Skip to main content
Log in

Reversible data hiding based on global adaptive pairing and optimal 2D mapping set

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Two-dimensional prediction error expansion(2D-PEE) can effectively improve performance of reversible data hiding (RDH) because it can make full use of correlation of predicting errors. Most of the existing 2D-PEE is based on a fixed pairing pattern of adjacent positions. The fixed 2D mapping through experience obtained has the same mapping rules for different texture images, this will limit embedding performance. To address the problem, this paper proposes an RDH scheme based on global adaptive pairing and optimal 2D mapping set. The global adaptive pairing method is adopted to directly pair the ordered prediction error sequence. Since the prediction error pair is not constrained by position, the two-dimensional prediction error histogram (2D-PEH) is sharp. The single 2D-PEH is divided into multiple 2D-PEHs, and the 2D mapping of each sub-2D-PEH is adaptive determined by the dynamic programming method. Thereby, the optimal 2D mapping set is self-adaptive obtain according to the texture feature of the image. Experimental results show that the proposed scheme outperforms other state-of-the-art schemes. The PSNR of the image Lena is reaches 60.84 dB for an embedding capacity of 10,000 bits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abdulla AA, Jassim SA, Sellahewa H (2013) Secure steganography technique based on bitplane indexes. In: 2013 IEEE international symposium on multimedia 2013, pp 287–291

  2. Abdulla AA, Jassim SA, Sellahewa H (2013) Efficient high-capacity steganography technique. Mobile Multimed/Image Process, Secur Appl 8755(4):63–73

    Google Scholar 

  3. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 14(2):253–266. https://doi.org/10.1109/TIP.2004.840686

    Article  Google Scholar 

  4. Celik MU, Sharma G, Tekalp AM (2006) Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans Image Process 15(4):1042–1049. https://doi.org/10.1109/TIP.2005.863053

    Article  Google Scholar 

  5. Cheddad A, Condell J, Curran K, Mc Kevitt P (2010) Digital image steganography: survey and analysis of current methods. Signal Process 90(3):727–752. https://doi.org/10.1016/j.sigpro.2009.08.010

    Article  MATH  Google Scholar 

  6. Coatrieux G, Le Guillou C, Cauvin JM, Roux C (2008) Reversible watermarking for knowledge digest embedding and reliability control in medical images. IEEE Trans Inf Technol Biomed 13(2):158–165

    Article  Google Scholar 

  7. Dragoi IC, Coltuc D (2016) Adaptive pairing reversible watermarking. IEEE Trans Image Process 25(5):2420–2422. https://doi.org/10.1109/TIP.2016.2549458

    Article  MathSciNet  MATH  Google Scholar 

  8. Fridrich J (2009) Steganography in digital media: principles, algorithms, and applications. Cambridge University Press, Cambridge

  9. Fridrich J, Goljan M, Du R (2002) Lossless data embedding—new paradigm in digital watermarking. EURASIP J Adv Signal Process 2002(2):986842

    Article  MATH  Google Scholar 

  10. He W, Zhou K, Cai J, Wang L, Xiong G (2017) Reversible data hiding using multi-pass pixel value ordering and prediction-error expansion. J Vis Commun Image Represent 49:351–360. https://doi.org/10.1016/j.jvcir.2017.10.001

    Article  Google Scholar 

  11. Hiary S, Jafar I, Hiary H (2017) An efficient multi-predictor reversible data hiding algorithm based on performance evaluation of different prediction schemes. Multimed Tools Appl 76(2):2131–2157. https://doi.org/10.1007/s11042-015-3161-9

    Article  Google Scholar 

  12. Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842. https://doi.org/10.1016/j.jss.2009.05.051

    Article  Google Scholar 

  13. Hu R, Xiang S (2021) CNN prediction based reversible data hiding. IEEE Signal Process Lett 28(6):464–468

    Article  Google Scholar 

  14. Hu R, Xiang S (2021) Reversible data hiding by using CNN prediction and adaptive embedding. IEEE Trans Pattern Anal Machine Intell 30(5):1–1

    Google Scholar 

  15. Hu Y, Lee HK, Li J (2008) De-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Vid Technol 19(2):250–260

    Google Scholar 

  16. Huang LC, Tseng LY, Hwang MS (2013) A reversible data hiding method by histogram shifting in high quality medical images. J Syst Softw 86(3):716–727. https://doi.org/10.1016/j.jss.2012.11.024

    Article  Google Scholar 

  17. Ingemar C, Matthew M, Jeffrey B, Jessica F, Ton K (2007) Digital watermarking and steganography. Morgan kaufmann

  18. Jia Y, Yin Z, Zhang X, Luo Y (2019) Reversible data hiding based on reducing invalid shifting of pixels in histogram shifting. Signal Process 163:238–246. https://doi.org/10.1016/j.sigpro.2019.05.020

    Article  Google Scholar 

  19. Kim S, Qu X, Sachnev V, Kim HJ (2018) Skewed histogram shifting for reversible data hiding using a pair of extreme predictions. IEEE Trans Circuits Syst Vid Technol 29(11):3236–3246

    Article  Google Scholar 

  20. Kumar R, Kumar N, Jung KH (2020) I-pvo based high capacity reversible data hiding using bin reservation strategy. Multimed Tools Appl 79:22635–22651. https://doi.org/10.1007/s11042-020-09069-0

    Article  Google Scholar 

  21. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93(1):198–205. https://doi.org/10.1016/j.sigpro.2012.07.025

    Article  MathSciNet  Google Scholar 

  22. Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensic Secur 8(7):1091–1100

    Article  Google Scholar 

  23. Li X, Zhang W, Gui X, Yang B (2015) Efficient reversible data hiding based on multiple histograms modification. IEEE Trans Inf Forensic Secur 10(9):2016–2027

    Article  Google Scholar 

  24. Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2009) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensic Secur 5(1):187–193

    Google Scholar 

  25. Mohammadi A, Nakhkash M (2021) Sorting methods and adaptive thresholding for histogram based reversible data hiding. Multimed Tools Appl 80(3):3307–3325. https://doi.org/10.1007/s11042-020-09719-3

    Article  Google Scholar 

  26. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Vid Technol 16(3):354–362

    Article  Google Scholar 

  27. Ou B, Li X, Zhao Y, Ni R, Shi YQ (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021. https://doi.org/10.1109/TIP.2013.2281422

    Article  MathSciNet  MATH  Google Scholar 

  28. Ou B, Li X, Zhao Y, Ni R (2014) Reversible data hiding using invariant pixel-value-ordering and predictionerror expansion. Signal Process Image Commun 29(7):760–772. https://doi.org/10.1016/j.image.2014.05.003

    Article  Google Scholar 

  29. Ou B, Li X, Wang J (2016) High-fidelity reversible data hiding based on pixel-value-ordering and pairwise prediction-error expansion. J Vis Commun Image Represent 39:12–23. https://doi.org/10.1016/j.jvcir.2016.05.005

    Article  Google Scholar 

  30. Parah SA, Ahad F, Sheikh JA, Bhat GM (2017) Hiding clinical information in medical images: a new high capacity and reversible data hiding technique. J Biomed Inform 66:214–230. https://doi.org/10.1016/j.jbi.2017.01.006

    Article  Google Scholar 

  31. Peng F, Li X, Yang B (2014) Improved pvo-based reversible data hiding. Digit Signal Process 25:255–265. https://doi.org/10.1016/j.dsp.2013.11.002

    Article  Google Scholar 

  32. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Vid Technol 19(7):989–999. https://doi.org/10.1109/TCSVT.2009.2020257

    Article  Google Scholar 

  33. Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circuits Syst Vid Technol 19(6):906–910

    Article  Google Scholar 

  34. Thodi DM, Rodrìguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730. https://doi.org/10.1109/TIP.2006.891046

    Article  MathSciNet  Google Scholar 

  35. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Vid Technol 13(8):890–896. https://doi.org/10.1109/TCSVT.2003.815962

    Article  Google Scholar 

  36. Wang X, Ding J, Pei Q (2015) A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block partition. Inf Sci 310:16–35. https://doi.org/10.1016/j.ins.2015.03.022

    Article  Google Scholar 

  37. Wang J, Ni J, Zhang X, Shi YQ (2016) Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Trans Cybern 47(2):315–326

    Google Scholar 

  38. Wang J, Mao N, Chen X, Ni J, Wang C, Shi Y (2019) Multiple histograms based reversible data hiding by using fcm clustering. Signal Process 159:193–203. https://doi.org/10.1016/j.sigpro.2019.02.013

    Article  Google Scholar 

  39. Wang J, Chen X, Ni J, Mao N, Shi Y (2019) Multiple histograms based reversible data hiding: framework and realization. IEEE Trans Circuits Syst Vid Technol 30(8):2313–2328

  40. Wu H, Li X, Zhao Y, Ni R (2019) Improved reversible data hiding based on pvo and adaptive pairwise embedding. J Real-Time Image Proc 16(3):685–695. https://doi.org/10.1007/s11554-019-00867-w

    Article  Google Scholar 

  41. Xuan G, Shi YQ, Chai P, Cui X, Ni Z, Tong X (2007) Optimum histogram pair based image lossless data embedding. In: International Workshop on Digital Watermarking, Springer, pp. 264–278

  42. Zhang X (2012) Reversible data hiding with optimal value transfer. IEEE Trans Multimed 15(2):316–325

    Article  Google Scholar 

  43. Zhou K, Ding Y, Bi W (2021) High-capacity pvo-based reversible data hiding scheme using changeable step size. Multimed Tools Appl 80(1):1123–1141. https://doi.org/10.1007/s11042-020-09374-8

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant (61872303, U1936113). In addition, many thanks to the anonymous reviewers for their insightful comments and valuable suggestions, which helped a lot to improve the paper quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Hongjie.

Ethics declarations

Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NingXiong, M., Fan, C., Shanjun, Z. et al. Reversible data hiding based on global adaptive pairing and optimal 2D mapping set. Multimed Tools Appl 82, 10553–10574 (2023). https://doi.org/10.1007/s11042-022-13705-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13705-2

Keywords

Navigation