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Abstract
This paper addresses the task of fine-grained label learning in object detection with the weak
supervision of auxiliary information attached to images. Most of the recent work focused
on the label prediction for objects in the same category space as in training data under the
fully-supervised learning framework and cannot be expanded to the learning of more fine-
grained categories that have not been defined in training sets. In this paper, we propose a new
weakly-supervised learning approach, called label inference curriculum network (LICN),
to detecting objects and learning their fine-grained category labels based on supervision of
captions via curriculum learning. First, we build a semantic mapping based on embedding
techniques and a knowledge base to measure the correspondence between coarse labels and
fine-grained label proposals; second, we introduce a label inference curriculum network,
which ranks the order of training samples by the complexity of samples. We construct two
datasets, namely FG-COCO and FGs-COCO, consisting of both coarse and fine-grained
labels based on MS COCO and Visual Genome to train and test our approach. Experimental
results demonstrate the effectiveness of our proposed LICN model, and LICN-E2C achieves
an improvement of 1.7% mAP with 0.5:0.05:0.95 IoU compared with the LICN-C2E on the
FG-sCOCO test dataset.
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1 Introduction

Visual object detection is a fundamental problem in computer vision research and has a wide
range of applications in real life, such as self-driving vehicles [4] and scene understand-
ing [1]. The performance of an object detector may crucially affect these applications. For
instance, as a downstream task of object detection, scene understanding requires an object
detector to correctly provide the locations of visual objects present in an image and their
class labels. With the renaissance of deep neural networks in recent years, object detection
has been revolutionized by a series of groundbreaking works, including Faster-RCNN [26],
Mask-RCNN [7] and YOLO [25].

Despite these achievements, most deep learning-based methods suffer from an important
limitation: they need to be trained with exhaustive and clean human annotations. These
annotations are expensive as they require humans to mark class labels and locations of
visual objects in images. In order to address the data limitation, researchers seek to relax
this requirement of exhaustively labeled data with a weakly-supervised learning paradigm.
A typical problem of weakly-supervised object detection (WSOD) is to learn an object
detector under the supervision of only a set of class labels assigned to each image (called
image-level labels) [5, 33], where the correspondence between each individual visual object
and a class label (called instance-level labels) is unavailable in the training procedure. In
general, it requires the labels to be precise. More specially, each visual object in the image
has a correct class label belonging to the image-level labels.

Another type of WSOD is to learn object detectors with the supervision of user-generated
data on web sources, e.g., social media services like Flickr and Twitter [6, 8]. More and
more people tend to share pictures with user-generated tags (or captions) on social media.
The user-generated textual data can be seen as natural annotations of the images, providing
a weak supervision, for the WSOD problem. It is a cheap way to address the constraint
of annotations and increase the scale of datasets near-infinitely. Different from image-level
labels, the user-generated natural annotations (tags or captions) consist of a lot of inaccurate
or irrelevant terms to supervise the learning of object detectors. Previous works have shown
that the weakly-supervised learning can be performed well based on the noisy labels [10,
31]. Misra et al. [23] and Zhang et al. [38] addressed the WSOD problem based on the
supervision of captions associated with images. However, the user-generated textual data
tend to consist of a diversity of words (of the same semantics), different from the ground-
truth label, to describe the same visual object in images. In addition, the words in captions
may possess more fine-grained semantics than the class labels in some public datasets,
because the latter are determined in a pre-defined label space. For example, Fig. 1 shows
multiple image captions that describe the same object (marked by a red bounding box) in the
image with different key words (i.e., person and man) than the predefined class label (i.e.,
person). It is clear that the word “man” is more fine-grained than “person” in describing this
object. In addition, we also find in other examples that there are often multiple visual objects
of the same class existing in an image, which may cause the ambiguity of correspondence
between visual objects and key words in captions.

In this work, we focus on a new WSOD problem, called fine-grained label learning, dif-
ferent from the typical problems introduced above. Suppose we have a set of data consisting
of the paired images and captions, as shown in Fig. 1, as well as a coarse label assigned
to each visual object as ground truth in training sets. We aim to detect objects and learn
the fine-grained labels under the joint supervision of the coarse label for an object and cap-
tions for an image. The problem has the following two characteristics. The fine-grained
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Fig. 1 An illustration of the image-caption pair. For an image, the location of objects (bounding boxes), the
corresponding coarse labels, and the attached captions are provided in the datasets for training. In general,
the captions consist of a set of fine-grained label proposals for the objects in the image

labels extracted from captions are considerably weak, noisy and ambiguous. Second, the
uncertainty of correspondence between visual objects and fine-grained labels, caused by
noise and ambiguity in the supervision of captions, is different among the examples. This
uncertainty results in different difficulties in learning the fine-grained labels for different
examples. Thus, the order of data sequence being fed to models may affect the learning
performance. To address the problem, this paper formulates the task of fine-grained label
learning with the joint supervision of coarse labels and captions and proposes a novel
approach called label inference curriculum network (LICN). First, we build a semantic
mapping that provides a correspondence between the coarse labels and fine-grained label
proposals coming from captions based on embedding techniques and a knowledge base.
Furthermore, we design a curriculum learning process for the Faster R-CNN backbone to
detect visual objects and learn the fined-grained labels. To determine the order of training
data in the curriculum learning process, we define a term, called the complexity of samples
(CoS), that measures the difficulty of learning fine-grained labels for each example.

In summary, our contributions are four-fold.

1. We introduce and formulate the problem of fine-grained label learning with the joint
supervision of the coarse category labels and captions.

2. We build a semantic mapping between the coarse labels and fine-grained label
proposals coming from captions based on embedding techniques and a knowledge base.

3. We propose a novel approach called LICN and design the weakly-supervised curricu-
lum learning process for improving the learning performance, where the complexity
of samples (CoS) is defined to determine the order of training data in the curriculum
learning process.

4. We construct two datasets, namely FG-COCO and FGs-COCO, consisting of both
coarse and fine-grained labels based on MS COCO and Visual Genome to train and test
our approach. Experimental results demonstrate the effectiveness of our proposed LICN
model, and LICN-E2C achieves an improvement of 1.7% mAP with 0.5:0.05:0.95 IoU
compared with the LICN-C2E on the FG-sCOCO test dataset.

The rest of this paper is organized as follows. Section 2 presents a brief overview of
related work. Section 3 formulates the problem of fine-grained label learning and intro-
duces our approach in details. Section 4 provides the experimental results and analysis, and
Section 5 concludes the paper.
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2 Related work

We review the related work in terms of lexico-semantic analysis, weakly-supervised object
detection and curriculum learning.

2.1 Lexico-semantic analysis

In the widely-used public image datasets, there is typically a semantic gap between the
human-written captions and the categorical annotations of the objects in the images. For
example, as shown in Fig. 1, the annotation of the object in the red box is “person” while
the caption uses the word “man”. A variety of lexico-semantic methods have been proposed
to bridge this semantic gap. These methods can be divided into two categories: knowledge-
based methods and corpus-based methods [27, 30]. Knowledge-based methods rely on
external semantic resources (thesauri or lexical knowledge bases) to identify similarities
between two words. For example, WordNet [32] is used to measure the semantic distance
between a pair of words. Although these semantic bases are interpretable and effective, they
lack the consideration of the context information and work only for the words present in the
lexicon.

Due to the limitations of knowledge-based methods, corpus-based methods are then pro-
posed to utilize context information around the center words. Current corpus-based methods
seek to learn vector representations (called embeddings) based on the contexts of words
in a large text collection. The word embedding learning research mostly uses a statistical
description of the context [2, 16]. Word2Vec [21, 22] is a popular model for text representa-
tion, which transforms words into a K-dimensional embedding space based on the context
and measures the semantic similarity of two words using their distance in the embedding
space. Li et al. [18] proposed to utilize a transferred vector for the representation of a word
to reveal its semantics better, not just relying on its own embedding. In our work, we jointly
utilize WordNet and Word2Vec to build a semantic mapping between the pre-annotated
coarse labels and the fine-grained label proposals coming from captions.

2.2 Weakly-supervised object detection

Object detection is a fundamental task in a lot of applications, such as scene semantic
recognition [37] and self-driving vehicles [4]. In recent years, more and more researchers
have paid much attention to weakly-supervised object detection. In general, this task aims
to detect objects from images based on the supervision of a set of image-level labels [11,
29, 39]. Most existing methods formulate this task as a multiple instance learning (MIL)
problem. In this case, MIL considers the visual objects in an image as a bag of instances
associated with a label (a set of labels). Oquab et al. [24] and Zhou et al. [40] proposed
a global average (max) pooling layer to learn class activation maps. Bilen et al. [5] pro-
posed a weakly-supervised deep detection network (WSDDN) containing classification and
detection data streams, where the detection stream weighs the results of the classification
predictions. Kantorov et al. [15] improved WSDDN by considering the context informa-
tion. Tang et al. [28, 29] jointly trained multiple refining models together with WSDDN
and showed the benefit from the online iterative refinement. Diba et al. [7] and Wei et al.
[35] applied a segmentation map and Wan et al. [33] incorporated saliency to improve the
performance of weakly-supervised object detection.

To the best of our knowledge, the above existing WSOD methods have not involved
captions, a type of weaker supervisory information than exact image-level labels, in object
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detection. Ye et al. [36] harvested detection models from free-form text and used a label
inference module to amplify signals in the free-formed texts to supervise the learning of
a multiple instances detection network. Jerbi et al. [14] proposed a learning procedure
that extracts textual scene graphs from captions and use them within a weak supervision
framework to learn object detectors.

Our work is similar to the above works in terms of the MIL weighted representation for
the visual objects in an image. However, we go one step further to successfully adopt a more
challenging supervision scenario where the captions are utilized as the weak supervision for
learning fine-grained labels in the task of object detection.

2.3 Curriculum learning

Bengio et al. [3] proposed the curriculum learning method that designs a learning order
by measuring the complexity of data in feature space. Guo et al. [12] proposed a method
called CurriculumNet, which allows for an efficient implementation of curriculum learning
on large-scale web images, resulting in a high-performance CNN model. The order of the
curriculum learning reduces the negative impact of noisy labels substantially. Wang et al.
[34] addressed the object detection problem by learning an effective object detector using
weakly-annotated images with curriculum learning. Hacohen et al. [13] analyzed the effect
of curriculum learning, which involves the non-uniform sampling of mini-batches, on the
training of deep networks. In this paper, we determine the order in the curriculum learning
process by measuring the degree of complexity of samples in fine-grained label learning.

3 Methodology

3.1 Overview

In this paper, we are given a set of data pairs, each consisting of an image and its captions.
Formally, we have Dtr = {(Ii ,Ri ,LI

i , Ci)}Mtr

i=1 and Dte = {(Ii ,LI
i , Ci)}Mte

i=1 as the training
set and test set, respectively, where Ii and Ci denote the i-th image and caption, respectively,
and LI

i = {lIi1, lIi2, · · · , lIimi
} refers to the annotations of Ii , each considered as a coarse

category label and assigned to one of the mi visual object regions Ri = {ri1, ri2, · · · , rimi
}

segmented from this image. The caption Ci consists of a set of entities that generally provide
more fine-grained category information than LI

i for the visual object regions Ri . We extract
them from captions as fine-grained label proposals, denoted by LC

i = {lCi1, lCi2, · · · , lCini
}.

In this manner, we have a coarse label vocabulary VI and a fine-grained label proposal
vocabulary VC that consist of all coarse labels and fine-grained label proposals, respectively,
where lIi· ∈ VI and lCi· ∈ VC . Regarding the labels, we make two observations: 1) The
label proposals LC

i from captions are generally more fine-grained than the coarse category
labels LI

i preassigned to the visual object regions; 2) the correspondence at the granularity
of instances (i.e., between a fine-grained label proposal lCi· and a visual object region ri·) is
missing. An example can be seen in the second image of Fig. 2a. It is in this image unknown
which region corresponds to the fine-grained label “man” or “woman” extracted from the
captions.

We aim to learn and infer the fine-grained label li· ∈ VI ∪ VC for each visual object
region based on the supervision from the training data Dtr . As illustrated in Fig. 2, our
framework includes two main processes: semantic mapping and curriculum learning-based
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Fig. 2 The framework of the proposed LICN approach. (a) The approach takes cross-media data in the form
of image-captions pairs as the input, where each coarse label is individually assigned to a visual object and
captions are associated with an image. (b) The semantic mapping module builds a correspondence between a
coarse label and a set of fine-grained label proposals extracted from captions based on embedding techniques
and knowledge bases. (c) We use the Faster R-CNN as the backbone of object detection, and introduce the
curriculum learning process in the fine-grained label learning with the consideration of the complexity of
samples. (d) The classifier is used to predict fine-grained labels

fine-grained label learning. In the semantic mapping, we extract the entities from captions
as the fine-grained label proposals lCi· ∈ VC , and measure the semantic similarity between
the extracted label proposals and the coarse labels lIi· ∈ VI based on the combination of the
knowledge base WordNet and data-driven embedding techniques. To learn the fine-grained
label for each object, we propose a curriculum learning-based method to train the model by
adding data in ascending order of example complexity.

3.2 Semantic mapping

The purpose of semantic mapping is to build the relationship between the coarse label lIi·
and the fine-grained label proposals lCi· by measuring their similarity over the training set.
We extract all nouns from captions with the CoreNLP toolkit [20] as the candidates for the
fine-grained label proposals. In order to get a semantic mapping, we pass three steps.

3.2.1 Semantic mapping based on knowledge base

We employ WordNet as the knowledge base to measure the semantic similarity between
the coarse labels and fine-grained label proposals. WordNet can represent relations between
word senses with an ontology. For a coarse label lIi·, we obtain the synset Wkb(l

I
i·) from

WordNet in the form of:

Wkb(l
I
i·) = {Hper(l

I
i·),Hpon(l

I
i·), Snon(l

I
i·)}, (1)

where Hper(·), Hpon(·) and Snon(·) refer to the hypernym, hyponym and synonym,
respectively, for a given word in the WordNet.
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3.2.2 Semantic mapping based on embedding

We use Word2Vec as the embedding technique to measure the similarity of labels in VI ∪
VC . We fine-tune the pre-trained Word2Vec model [21] on all captions in the data. By
our analysis, the coarse labels preassigned to visual object regions all appear in captions
of the public dataset used in experiments. Thus, we can obtain the feature vector of each
coarse label in the embedding space generated using Word2Vec. As the fine-grained label
proposals are extracted from the captions, we can obtain the feature vectors of fine-grained
labels as well. For a coarse label lIi· and a fine-grained label proposal lCi· , we achieve their
de-dimensional feature vectors lIi· and lCi· , respectively. The similarity between two vectors
in the embedding space is measured by the cosine similarity S(·, ·).

3.2.3 Building the semantic mapping

As analyzed above, we build a semantic mapping between the coarse label lIi· and the fine-
grained label proposal lCi· with the following matrix:

W(lIi·, lCi· ) =
{

1, if lCi· ∈ Wkb(l
I
i·) and S(lIi·, lCi· ) > ε

0, otherwise
, (2)

where ε is a threshold in [0, 1]. With (2), we can find one or multiple fine-grained
label proposals that are semantically similar to a preassigned coarse label. Since a visual
object region strictly corresponds to a coarse label in the dataset, we can achieve a weak
correspondence between visual object regions and fine-grained label proposals.

3.3 Fine-grained label learning based on curriculum learning

In the following subsection, we will find that the examples are of different difficulties to
learn and infer the fine-grained labels. Therefore, we perform the fine-grained label learning
based on the curriculum learning framework.

3.3.1 Backbone for object detection

Based on the semantic mapping introduced in Section 3.2, we have achieved the corre-
spondence between each visual object region ri· in the i-th image and one or multiple
fine-grained label proposals (i.e., a subset of LC

i ). Without ambiguity, we re-denote them
by rk and L̃C

k by removing the subscript i indicating the index of images, where k is the
index of a visual object region in the dataset, rk ∈ Ri and L̃C

k ⊂ LC
i . Thus, our objective is

to localize the visual object and learn its fine-grained label with the weak supervision of a
set of fine-grained label proposals L̃C

k to the visual object region rk .
We use the Faster R-CNN model [26], denoted by Fdet (Ii), as the backbone of our work.

Faster R-CNN consists of three modules: a convolutional neural network for generating the
feature map of an image, a region proposal network (RPN) for generating a set of rectangular
object proposals based on the feature map, and a classifier for learning the category label of
each region. The output of the backbone can be described as follows:

(Pi ,Ri ) = Fdet (Ii), (3)

where Ri = {rij }mi

j=1 denotes the set of mi visual object regions extracted from the
image Ii , in which the location of each region is described by four coordinates of the
bounding box, and Pi = [pi,1,pi,2, · · · ,pi,mi

] denotes the probabilities that all object
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regions in Ri are predicted to categories. Without ambiguity, we rewrite pi,j as pk =
[pk,1, pk,2, · · · , pk,CC

]T by ignoring the index of images, where pk,c denotes the proba-
bility that a visual object region rk is categorized into the c-th class and CC denotes the
cardinality of VC (the same as the cardinality of VI ∪ VC since the coarse labels all appear
in the fine-grained label proposals). In our work, we define the space of categories with the
fine-grained label proposals, i.e., VC .

3.3.2 Curriculum learning

Curriculum learning [3] aims to formalize the learning process of humans and animals and
organize it in a meaningful order to train models. The basic idea is to start learning easier
aspects of the task or easier subtasks, and then gradually raise the level of difficulty. By
using the concepts of “easy” and “hard” instances, curriculum learning is an efficient learn-
ing framework that imposes a structure on the training set. Dealing with noise and outliers
has recently been the subject of curriculum learning. Designing or defining an effective
learning order for each sample in the training dataset is the most crucial challenge. In this
paper, we define the complexity of samples and employ curriculum learning to learn the
fine-grained labels of objects.

3.3.3 The complexity of samples

Different samples have different difficulties in fine-grained label learning. For example, if
there is only an object region annotated with the coarse label “person” in an image and only
a fine-grained label proposal “man” in the caption is related to the coarse label according
to the semantic mapping in (2), it is easy to infer the fined-grained label for the object
region. In contrast, if there are multiple fined-grained label proposals corresponding to the
coarse label according to the semantic mapping, it is much more difficult to discriminate
which one is the true fine-grained label of the object region. We introduce a term called the
complexity of samples (CoS) to describe the difficulty in the task. We define the CoS of a
sample Di ∈ D as follows:

HCoS(Di) = −
∑
lIi·

∑
lCi·

Pr(lCi· |lIi·)log(Pr(lCi· |lIi·)), (4)

where Pr(lCi· |lIi·) is the conditional probability of the fine-grained label proposal lCi· given the
coarse label lIi· and can be achieved by:

Pr(lCi· |lIi·) = W(lIi·, lCi· )∑
lCi· ∼lIi·

W(lIi·, lCi· )
, (5)

where lCi· ∼ lIi· denotes all fine-grained label proposals lCi· related to the coarse label lIi·
according to (2). As shown in (4), CoS is defined based on the Shannon’s Entropy that
is mainly used to measure the uncertainty of a discrete random variable. In this work, we
consider lIi· as the random variable and lCi· as its values with non-zero probability. If more
fine-grained label proposals are related to the coarse label, the correspondence between
them is more uncertain and the fine-grained label learning is thus more intractable. More-
over, if there are multiple visual objects detected in an image, the CoS tends to be a larger
value accordingly based on (4).
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3.3.4 Curriculum learning process

Based on the semantic mapping, we have obtained the fine-grained label proposals L̃C
k

for each visual object region rk . Here we transform L̃C
k to a binary vector yk =

[yk,1, yk,2, · · · , yk,CC
]T ∈ {0, 1}CC . yk,c = 1 (yk,c = 0) means the c-th fine-grained label

proposal of VC is present (absent) in L̃C
k .

In the curriculum learning process, the training data are fed to Faster R-CNN in the order
of easy samples (i.e., with low CoS) to hard samples (i.e., with high CoS). The loss of
fine-grained label learning is defined as follows:

Lk
ws =

CC∑
c=1

yk,c · log pk,c + (1 − yk,c) · (1 − log pk,c), (6)

where Lk
ws refers to the weakly supervised loss. The difference from the original Faster

R-CNN is that the ground truth of label vector, i.e., yk , may consist of multiple ones
corresponding to multiple fine-grained label proposals, rather than being a one-hot vector.

4 Experimental results and discussion

In this section, we evaluate the effectiveness of the proposed model LICN by answering
the following two questions. Q1: How reasonable is the semantic mapping for this weakly-
supervised object detection model? Q2: How effective the proposed LICN approach is in
terms of the fine-grained label learning based on weakly-supervised paradigm learning?

4.1 Experimental setup

For the experimental setup, we first describe the datasets and then the implementation
details.

4.1.1 Datasets

In order to compare with previous works, our experiments are conducted on three widely
used public datasets: the MS COCO 2017 dataset [19], Visual Genome [17], and the Pascal
VOC 2007 test dataset [9]. Table 1 shows an overview of these datasets.

Table 1 An overview of the datasets

Datasets # of images # of categories # of objects

Visual Genome 107,228 80,138 3,909,697

MS COCO 118,287 80 860,001

FG-COCO 118,287 169 860,001

sCOCO training 76,631 69 200,962

FG-sCOCO training 76,631 150 200,962

FG-sCOCO test 13,175 150 29,169

FG-sCOCO val. 2,000 150 14,090

Visual Genome test 54,212 150 496,809

6565Multimedia Tools and Applications (2023) 82:6557–6579



– The MS COCO 2017 dataset contains 118,287 training images and 5,000 validation
images. It provides 5 captions per image and a total of 80 category labels for the object
regions segmented from all the images. The category labels are utilized as the coarse
labels LI

i and the captions are used for extracting fine-grained label proposals LC
i for

image Ii and building the semantic mapping.
– Visual Genome contains 107,228 images, 3,909,697 objects from 80,138 categories, and

other information such as the relationships between objects. Visual Genome consists of
much more fine-grained categories than MS COCO and is thus employed for testing the
performance of fine-grained label learning with the category labels as the ground truth.

– The Pascal VOC 2007 test dataset has 4,952 images and 20 categories of objects. It is
utilized as the test dataset.

As MS COCO 2017 dataset contains both the annotations of visual objects and the cap-
tions associated with each image, we employ it as the training dataset. The Visual Genome
dataset [17] provides a large number of fine-grained category labels, and more than one
half of images in the dataset also appear in the MS COCO 2017 dataset. We construct our
test dataset based on the images appearing in both the MS COCO 2017 and Visual Genome
datasets to evaluate the performance of our approach. We construct the following datasets
for training and testing our approach:

– FG-COCO: We replace the coarse category labels of the objects in each image in MS
COCO with the fine-grained label proposals appearing in the corresponding caption
based on the semantic mapping and thus obtain FG-COCO. A total of 169 fine-grained
category labels (including the original coarse labels from MS COCO and new fine-
grained category labels) are generated for the objects in the dataset.

– FG-sCOCO test dataset: For an image appearing in both MS COCO and Visual
Genome, if the Intersection over Union (IoU) between two bounding boxes separately
provided by the two datasets is larger than 0.90, we keep the image as an example of the
FG-sCOCO test dataset. The bounding box surrounding a visual object is provided by
MS COCO and the corresponding fine-grained labels are provided by Visual Genome
as the ground truth of locations and labels, respectively. In the generation of ground-
truth labels, we only keep those fine-grained labels in Visual Genome that also appear
in the captions in MS COCO. We randomly choose 2000 images from the set for val-
idation (called FG-sCOCO val. as shown in Table 1), and the rest is for the test. As a
result, the FG-sCOCO test dataset consists of 13,175 images and 29,169 objects of 150
fine-grained categories.

– FG-sCOCO training dataset: It is a subset of FG-COCO, which excludes all the images
appearing in the FG-sCOCO test and FG-sCOCO val. dataset. This dataset consists of
76,631 images and 200,962 objects of 150 fine-grained categories. To make the learning
robust, we keep only the categories consisting of more than 200 examples of object
regions in the dataset.

– sCOCO training dataset: As a subset of MS COCO, it consists of all the images in
FG-sCOCO training dataset, and the bounding boxes and category labels are from MS
COCO. As a result, the dataset consists of 76,631 images and 69 coarse labels for
200,962 objects.

– Visual Genome test dataset: Different from the FG-sCOCO test dataset, the Visual
Genome test dataset is the subset of Visual Genome that excludes all the images appear-
ing in MS COCO. In this dataset, we only keep those objects whose category labels
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appear in the FG-sCOCO training dataset. As a result, the dataset consists of 54,212
images and 496,809 objects of 150 fine-grained categories.

The following is an analysis of the building of the FG-sCOCO test dataset. In general,
for the same object in an image, we generally have a high IoU between the bounding boxes
separately provided by Visual Genome and MS COCO. As shown in Fig. 3, the paired
bounding boxes with a high IoU value has the same semantics, but may have different object
labels. As Visual Genome has 80K category labels that contain all fine-grained categories,
we use these labels as ground truth to evaluate the semantic mapping (Q1). We illustrate a
few results for different IoU thresholds in Fig. 4. Table 2 shows the effect of different IoU
thresholds on the data. For example, there are 19,702 paired objects with an IoU larger than
0.90 from 15,529 images, and these objects belong to 74 categories in MS COCO and 413
categories in Visual Genome. Considering the count of test data and the object categories,
we will evaluate our model on the FG-sCOCO test dataset with IoU in [0.90, 1]. For the
object detection (Q2), we found that an image in MS COCO has a little difference from the
same one in Visual Genome in terms of the size. We resize the Visual Genome images to
the size of images in MS COCO.

4.1.2 Implementation details

We train the proposed model on two different datasets: FG-COCO and FG-sCOCO, and
thus generate the following four configurations:

– LICN-E2CFG−COCO : learned on the FG-COCO dataset by feeding training examples
from easy to complex;

– LICN-C2EFG−COCO : learned on the FG-COCO dataset by feeding training examples
from complex to easy;

– LICN-E2CFG−sCOCO : learned on the FG-sCOCO training dataset by feeding training
examples from easy to complex;

– LICN-C2EFG−sCOCO : learned on the FG-sCOCO training dataset by feeding training
examples from complex to easy.

Fig. 3 Test data example: (a) shows an example from MS COCO with object bounding boxes and the associ-
ated category labels (red color); (b) shows the same image in the Visual Genome dataset with object bounding
boxes and the associated category labels (blue color); (c), (d) and (e) show the matching between the object
regions from MS COCO and Visual Genome with an IoU value larger than 0.90. We see that “person”
matches to “man”, “chair” to “chair” and “tie” to “tie”
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Fig. 4 IoU example: The red color box and blue color box come from MS COCO and Visual Genome,
respectively, and the IoU value of two different boxes of the same object should be high

In this work, we employ VGG-16 as the basic model of Faster R-CNN due to the fewest
feature memory requests for VGG-16 among the commonly used deep networks. VGG-16
is pre-trained on ImageNet and then fine-tuned on our training datasets. In the process of
fine-grained label learning, we use the stochastic gradient descent (SGD) optimizer with
a momentum of 0.9 and a learning rate of 0.01. We set the maximum epoch to 20 for the
convergence of the learning process. The minibatch size is set to 1 for the flexible feeding
of the examples of different complexity. All experiments are conducted on a platform of 8
Nvidia Titan V GPUs with Pytorch.

4.2 Evaluationmetrics

4.2.1 Semantic mapping

We define a weighted semantic mapping Jaccard index (SMJI) for measuring the closeness
between the fine-grained labels extracted based on semantic mapping and the fine-grained
label ground truth provided in the FG-sCOCO validation set. The weighted SMJI is defined
as follows:

W SMJI =
∑

k

Wk · | LSM
k ∩ LGT

k |
| LSM

k ∪ LGT
k | , (7)

Table 2 The characteristics of MS COCO and Visual Genome with different IoU threshold values

IoU # of images # of objects # of categories in MS COCO # of categories in Visual Genome

0.50 30,983 96,529 79 2,004

0.55 29,337 85,468 79 1,680

0.60 27,621 75,772 79 1,407

0.65 26,118 67,248 79 1,143

0.70 24,890 59,503 78 940

0.75 23,591 51,222 77 787

0.80 21,958 41,848 76 654

0.85 19,603 31,303 76 537

0.90 15,529 19,702 74 413

0.95 7,306 7,957 72 281
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where Wk is a weight, | · | denotes the cardinality of a set, LSM
k and LGT

k denote the
sets of fine-grained labels extracted based on semantic mapping and fine-grained label
ground truth provided in the FG-sCOCO validation set, respectively, corresponding to the
k-th coarse category label, and the operators ∪ and ∩ denote the union and intersection of
two sets, respectively. For example, for the coarse category label “person”, we have LSM

k =
{“guy”, “man”, “person”, “woman”, “someone”} and LGT

k = {“guy”, “man”, “person”,
“skateboarder”, “surfer”, “woman”}. The weight Wk in (7) is defined as follows:

Wk = | LGT
k |∑

k | LGT
k | (8)

Figure 5 reports the weighted SMJI on the FG-sCOCO validation set as the threshold ε

changes. From the figure, we observe that the performance of semantic mapping in mining
the fine-grained labels is optimal when ε = 0.72. Thus, we choose ε = 0.72 in the following
experiments. Figure 6 illustrates the result of semantic mapping that consists of 69 coarse
category labels and 81 fine-grained category labels appearing in the FG-sCOCO validation
set. From the figure, we observe that most fine-grained label proposals extracted from cap-
tions are semantically similar to the coarse labels, while a few noises are introduced by
the semantic mapping. For example, the generated “chicken”, “meat”, “pasta”, “rice” and
“sauce” are not semantically similar to the coarse label “broccoli”. The effect caused by the
noises will be reduced with the curriculum learning process.

In Fig. 7, we illustrate the occurrence frequencies of the category labels (including the
coarse and fine-grained labels) in the FG-sCOCO training dataset and the sCOCO training
dataset, which correspond to the categories with and without semantic mapping, respec-
tively. Due to the large difference in the occurrence frequencies of these categories, we
report the results separately in three subfigures. From the figure, we find that a large number
of fine-grained label proposals are introduced from captions based on semantic mapping.
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Fig. 5 The effect of ε in (2) on the performance of semantic mapping in terms of weighted SMJI on the
FG-sCOCO validation set
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Fig. 6 The result of semantic mapping for the FG-sCOCO validation set, which consists of 69 coarse
category labels (points on the inner circle) and 81 fine-grained category labels (points on the outer circle)

4.2.2 Object detection

We utilize a widely-used metric, namely average precision (AP), to evaluate the per-
formance of weakly-supervised object detection. AP is defined as the average detection
precision under different recalls and usually evaluates the performance in a category specific
manner. To compare performance in overall object categories, the mean AP (mAP) averaged
over all object categories is usually used as the final metric of performance. To measure
the object localization accuracy, we need to check whether the IoU between the predicted
bounding box and the ground-truth bounding box is greater than a predefined threshold of
0.5. Instead of using a fixed IoU threshold, we evaluate our model with AP over the IoU
thresholds from 0.5 (coarse localization) to 0.95 (perfect localization).
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Fig. 7 The comparison of occurrence frequencies of category labels between before and after semantic map-
ping, where the orange bars indicate the occurrence frequencies of the coarse labels in sCOCO training
dataset and blue bars indicate the occurrence frequencies of the labels (either the original coarse labels or
the generated fine-grained label proposals) in our constructed FG-sCOCO training dataset after semantic
mapping. a) Comparison between the coarse label of category “person” and the corresponding fine-grained
labels, b) comparison on 17 coarse categories, and c) comparison on the generated fine-grained categories

4.3 Performance and analysis

4.3.1 FG-sCOCO

We first evaluate our method on the FG-sCOCO validation dataset to analyze the impor-
tance of curriculum learning, where the proposed LICN model is trained on the FG-sCOCO
training dataset.

Figure 8 shows the results of LICN with two different settings, i.e., LICN-E2C and
LICN-C2E, for the FG-sCOCO validation dataset. We find that the LICN-E2C setting
improves the performance of fine-grained label learning. As shown in Fig. 8a, in terms
of the mean AP with 0.5:0.05:0.95 IoU, LICN-E2C performs approximately 0.02 mAP
improvement better than the LICN-C2E model. However, in the Fig. 8b, there is not a clear

Fig. 8 Results of LICN-E2C and LICN-C2E on the FG-sCOCO validation set for different training epochs.
(a) mAP with 0.50:0.95 IoU in steps of 0.05, (b) mAP with IoU over 0.5, and (c) mAP with IoU over 0.75
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difference between the LICN-E2C and LICN-C2E model after 7 epochs in terms of the mAP
with IoU over 0.5. Figure 8c reports the results in terms of mAP with IoU over 0.75, which
shows that LICN-E2C performs approximately 0.03 AP better than the LICN-C2E model.
As IoU means the object location accuracy, IoU close to 1 means that the predicted object
location is close to the ground truth. Thus, Fig. 8 indicates that the improvement is brought
by considering the ascending order of CoS in curriculum learning as the IoU increases.

Table 3 shows a more detailed experimental result on the FG-sCOCO test dataset. In
Table 3, “Avg. Precision, Area S M L” means the average precisions for small (area < 322),
medium (322 < area < 962), and large (area > 962) objects, respectively, where the area
is measured with the number of pixels in the segmentation mask. The table shows that in the
case of 0.75 IoU, the LICN-E2C setting improves the performance by 2.6% compared with
LICN-C2E, which also demonstrates that it is better to learn the fine-grained labels with the
consideration of CoS defined in the “Methodology” section.

4.3.2 VOC 2007

We train our model on FG-COCO and the FG-sCOCO training dataset and test the learned
models on the VOC 2007 test dataset to evaluate the object detection performance. Corre-
spondingly, the Faster R-CNN baseline is trained on MS COCO and the sCOCO training
dataset. Table 4 shows the experimental results for the 20 coarse categories in the VOC 2007
test dataset, where only 18 categories are shown for our model learned on the FG-sCOCO
training dataset as the categories of “diningtable” and “pottedplant” do not appear in the
training set. The table shows a term called ratio, which is defined as the ratio of the number
of occurrences for a category in the training set FG-COCO (FG-sCOCO training) to that in
the training set MS COCO (sCOCO training), and describes the degree of how many objects
in a coarse category have not been re-assigned to a corresponding fine-grained category with
the semantic mapping. The ratio equal to 1 means that no object in MS COCO (sCOCO
training) is re-assigned to a fine-grained category and its coarse label is kept in constructing
FG-COCO (FG-sCOCO training). From the table, we observe that for most of the categories
with the ratio close to 1, such as “car”, “chair”, “dog” and “train”, the proposed LICN-E2C
has better performance than the Faster R-CNN baseline. For these categories, the training
examples are almost the same between FG-COCO (FG-sCOCO training) and MS-COCO
(sCOCO training). The result demonstrates that our approach improves the label inference
performance in the image detection problem. For the categories with a ratio much lower than
1, such as “aero” and “person”, LICN has a lower performance than Faster-RCNN. We note
that in this case, there is a large difference between the training sets for LICN and Faster
R-CNN: FG-COCO (FG-sCOCO training) has a much larger label space and lower train-
ing examples for many categories than MS COCO (sCOCO training), which significantly
increases the difficulty of label learning and inference and thus results in the drop of AP of

Table 3 Average precision (AP) (%) results of LICNs trained on FG-sCOCO training dataset

Method Avg. Precision, IoU Avg. Precision, Area

0.5:0.95 0.5 0.75 S M L

LICN-C2E 21.90 37.00 22.80 15.40 16.80 24.00

LICN-E2C 23.60 37.40 25.40 13.10 19.10 25.30

The results are reported on the FG-sCOCO test dataset
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LICN. It is noteworthy that our LICN-E2C achieves improvements of 0.6% and 1.6% com-
pared with LICN-C2E with the training on FG-COCO and the FG-sCOCO training dataset,
respectively. The results indicate that it is important to train the model in ascending order of
CoS in improving the object detection performance.

4.3.3 Visual Genome

In this subsection, we evaluate the performance of our approach on the Visual Genome
test dataset, where LICN and Faster R-CNN are trained on FG-COCO and MS COCO,
respectively.

Figure 9 reports the comparison results of different methods on the test dataset in three
cases: a) Fig. 9a shows the results for the fine-grained categories that do not appear in MS
COCO and do come from the semantic mapping; b) Fig. 9b is for the coarse categories that
have no corresponding fine-grained labels in the semantic mapping, i.e., the information for
these categories in the training set MS COCO is the same as that in FG-COCO, and ratio =
1; and c) Fig. 9c is for the coarse categories, where different proportions of object samples
with these category labels in MS COCO are re-labeled by new fine-grained labels based
on semantic mapping in building FG-COCO, i.e., ratio ∈ (0, 1). In Fig. 9a, we see that
the proposed LICN-E2C performs better than LICN-C2E for some fine-grained categories,
such as “guy”, “fighter”, “subway”, “branch”, “skateboarder”, “wave”, “tennis”, “bear” and
“television”. The mean AP of the LICN-E2C model over all categories in Fig. 9a is 10.73,
which achieves 0.61 mAP improvement over LICN-C2E (10.12). However, the Faster R-
CNN baseline trained on the coarse categories cannot detect the new fine-grained categories,
i.e., AP = 0 for these categories (the gray bars are not visible for that reason). From
Fig. 9b, we can see that for those coarse categories that have not been re-annotated with
fine-grained category labels, there are no obvious differences between these three models.
As shown in Fig. 9c, for each coarse category in which a proportion of object samples have
been re-annotated with fine-grained labels, Faster R-CNN has a better performance because
its training dataset, i.e., MS COCO, consists of fewer categories and more examples in each
of these categories than the training set of LICN. With the ratio decreasing, LICN obtains
a little performance drop for the coarse categories. A direct reason is that the number of
objects re-assigned from the coarse categories to the fine-grained categories increases in
FG-COCO used for the training of LICN. For those coarse categories with a ratio close to
1, our LICN model can achieve a performance close to Faster R-CNN.

Actually, the problem of fine-grained label learning with the weak supervision of cap-
tions resolved by our approach is more challenging than the object detection and label
inference resolved by the compared method, i.e., Faster R-CNN. The main reason is that the
category space coming from captions in our problem (e.g., 150-dim as shown in Table 1) is
much larger and consists of much more labeling noise than that in the latter problem.

4.3.4 Example illustrations

Figure 10 shows 5 fine-grained categories, namely “man”, “woman”, “plane”, “bike” and
“bat”, predicted in object detection with our approach. For each category, we show 4 repre-
sentative images with top confidence in category prediction. The illustration shows that our
LICN approach can truly predict the fine-grained category labels with the weak supervision
of captions.
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Fig. 9 The comparison of LICNs and Faster R-CNN, where the former is trained on FG-COCO and the lat-
ter on MS COCO. As introduced in Subsection 4.1.1, both datasets consist of the same images. The testing
results are reported for the Visual Genome test dataset. (a) shows the results for the fine-grained categories
whose labels are not appearing in MS COCO. (b) shows results for the coarse categories that have no cor-
responding fine-grained labels in the semantic map, i.e., ratio = 1. (c) shows the results for the coarse
categories where different proportions of object samples are re-labeled by new fine-grained labels with
semantic mapping, i.e., ratio ∈ (0, 1)

Figure 11 shows multiple failure cases of the categories of fruit, animals, etc. From
this figure, we observe that the detected regions can attain a high accuracy, while the fine-
grained label prediction does not work well. We consider that there are two possible factors
resulting in this failure: the appearance of objects and the noise in introducing fine-grained
labels. For example, for the top-left example, we incorrectly predict the object “apple” to
the “orange” category due to the similar appearance between them.
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Fig. 10 Example illustration of 5 fine-grained categories: “man”, “woman”, “bike”, “plane” and “bat”,
which correspond to the coarse categories: “person”, “person”, “airplane”, “bicycle” and “baseball bat”,
respectively. The values next to bounding boxes indicate the confidences of fine-grained label prediction

5 Conclusion and future work

This paper seeks to answer the question of how to learn the fine-grained labels in object
detection with the help of auxiliary information attached to images. In this paper, we propose
a novel approach called label inference curriculum network (LICN) to the problem of fine-
grained label learning with the weak supervision of captions. First, we construct a semantic
mapping that builds a correspondence between the coarse category labels provided by public
datasets and the fine-grained category labels extracted from captions based on the combina-
tion of embedding techniques and knowledge bases. Second, we present the label inference
curriculum network with the consideration of the complexity of samples that describes the
difficulty of fine-grained label learning. To evaluate the performance of fine-grained object
label learning in different aspects, we construct multiple datasets based on widely-used
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Fig. 11 Example illustration of failure cases

public datasets. Experimental results demonstrate the effectiveness of our proposed LICN
model, and LICN-E2C achieves an improvement of 1.7% mAP with 0.5:0.05:0.95 IoU com-
pared with the LICN-C2E on the FG-sCOCO test dataset. This improvement demonstrates
that it is useful to consider the complexity of samples with curriculum learning in the fine-
grained label learning. For the new fine-grained categories, LICN-E2C achieves the result of
10.73% mAP, while the Faster R-CNN baseline cannot work in this case. The experimental
results show the effectiveness of our weakly-supervised learning approach to fine-grained
label learning by considering the complexity of samples with the curriculum learning.
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