Fitness APIs. In our app, the
following APIs are to be subscribed: a.AGGREGATE-HEART-RATE-SUMMARY
b.TYPE-STEP-COUNT-CUMULATIVE.

5. Write a method ‘queryFitnessData()’ to get the heartbeat data from the fit-band. The
heartbeat data is taken by reading the ‘TYPE-HEART-RATE-BPM’ DataType of the
Google Fitness API after a constant interval of one second.

6. Write a method ‘void readData-steps()’ method to get the Steps Counter data from
the cloud. The step-count data is taken by reading the ‘TYPE-STEP-COUNT-DELTA’
DataType of the Google Fitness API. The total steps in a day are calculated and
displayed which is refreshed every 5 seconds.

ECG, temperature, blood pressure, blood oxygen level, accelerometer data, and gyroscope
sensor data are collected through the connected bluetooth device. The data is then gathered
and displayed to the users. To fetch the data from the bluetooth device, BluetoothAdapter is
used in the following manner.

private BluetoothAdapter bAdapter = BluetoothAdapter.getDefaultAdapter();
Then the Individual data is received as follows:
//To get the BluetoothSocket input streams
InputStream dataIn= null;
dataIn= socket.getInputStream();
DataInputStream mmInStream = new DataInputStream(dataIn);
byte[] buffer = new byte[256];
// Read from the InputStream
bytes = mmInStream.read(buffer);
//Data is received as a Text Field.
String SensorData= new String(buffer, 0, bytes);

3.3 Anomaly detection and feedback

In this phase, two different mechanisms are used for two different types of users. For non-
prime users there is a TensorFlow lite backend with this application and there is an in-built
pre-trained model to detect the anomaly and classify the detection; then, this classified data
is sent to a pre-trained NLP to give feedback based on this classification. But for prime
users we have to send the data to a cloud because a large volume of data will be generated
for prime users which may make the application slow. In the cloud, further processing and
anomaly detection are performed and the feedback is generated. This feedback is returned
to the application. Figure 5 gives an overview of anomaly detection in the case of non-prime
users and prime users.
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Fig. 5 Anomaly detection and feedback mechanism in case of (a) non-prime users and (b) prime users

3.3.1 Data storage in cloud

To handle the huge amount of data, a cloud-based mobile data storage application system
is developed. We consider SAAS (Software as an administration) for data gathering. It is a
cloud computing resource, specially designed for the administration of a software, without
any knowledge of that software in the user device. It permits gathering and manipulating
data through an Android portable platform and the goal is application developers can focus
on the processing steps. A virtual machine (VM) instance is instantiated by running a con-
tainer service in its own memory space so that the cloud server can gain multi-user ability
with server virtualization.

3.3.2 Anomaly detection mechansim

For anomaly detection, a convolutional neural network (CNN) is used. The convolutional
layers perform convolution with the stride size 1, and a set of 100 filters. where the kernel
size is set to 3 × 1 for all 4 convolutional layers. It is shown in Fig. 6. At “Conv1,” the size
of the input vector is 263 × 1. Upon convolution, the output obtained is passed through the
ReLu activation, which performs element-wise nonlinear activation. The feature map thus
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Fig. 6 Proposed CNN architecture with filter and kernel for each convolutional and pooling layer

obtained is of dimension 261 × 1. This output feature map from Conv1 acts as the input to
the first pooling layer “Pool1.”

The pooling size of 2 × 1 with 100 filters, and pooling stride of size 2 are considered
for all pooling layers. At Pool1, the “max pooling function” is considered and it extracts
the maximum element on the feature map, thereby resulting in a 130 × 1 output feature
map. This output feature map becomes the input to the second convolutional layer “Conv2”
with kernel size 3 × 1 and stride 1, comprising 100 filters, which then outputs a feature
map of size 128 × 1. This, in turn, acts as the input for “Pool2” with the same pooling size
and pooling stride as considered in Pool1. Pool2 outputs a feature map of 64 × 1 vector.
“Conv3” receives this as the input and performs the convolution over the vector to arrive
at a 62 × 1 feature map. The “Pool3” layer performs “max pooling” over the feature map
obtained from Conv3, resulting in a 31 × 1 output. The output feature map of Pool-3 is
fed into “Conv4,” which performs convolutional operation with a 3 × 1 kernel and stride 1.
Conv4 layer generates a feature map of size 29 × 1, which is fed as input to “Pool4,” which
in turn performs pooling similar to the previous pooling layers. Finally, we obtain a feature
map of size 14 × 1, which acts as the input to the fully connected layer “FC1.”

The fully connected layers FC1 and FC2 have 1000 neurons each and are connected with
a “dropout layer”, which “drops-out” a set of activations randomly. Hence, it temporarily
nullifies the contributions of the corresponding neurons in the forward pass. The dropout
technique helps in overcoming the overfitting issue faced by CNNs, by allowing CNN to
be less sensitive to the weights of the dropped out neurons, thereby providing the correct
classification even in absence of those. The output layer consists of three neurons, i.e.,
one neuron for each class. A “softmax operator” is applied on FC2, which performs the
final classification. The weights and biases for all layers are initialized with random values
using a normal distribution of mean zero and unit standard deviation. The feature vectors
act as inputs to the CNN, which go through the forward pass (convolution, ReLU, and
pooling operations), and ultimately probabilities of the block belonging to individual classes
are computed. Depending on the deviation of the actual probability distribution from the
predicted, the weights and biases are updated in proportion to their contribution to the error
via back-propagation. As CNN learns, the weights and biases get updated. “Softmax cross-
entropy loss” is adopted as the loss function by us in this work. Adam optimizer is used as
the optimizing algorithm for training the network, and the learning rate is set to 0.00001.
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3.3.3 Trained NLP for feedback

Based on the predicted matrix, it classifies the anomaly into 4 categories i.e., normal,
slightly abnormal, moderately abnormal, and extremely abnormal. Based on these 4 classes,
an NLP is designed and trained. Unsupervised deep learning is used for this conversa-
tional chatbot. Figure 7 gives a brief overview of the NLP model. This model takes ABC as
input and produces WXYZ as output. It stops predictions after outputting EOS (end of the
sentence). The LSTM reads the input sentence in the reverse order for ease of optimization.

In this model, the recurrent neural network (RNN) [44, 55] goes through a natural gener-
alization of feed-forward neural networks in terms of sequence to sequence mapping. Given
a sequence of inputs (g1, g2, ....., gn), a standard RNN computes a sequence of outputs
(f1, f2, ...., fn) by iterating on the following equation:

midt =
n∑

t=1

Wmidx · gt + Wmidm
id · midt−1 (1)

ft = Wymid · midt (2)

where, W denotes the weights of the neural networks, ft = trainable features at t th iteration,
midt denotes the midpoint of all features of the t th iteration, midx = x variance of the
midpoint and midy = y variance of the midpoint and gt is the gaussian normalization factor.

Then, decoding and rescoring are done. A large deep LSTM is trained based on
anomaly classification. This training is done by maximizing the log probability of a correct
translation X given the source sentence Y.

log probmax = 1

s

S∑

i=1

log10 P(Xi |Yi) (3)

Where Y is the training set. Once training is completed, the translations are produced by
finding the most likely translation according to the LSTM:

X′ =
n∏

i=1

max(P (Xi |Yi)) (4)

The advantage of these models is their simplicity and their generality, with little need for
domain-dependent rules.

4 Experimental results and analysis

Experiments are carried out based on real-time data collected from volunteers who have
worn the fitness band. As a result, accuracy of the proposed model depends heavily on the

Fig. 7 Overview of NLP model
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Table 3 Performance comparison of sensors used in the proposed system with ISO standard

Sensors ISO Shubhchintak

min TPR Max FPR Accuracy TPR FPR Accuracy

Accelerometer 0.8000 0.1500 0.9500 0.9010 0.1113 0.9905

Gyroscope 0.8000 0.1500 0.9500 0.9054 0.1170 0.9944

ECG sensor 0.8000 0.1500 0.9500 0.9381 0.1274 0.9978

Blood pressure sensor 0.8000 0.1500 0.9500 0.9377 0.1354 0.9982

Blood oxygen level sensor 0.8000 0.1500 0.9500 0.9504 0.1137 0.9911

Human body temperature sensor 0.8000 0.1500 0.9500 0.9054 0.1157 0.9914

accuracy of the sensors. So, we used high-quality sensors for this project. The performance
analysis of the individual sensors is presented in Table 3. The International Standard Orga-
nization (ISO) has fixed the minimum true positive rate (TPR), maximum false positive rate
(FPR), and minimum accuracy level requirements for any sensor [58] to be considered as an
acceptable sensor. So, a liberal comparison is also performed in Table 3. In the following,
the experimental setup and the context of the experiments are described.

4.1 Data description

Shubhchintak deals with patients data directly similar to [2]. A number of volunteers were
engaged for the experiments. These volunteers are drawn from the patient data-base of a
local hospital. These volunteers wore fitness band and then, data were collected. The data
so collected was used as a dataset. Thus, the data set on which experiments were carried
out are real-life and much more reliable than any benchmark data set. The detail of the
experimental setup is explained in the following subsections.

4.2 Experimental setup and environment

Firstly, the fitness band is designed according to the Fig. 4 with the required components
shown in Fig. 3. Not only that, to show the adaptative capability of the design, this experi-
ment is also carried out through Mi fitness band. Once the fit-band design is implemented,
the next phase is to design the android application. The Shubhchintak application is devel-
oped using the Android Studio IDE. The application is run on an Intel i5 Core processor
with 8GB RAM and 2GB NVIDIA Graphics Card. In the next step, the sensors’ data are
sent to Google Cloud for anomaly detection and feedback generation through pre-trained
NLP. The details of this cloud architecture is mentioned in Table 6. All machine learning
models have been developed using python tensor-flow framework. Anandroid smartphones
are used to test the developed architecture.

4.3 Android application

The application is developed based on the descriptions of Section 3.1. It collects data from
the fitness band and processes the data in real-time. It contains 4 main pages. The first is the
login page. The user enters the username and the password. Based on the saved logins they
can use prime and nonprime features. Prime users have to pay charges for cloud processing.
Features of the android application are shown in Figs. 8 and 9.
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Fig. 8 (a) Login page (b) Main page (c) Chatbot assistant (d) Geo-Sensing (e) Health data (Heart Rate and
Step Count) and (f)Auto calling screen of the Shubhchintak application

Fig. 9 Health data of the shubhchintak application. (a)Heart Rate,(b) Step Count (c) Blood Oxygen Level,
(d) Basic Metabolism Rate, (e) Monthly Health Condition (f) Temperature
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Table 4 Performance analysis of the anomaly detection model

Block Min Accuracy Accuracy Min F1-score F1-score Min Success Success rate

size (Shubhchintak) (Shubhchintak) rate (Shubhchintak)

16 × 1 0.8500 0.9843 0.9000 0.9617 0.9000 1

32 × 1 0.8500 0.9854 0.9000 0.9666 0.9000 0.9999

64 × 1 0.8500 0.9824 0.9000 0.9611 0.9000 0.9988

128 × 1 0.8500 0.9888 0.9000 0.9699 0.9000 1

4.4 Anomaly detection

Based on the collected data from Shubhchintak application, anomaly detection is performed
as described in Section 3.3.2. The predicted matrix gives the true positive (TP), false positive
(FP), true negative (TN), and false-negative value (FN) values. From these values, accuracy
(ACC), precision, recall, F1 score, and success rate (SR) are calculated is as follows:

ACC = |T P | + |T N |
|T P | + |T N | + |FP | + |FN | (5)

Precision = |T P |
|T P | + |FP | (6)

Recall = |T P |
|T P | + |FN | (7)

F1Score = 2 · Precision · Recall

P recision + Recall
(8)

SR =
N∑

i=1

δF1Score

N
(9)

Based on the above equations, performance analysis of the anomaly detection model is
calcuated which is presented in Table 4. In [1], researchers made a survey using data mining
techniques and concluded that the acceptance of any machine learning algorithm is based
on the above mentioned parameters. So, if any model obtains higher accuracy, F1-score, and
success rate, the model has a higher acceptance rate.

Fig. 10 True positive rate vs false positive rate and precision-recall curve for anomaly detection model
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Fig. 11 Classification accuracy and cross-entropy loss of anomaly detection model

The comparison is graphically depicted in Fig. 10. This comparison is based on the true
positive rate vs false positive rate and precision-recall curve. The performance of the classi-
fication model (anomaly detection model) is measured within terms of cross-entropy loss,
or log loss. Cross-entropy loss increases as the predicted probability deviates from the actual
one. The cross-entropy loss and accuracy are shown in Fig. 11.

4.5 Trained NLP and feedback

Based on the anomaly classification, a trained chatbot is developed in line with the descrip-
tion of Section 3.3.3. The performance analysis of this chatbot is shown in Table 5. When
the ML model classifies the data as normal, the chatbot returns “You are absolutely fine”
and this message is also delivered to the user. If the ML model classifies the data as
slightly abnormal then the chatbot returns “The health condition is not too worried but take
medicines in time.” If the ML model classifies the data as moderately abnormal, the chatbot
directly informs the admin about users’ health condition in detail and raises an SOS to alarm

Table 5 Performance analysis of the chatbot feature

Block Min. Accuracy Min. F1-score Min. success Success rate

size accuracy (Shubhchintak) F1-score (Shubhchintak) rate (Shubchintak)

16 × 1 0.8500 0.9843 0.9000 0.9617 0.9000 1

32 × 1 0.8500 0.9854 0.9000 0.9666 0.9000 0.9999

64 × 1 0.8500 0.9824 0.9000 0.9611 0.9000 0.9988

128 × 1 0.8500 0.9888 0.9000 0.9699 0.9000 1
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to the neighbors. In extreme cases, the chatbot directly calls the doctor/home physician
through the application.

Performance analysis of a chatbot is depicted in Fig. 12.

4.6 Comparison with state of the art approaches

We have carried out a survey of a large number of elderly people some of whom are patients
of a local hospital (Jalpaiguri Super Speciality Hospital). From their experience, we can
conclude that this application is very simple to use and the hardware is comfortable as well.
From the doctors’ point of view, the system has a very less response time and also provides
data with the required accuracy. The proposed approach is compared with Al-Khafajiy et al.
[2], Durán-Vega et al. [18], Paganelli et al. [40], Prabha et al. [43], and Kassem et al. [32].
The parameters of the comparison are as follows: (a) request response time, (b) the number
of messages per latency, (c) scalability and communication cost, and (d) data storage cost
in cloud infrastructure.

4.6.1 Request response time

In this application, request-response time is dependent on hardware as well as software com-
ponents. Time to transfer fitness data from phones or connected sensors in wearable devices
to cloud storage affects response time calculation and it is directly dependent on hardware
components. Similarly, captured fitness data through different sensors need to be processed
before sending it. Storing the data and its analysis using the ML model for decision mak-
ing (i.e., anomaly detection) consumes maximum time. In our experiment, the accumulation
and processing of health data are carried out by our proposed Shubhchintak system for 24

Fig. 12 Performance analysis of the chatbot
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Fig. 13 Comparison analysis based on request-response time

hours. The overall system response time is computed for 3000 requests. Even, we compared
the response time of our proposed system with the reported response times of some exist-
ing systems and the comparison is plotted in Fig. 13. It is observed from the comparison
that the request-response time of the proposed application (i.e., Shubhchintak) is lesser than
the existing applications [2, 18, 32, 40, 43]. Our proposed application Shubhchintak makes
it possible by using optimized network protocol and virtual cloud machine. It comes with

2]

18]

40]

43]

32]

2]
18]

40]
43]
32]

Fig. 14 Comparison analysis based on the number of messages per latency
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some useful features such as: (a) multiuser visualization, (b) network simplicity, and (c)
reduced data packet fault.

4.6.2 Number of messages per latency

Latency means the gap between time of issuing of an instruction for data transfer and the
time when actual transfer of data begins. If the messaging protocol has too much latency, it
reduces the fluency of the overall solution. We count the number of messages per latency of
the proposed application and compare that with the same number of other existing similar
applications. The comparison result is plotted in Fig. 14. In Fig. 14 the yellow line denotes
the latency of the Shubhchintak application and it is always found to have a lower latency
than the existing methodologies.

4.6.3 Scalability and pricing

Next, we check the scalability and price of our application. As we know, a proposed solution
has to be scalable with various types of users. But we have to keep the pricing in the mind.

Table 6 Comparison of the state-of-the-art methods using Google Cloud

Approaches Number of Time needed to build Total cost ($) Cost per year ($)

patients the model (h)

Al-Khafajiy et al. [2] 500 1:05 2.88 34.56

1000 2:15 5.76 69.12

1500 3:14 8.64 103.68

2000 4:10 11.52 138.24

Duran-Vega et al. [18] 500 1:01 2.66 31.92

1000 2:05 5.55 66.6

1500 3:12 8.22 98.64

2000 4:05 11.1 133.2

Paganelli et al. [40] 500 1:21 2.76 31.72

1000 2:25 5.75 66.77

1500 3:22 8.72 98.74

2000 4:25 11.71 133.72

Prabha et al. [43] 500 1:31 2.86 31.52

1000 2:35 5.85 66.47

1500 3:32 8.82 98.64

2000 4:35 11.81 133.32

Kassem et al. [32] 500 1:41 2.16 31.72

1000 2:55 5.35 66.97

1500 3:72 8.92 100.74

2000 4:65 11.71 143.72

Shubhchintak 500 0:55 2.22 26.64

1000 1:50 5.11 61.32

1500 2:55 7.55 90.6

2000 4:00 9.88 118.56

Data centre location = lowa); Number of vCPU = 1; RAM Size = 8 GiB; EBS Bandwidth = Upto 10 Gbps;
NVIDIA� Tesla� P4 GPU cost = $0.60; 1 year commitment price = $0.378 per hour
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Fig. 15 Comparison of the scalability and pricing with state-of-the-art-approaches

As scalability increases, pricing also increases. People need a low-cost product with higher
scalability. Shubhchintak meets such needs. Though we have used our own fitness band, this
application is also compatible with other fitness bands like MI Band [57], HONOR band
[28], Samsung band (https://www.samsung.com/global/galaxy/galaxy-fit/), Apple band [6]
etc. And we use the Cloud only for non-prime users; this policy reduces cost for many
users. We estimate the prices, based on 500, 1000, 1500, and 2000 connected patients and
our estimated costs are compared with the prices for the same number of connected patients
for existing prototypes as reported in [2, 18, 32, 40, 43]. As we are unable to know the
configuration of the cloud of the other state of the art approaches, we prepare their model
as suggested in [2] and [18] and run in the cloud services available to us. Table 6 and
Fig. 15 help to understand the scalability and pricing of our implementation in google cloud
configuration and provides a comparison with state-of-the-art approaches.

4.6.4 Data storage cost

Last but not the least, we need proper data storage to store the data for future uses. But the
storage cost has to be kept in mind. The number of users is strictly increasing as well as the
volume of data. But we cannot lose a single bit of data as health data is very sensitive. To
achieve low-cost data storage, virtual storage provides a huge database with globalization
and storage center. Here data are distributed to plurality nodes of multiple disks. This virtual
storage also provides high-speed read-write service and as it reduces the hardware usage, it
saves the hardware cost. In comparison with the existing methodologies, the cost reduction
of the Shubhchintak application is shown in Fig. 16.

From Fig. 13, it is observed that Shubhchintak has very less response time than other
two recently proposed methods. Also in Fig. 14, it is observed that Subhachintak has a
lower latency as the yellow line converges much faster than the blue and orange line and
from Fig. 15, we can conclude that the Shubhchintak application has higher scalability and
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Fig. 16 Comparison of data storage cost

less cloud pricing than the existing methods [2, 18, 32, 40, 43]. Figure 16 states that the
Shubhchintak application uses less storage than others. So, from these comparisons, we can
clearly conclude that Shubhchintak is a cost effective, more accurate, and more efficient
solution than other existing applications.

5 Conclusions

In this article, we have implemented a novel framework for remote health management of
elderly people. The proposed system monitors their health parameters and and provides
real-time feedback according to their health condition. This solution is an IoT-based app that
tracks the health conditions of the old age people in real-time and inform their guardians
in case of any problems. It can also remind the patients about taking timely medicines and
taking a walk in the evening as suggested by the doctor. The app also functions as an SOS
alarm when old people faint anywhere, so as to call people nearby for rescue. If there is
a minor problem, the app will itself provide a solution through the chatbot. The novelty is
that the app can easily be combined with any fit band over Bluetooth and provide real-time
analysis of the problems faced by the Elders. Our implementation is very easy to use and
cost effective.

Moreover, our application, Shubhchintak has very less response time, better latency,
higher scalability with less cloud pricing and it incurs less storage cost than recently reported
applications. Even, our experimental results state that Shubhchintak gives a much more
accurate and better performance than other existing applications.

The proposed application may be improved further by making it more energy efficient,
secured towards medical data and enabling it to detect conditions like depression level which
is very important in the times of covid-19 pandemic.
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34. Khoi NM, Saguna S, Mitra K, Áhlund C (2015) IReHMo: an efficient IoT-based remote health monitor-
ing system for smart regions. In: 2015 17th international conference on e-health networking, application
& services (HealthCom), pp 563–568. https://doi.org/10.1109/HealthCom.2015.7454565

35. Kole A et al (2019) Epidemiologic features of heart failure patients in Rural Central India. Circulation
140(Suppl 1):A15732–A15732

36. Kong D, Cen L, Jin H (2015) Autoreb: automatically understanding the review-to-behavior fidelity
in android applications. In: Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security

37. Maiolo C, Mohamed EI, Fiorani CM, De Lorenzo A (2003) Home telemonitoring for patients with severe
respiratory illness: the Italian experience. J Telemed Telecare 9(2):67–71

38. Majumder S, Mondal T, Jamal Deen M (2017) Wearable sensors for remote health monitoring. Sensors
17(1):130

39. Nienhold D, Dornberger R, Korkut S (2016) Sensor-based tracking and big data processing of patient
activities in ambient assisted living. In: 2016 IEEE international conference on healthcare informatics
(ICHI). IEEE, pp 473–482

40. Paganelli AI, Velmovitsky PE, Miranda P, Branco A, Alencar P, Cowan D, Endler M, Morita PP (2021)
A conceptual IoT-based early-warning architecture for remote monitoring of COVID-19 patients in
wards and at home. Internet of Things:100399

41. Pandya S, Mistry M, Kotecha K, Sur A, Ghanchi A, Patadiya V, Limbachiya K, Shivam A (2021) Smart
aging wellness sensor networks: a near real-time daily activity health monitoring, anomaly detection and
alert system. In: Proceedings of second international conference on computing, communications, and
cyber-security. Springer, Singapore, pp 3–21

42. Pardeshi V, Sagar S, Murmurwar S, Hage P (2017) Health monitoring systems using IoT and Raspberry
Pi—a review. In: 2017 international conference on innovative mechanisms for industry applications
(ICIMIA). IEEE, pp 134–137

43. Prabha D, Darshini B, Soundariya K (2021) IoT application for safety and health monitoring system
for construction workers. In: 2021 5th international conference on trends in electronics and informatics
(ICOEI). IEEE, pp 453–457

44. Rumelhart D, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors.
Nature 323(6088):533–536

45. Saha J, Saha AK, Chatterjee A, Agrawal S, Saha A, Kar A, Saha HN (2018) Advanced IOT based
combined remote health monitoring, home automation and alarm system. In: 2018 IEEE 8th annual
computing and communication workshop and conference (CCWC). IEEE, pp 602–606

46. Saha R, Biswas S, Sarmah S, Karmakar S, Das P (2021) A working prototype using DS18b20
temperature sensor and arduino for health monitoring. SN Computer Science 2(1):1–21

47. Scalvini S, Zanelli E, Volterrani M, Martinelli G, Baratti D, Buscaya O, Baiardi P, Glisenti F, Giordano
A (2004) A pilot study of nurse-led, home-based telecardiology for patients with chronic heart failure. J
Telemed Telecare 10(2):113–117. https://doi.org/10.1258/135763304773391576

48. Srinivasulu A (2016) Measurement and wireless data transmission of heart rate using pulse sensor. Indian
Journal of Mednodent and Allied Sciences:126–131

37161Multimedia Tools and Applications (2022) 81:37137–37163

https://www.apple.com/in/watch/
https://developers.google.com/fit/overview
https://www.hihonor.com/global/products/accessories/honorband5/
https://www.hihonor.com/global/products/accessories/honorband5/
https://doi.org/10.1016/j.matpr.2021.01.074
https://doi.org/10.1109/HealthCom.2015.7454565
https://doi.org/10.1258/135763304773391576


49. Taleb N et al (2016) Comparison of two continuous glucose monitoring systems, Dexcom G4 Plat-
inum and Medtronic Paradigm Veo Enlite System, at rest and during exercise. Diabetes Technology &
Therapeutics 18(9):561–567

50. Valliappan S, Mohan BPR, Kumar SR (2017) Design of low-cost, wearable remote health monitoring and
alert system for elderly heart patients. In: 2017 International conference on iot and application (ICIOT),
Nagapattinam, pp 1–7. https://doi.org/10.1109/ICIOTA.2017.8073612

51. Vedaei SS, Fotovvat A, Mohebbian MR, Rahman GM, Wahid KA, Babyn P, Marateb HR, Mansourian
M, Sami R (2020) COVID-SAFE: an IoT-based system for automated health monitoring and surveillance
in post-pandemic life. IEEE Access 8:188538–188551

52. Verma P, Sood SK (2018) Fog assisted-IoT enabled patient health monitoring in smart homes. IEEE
Internet of Things Journal 5(3):1789–1796

53. Vitacca M, Assoni G, Pizzocaro P et al (2006) A pilot study of nurse-led, home monitoring for
patients with chronic respiratory failure and with mechanical ventilation assistance. J Telemed Telecare
12(7):337–342

54. Wani RT (2019) Lifestyle medicine and use of technology in current healthcare. BMJ Innovations
5(4):135–135

55. Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78(10):1550–
1560
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