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Abstract
Pediatric pneumonia has drawn immense awareness due to the high mortality rates over
recent years. The acute respiratory infection caused by bacteria, viruses, or fungi infects
the lung region and hinders oxygen transport, making breathing difficult due to inflamed
or pus and fluid-filled alveoli. Being non-invasive and painless, chest X-rays are the most
common modality for pediatric pneumonia diagnosis. However, the low radiation levels
for diagnosis in children make accurate detection challenging. This challenge initiates the
need for an unerring computer-aided diagnosis model. Our work proposes Contrast
Limited Adaptive Histogram Equalization for image enhancement and a stacking classi-
fier based on the fusion of deep learning-based features for pediatric pneumonia diagno-
sis. The extracted features from the global average pooling layers of the fine-tuned
MobileNet, DenseNet121, DenseNet169, and DenseNet201 are concatenated for the final
classification using a stacked ensemble classifier. The stacking classifier uses Support
Vector Classifier, Nu-SVC, Logistic Regression, K-Nearest Neighbor, Random Forest
Classifier, Gaussian Naïve Bayes, AdaBoost classifier, Bagging Classifier, and Extra-
trees Classifier for the first stage, and Nu-SVC as the meta-classifier. The stacking
classifier validated using Stratified K-Fold cross-validation achieves an accuracy of
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98.62%, precision of 98.99%, recall of 99.53%, F1 score of 99.26%, and an AUC score
of 93.17% on the publicly available pediatric pneumonia dataset. We expect this model to
greatly help the real-time diagnosis of pediatric pneumonia.

Keywords Pediatric pneumonia . Chest X-rays . Computer-aided diagnosis . Contrast limited
adaptive histogram equalization . Deep learning . Transfer learning . Stacking classifier .

Stratified K-fold

1 Introduction

Acute diseases have become a reason for concern over the past few years. The exponential rise
in such ailments results in high mortality rates across various countries and long-term
economic losses [25, 46]. Pneumonia is one such disease that causes respiratory infection;
as a result, harming the normal functioning of the human body. Some of the known pathogen
that causes pneumonia include viruses and bacteria. A notable agent for the pervasive
transmission of viruses and bacteria is the degradation of air quality [35]. The human lungs
constitute tiny bags or sacs called the alveoli. These air sacs are responsible for exchanging
essential gases, namely oxygen and carbon-di-oxide. When an individual is affected by
pneumonia, these sacs fill up with pus and fluid, decreasing the gas exchange between the
blood and the lungs. Pneumonia causes difficulty in breathing and other complications like
chest pain, cough, vomiting, diarrhoea, and fatigue.

Pneumonia generally affects children under five years, the geriatric population, and people
with co-morbidities like diabetes, cardiovascular disorders, and auto-immune disorders [35]. In
2017, over 850,000 lives perished due to pneumonia-induced disorders. The mortality rate is
specifically high in South Asian and Sub-Saharan countries [17]. Pediatric pneumonia has
accounted for the high mortality in children in the past five years [32]. In 2011, nearly 1.2
million children under the age of five died due to pneumonia [1]. In 2016, more than 800,000
children died of pneumonia, most of whom were no more than two years old, and the death toll
was more than the totality of malaria, AIDS, and measles [20]. In 2019, pneumonia killed
740,180 children under the age of five, accounting for 14% of all deaths of children under five.
Pediatric pneumonia accounts for 19% of the overall mortality rate in children below five years
of age.

Studies indicate that the other causes of pediatric pneumonia are malnutrition, air pollution,
and lack of immunity. The ailments of pediatric pneumonia are easily preventable when
diagnosed at a very early stage. Different approaches for diagnosing pediatric pneumonia
include chest X-rays to find inflammation in the lungs, blood sample test for arterial blood gas
analysis, and sputum test. Other diagnostic measures include pulse oximetry, Complete Blood
Cell (CBC), chest CT scan, bronchoscopy, and thoracentesis. Even though highly advanced
diagnostic measures exist, the trend in mortality does not seem to decrease due to high prices
and inaccessibility. The factors mentioned are vital, especially in underdeveloped countries
where people have limited access to such resources. Chest X-ray-based diagnosis, being
comparatively inexpensive, was adopted as a standardized test for pediatric pneumonia.

The chest X-ray is the commonly used test for diagnosing various lung diseases as it is a
painless and non-invasive method. It is fast, easy, and inexpensive when compared to other
techniques. Though chest X-ray diagnosis is time and cost-effective, it heavily relies on the
diagnostic conditions and the expertise of doctors and radiologists. Sometimes the chest X-
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rays may appear different due to outdated equipment and tools in clinical practice. In other
cases, getting a proper X-ray in an ideal posture might be difficult. Hence, these factors will
affect the quality of the image captured and diagnosis. In addition, using lower radiation levels
for chest X-rays in children makes pneumonia diagnosis a cumbersome task.

Detecting the cause of pneumonia in children is tedious due to the lack of rapid commer-
cially available accurate lab tests for most of the existing pathogens which cause pediatric
pneumonia [19]. According to World Health Organization (WHO), radiologists face difficulty
distinguishing between pus-filled lesions and the lesions caused by external diagnosis condi-
tions. Computer-aided systems are, therefore, necessary to help radiologists and doctors
diagnose pediatric pneumonia and standardize chest X-ray-based diagnosis. The advancement
in artificial intelligence, specifically machine learning, has made drastic improvements in the
automated diagnosis of diseases. Computer-aided diagnosis (CAD) systems make the diagno-
sis of diseases and prediction tasks easier with minor error margins. Several CAD approaches
using machine learning have been employed to diagnose major respiratory problems such as
pneumonia [26, 63, 67], tuberculosis [22], Parkinson’s disease classification [52], and cardiac
diseases [64]. A research team used a machine learning approach to detect diabetic retinopathy,
and the results showed that their algorithms performed tantamount to ophthalmologists [8].
The conventional supervised machine learning approach requires handcrafted filters to extract
the input data based on domain knowledge. Feature engineering is a cumbersome task
requiring a tremendous amount of time and expertise to develop custom filters. Thus, the
scalability of handcrafter filters is limited. In unsupervised learning, the features extracted from
input data are not labelled, and machines have to discover patterns among the samples, which
generally requires a more extensive training dataset. Large datasets, especially in the medical
domain, are limited due to privacy concerns. These existing methods are highly improbable in
medical imaging for an immediate and accurate CAD model.

Therefore, deep learning emerged as a state-of-art method [39], where it learns the features
on its own, making it more robust compared to machine learning and thereby adding
advantages to computer-aided diagnostic systems. Deep learning started with multiple hidden
layers and gradually extended to multiple CNN layers resulting in deep CNN architectures.
These architectures are the most commonly used technique for pattern recognition and image
classification tasks [24, 40]. CheXNet, which uses a convolutional neural network that
contains 121 layers, was authored by researchers at Stanford University to diagnose pneumo-
nia [7]. A significant challenge while developing an accurate and generalized deep learning
model is that the dataset should be large and well-curated for training. It has to cover variability
in patients spread all over the globe, tools used for imaging, and other metrics. Collecting such
a vast dataset is generally impossible for all medical diseases, especially labelling and
annotating, which requires time. A modern breakthrough in artificial intelligence called
transfer learning serves to overcome this impediment [45]. Based on the literature survey, it
was noticed that the existing deep learning architectures perform well; however, their perfor-
mance is limited. A large number of neurons in deep architectures lead to the problem of
overfitting, which limits the generalizability property of models. The literature survey con-
cludes that the existing models are not guaranteed to perform well on unseen data. Our
proposal of a simple and easily replicable solution for the pediatric pneumonia diagnosis is
summarized as follows:

& A feature concatenation-based stacking ensemble leveraging the strengths of various
machine learning classifiers.
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& Using CLAHE as an image pre-processing technique for contrast enhancement to capture
the fine occlusions in the image.

& Class activation Maps (CAM) to visualize the regions of interest and t-distributed stochas-
tic neighbour embedding (t-SNE) based feature visualization for layman interpretability of
the features predicted by the deep CNN architecture.

& A detailed investigation of the proposed architecture’s advantages and limitations and an
up-to-date comparison with recent works.

& Performance analysis of the proposed models on similar lung disease datasets proves its
generalizability and robustness.

The contributions made in the field of pediatric pneumonia diagnosis that motivated us to
advance with the idea of feature fusion-based stacked ensemble learning are as follows:

& The initial research on pediatric pneumonia diagnosis with transfer learning and the
dataset’s open-source availability [38].

& A transfer learning approach using dilated convolutions and residual structures to solve the
limited performance of deep convolution layers [20].

& The effects of different spatial domain image enhancement techniques on COVID-19
detection using chest X-ray images [21].

& A fusion technique involving a deep CNN model with PCA and logistic regression [41].
& A weighted average ensemble of deep CNN models incorporating deep transfer learning

[9].
& A majority voting ensemble of the predictions from deep CNN models [65].
& CheXNet [7], a DenseNet121 model trained on the ChestX-ray14 dataset whose perfor-

mance exceeded that of the average radiologist.

The rest of this article is organized as follows: Section 2 describes the literature survey and
discusses the existing gap in the literature and how our approach completes it. The proposed
approach is discussed in Section 3. Section 4 contains the description of the dataset. The
performance metrics used in this study are detailed in Section 5. The experimental results are
analysed and discussed with plots in Section 6. Finally, in Section 7, we conclude our work,
summarizing the problem and the limitations of our approach, along with the possible future
works.

2 Literature survey

Pattern classification, which earlier required specific filters for feature extraction, switched to
automatic feature extraction processes using deep learning architectures. Initial studies for
pattern classification were mainly based on MLP approaches. The downside to this approach
was its inability to capture local information. Convolutional Neural Networks (CNNs) were
introduced to solve this issue. CNN works based on the convolution operation done using the
convolution layer, followed by max pooling for reduced computations. The beginning of
pediatric pneumonia-based classification research started with the availability of the dataset in
Kermany et al. [38]. Earlier studies on MLP and simple CNN architectures were introduced in
[5]. Saraiva et al. [5] extended the findings using the cross-validation technique for extensive
learning on the existing simple CNN architectures in [50]. Stanford’s research radiologists

21314 Multimedia Tools and Applications (2023) 82:21311–21351



validated the authenticity of the highly sensitive pediatric pneumonia dataset, and CheXNet
was introduced to the research community [7]. The CheXNet is a deep CNN architecture based
on DenseNet121 with a performance better than the average radiologists. Several custom deep
CNNmodels were developed; however, their performance was limited. The limitation was due
to the increasing number of layers in deep CNN models. The impact of the loss of spatial
information in chest X-rays when passing through increasing convolutional layers was studied
by Gaobo Liang et al. [20]. This spatial information is of utmost importance in detecting
pediatric pneumonia. Gaobo Liang et al. [20] introduced a transfer learning-based dilated
convolution CNN model to increase the receptive field, thereby reducing the risk of spatial
information degradation. A purely depthwise separable convolution approach followed this
variation in CNNs [51]. Siddiqi et al. [55] proposed a deep sequential CNN for pediatric
pneumonia detection. Nahid et al. [54] suggested a novel two-channel CNN architecture for
pneumonia diagnosis. Yu et al. [34] introduced a graph-based feature reconstruction for
pediatric pneumonia diagnosis called CGNet. The new class of deep learning architectures,
Capsule Networks for pediatric pneumonia detection, was introduced by Mittal et al. [68]. Wu
et al. [31] proposed a hybrid system for diagnosing pneumonia from chest X-Ray images
consisting of an adaptive median filter CNN recognition model based on random forest.

Several research studies introduce architectures with competing performances. Rahman
et al. [66] studied the performance of AlexNet, ResNet18, DenseNet201, and SqueezeNet
utilizing transfer learning. El Asnaoui et al. [42] compared the results of fine-tuned deep
learning architectures for binary classification in chest X-rays. Predefined weights are essential
in determining a model’s performance in transfer learning. Mahajan et al. [3] analyzed the
performance differences between CheXNet weights, ImageNet weights, and random weights
for the task at hand. The problem of class imbalance in machine learning is a necessity that
must be addressed. For unbiased training, machine learning relies mainly on a balanced
dataset. Sampling serves as a solution to this class imbalance problem. Using the Xception
network, Luján-Garca et al. [30] investigated random undersampling (RUS) for unbiased
training and applied a cost-sensitive learning strategy.

Researchers began to analyze the importance of using spatial domain preprocessing
techniques like Histogram Equalization, Adaptive Histogram Equalization (AHE), Contrast
Limited Adaptive Histogram Equalization (CLAHE), and Gamma correction. Rubini et al.
[37] examined two popular spatial processing approaches for improving MRI images: AHE
and CLAHE. In [29], the authors propose using CLAHE as the preprocessing technique and
custom CNN architectures for prediction. Nneji et al. [33] propose using dynamic histogram
enhancement techniques for pediatric pneumonia detection. Tawsifur et al. [66] detail the
effects of HE, CLAHE, image complement, gamma correction, and balance contrast enhance-
ment approaches.

In recent studies, ensemble methods proved to show improved performances. Chouhan
et al. [65] analyzed the performance of a majority voting ensemble composed of AlexNet,
DenseNet121, Inception V3, GoogLeNet, and ResNet18. Sagar Kora Venu [9] proposed
combining these deep CNN models - MobileNetV2, Xception, DenseNet201, ResNet152V2,
and InceptionResNet - into a weighted average ensemble. Nahida et al. [41] proposed
combining a deep convolutional neural network for feature extraction, principal component
analysis for dimensionality reduction, and logistic regression for classification. On ensembled
features from VGG-19 and CheXNet, Nahida et al. [47] proposed using Random Under
Sampling, Random Over Sampling and SMOTE for classification. Islam et al. [10] illustrate
using feature concatenations from SqueezeNet and InceptionV3 combined with ANNs to
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make predictions. El Asnaoui et al. [18] proposed average fusion of prediction made by
ResNet50, InceptionResNetV2, and MobileNetV2. Ensemble of RetinaNet and Mask R-CNN
for pneumonia detection and localization was proposed by Sirazitdinov et al. [2]. A weighted
average ensemble of GoogLeNet, ResNet18, and DenseNet121 with a novel assignment
weights criteria was proposed in [57]. Rajaraman et al. [23] compared the performance of
iterative model pruning of deep learning architectures with majority voting, weighted average
ensemble averaging, and stacking on the COVID-19 dataset.

The lack of transparency is the most significant impediment to a complete transition to
artificial intelligence (AI). Explainable AI (XAI), a promising research topic, has recently
gained much attention. Nguyen Hai et al. [44] introduced a novel technique incorporating
explainability for pneumonia detection. They proposed a mixture of custom CNN architecture
with Grad-CAM for pneumonia detection. Liz et al. [36] used the XAI framework and an
average ensemble of five custom CNN predictions.

An abundance of research has been done in this field. However, there exist limitations are
discussed below:

1. Studies emphasize the use of CheXNet weights for custom CNN training which is a
challenging task.

2. Lots of research proposes using custom complex architectures that are not easily replicable
and hampers the reproducibility of the work.

3. The absence of exploring ensemble approaches pertinent to pediatric pneumonia diagnosis
was observed. The same was witnessed concerning the use of machine learning classifiers.

4. Data sampling methods like RUS, ROS, and SMOTE lead to longer training times and
over-fitting.

5. Most of the studies mentioned above failed to cover the aspect of feature visualization.
Feature visualization is crucial to ensure the learned features are meaningful for
predictions.

6. Most studies fail to prove the generalizability of their proposed models and approaches.

The distinguishing factor in our work compared to the rest of the works is detailed in Table 1.
Our work proposes a detection pipeline to bridge the gap in the existing literature. The dataset
has been redistributed for unbiased training instead of data sampling methods.We propose the
use of a contrast enhancement technique for image preprocessing. The proposed methodology
is based on the feature fusion of DenseNet121, DenseNet169, DenseNet201, and MobileNet
architectures pre-trained on the commonly available ImageNet weights for feature extraction.
The extracted feature maps from the global average pooling layer are passed to the t-SNE and
CAM for visualization. Stacking ensemble classifier approach with KNN, SVC, Random
Forest Classifiers, Nu-SVC, Logistic Regression, Extra-trees Classifier, Bagging Classifier,
Gaussian Naïve Bayes, and AdaBoost classifier was used along with Stratified K-Fold cross-
validation to overcome overfitting. All additional details are discussed in the forthcoming
sections.

3 Proposed approach

This section details the workflow of the proposed pediatric pneumonia detection architecture,
from the enhancement of images to the final classification, as illustrated in Fig. 1. The input
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chest X-ray is preprocessed and sent to pre-trained deep CNN architectures with transfer
learning to extract the features from the global average pooling layer. The next step is the
column-wise concatenation of the extracted features. The concatenated features are passed
through the stacking classifier with level one classifiers as SVC, KNN, Logistic Regression,
NuSVC, Random Forest Classifier, AdaBoost Classifier, GaussianNB, Bagging Classifier, and
Extra-trees Classifier. The binary predictions from the ML classifiers are sent to the NuSVC
meta classifier for the final predictions.

The dataset contains images of varying sizes. In this study, we reshape the images
according to the requirement of different deep CNN models. Each image is normalized to
bring the pixel values between the range 0–1. Image augmentations were introduced on the fly
using the Keras image generator as a necessary part of modeling to prevent over-fitting. The

Table 1 A summarizing comparison of recent literary works with the current study

Reference Dataset Pretrained model Feature
visualization

Feature
fusion

Ensemble method

Gaobo Liang
et al. [20]

Kermany et al.
[38]

Custom CNN based on
dilated
convolutions

Yes No No

Nahida Habib
et al. [41]

Kermany et al.
[38]

CheXNet (DenseNet121) No No No

Mahajan
et al. [3]

Kermany et al.
[38]

InceptionV3, DenseNet121 No No No

Yu et al.
[34]

Kermany et al.
[38], CT-
Pneumonia
dataset

CGNet No No No

Siddiqi et al.
[55]

Kermany et al.
[38]

Custom deep sequential
CNN

No No No

Nahida Habib
et al. [47]

Kermany et al.
[38],
COVID-19
database

CheXNet, VGG-19 No Yes Ensemble of
CNN models

Siddiqi et al.
[51]

Kermany et al.
[38]

PneumoniaNet No No No

Chouhan et al.
[65]

Kermany et al.
[38]

AlexNet, DenseNet121,
ResNet18, IncpetionV3,
GoogLeNet

Yes No Majority Voting

Rahman et al.
[66]

Kermany et al.
[38]

DenseNet201 No No No

Mittal et al.
[68]

Kermany et al.
[38]

CapsNet No Yes Ensemble of
convolution
capsules

Islam et al.
[10]

Kermany et al.
[38]

SqueezeNet, InceptionV3 No Yes No

Kora Venu Sagar
[9]

Kermany et al.
[38]

DenseNet201, Xception,
InceptionResNet,
ResNet152V2,
MobileNetV2

No No Weighted average
ensemble

Wu et al. [31] Kermany et al.
[38]

Adaptive median filter
CNN

No No Ensemble of trees

Current work Kermany et al.
[38]

MobileNet, DenseNet121,
DenseNet169,
DenseNet201

Yes Yes Stacking ensemble
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augmentations used include zoom, shear, and flip. Table 2 describes the corresponding
augmentation values.

3.1 Image enhancement

Spatial image enhancement techniques are widely used to enhance specific features in an
image. Contrast enhancement adjusts the relative difference between darkness and brightness
to improve visibility. Contrast enhancement becomes very important in medical image
diagnosis, which deals with chest X-rays and CT scans. Several studies strongly recom-
mend using contrast enhancement techniques for better results [21, 28, 49, 53]. Adaptive
Histogram Equalization (AHE) is an image processing technique for enhancing contrast.

Fig. 1 Proposed architecture for pediatric pneumonia classification

Table 2 Augmentations used in
our study and their corresponding
values

Methods Corresponding Parameters

Rescale 255
Shear 0.2
Zoom 0.2
Horizontal Flip True
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It generates histograms for each image part and uses them to redistribute its values. As a
result, this is well suited for improving the local contrast and edge regions in images.
However, in relatively homogeneous areas of an image, AHE tends to overamplify noise.
Contrast Limited Adaptive Histogram Equalization (CLAHE), a type of adaptive histo-
gram equalization, is thus used to restrict the amplification. CLAHE works on small
regions (pixels) in the image known as tiles, where the adjacent tiles are combined using
bilinear interpolation. The slope of the transformation function determines the contrast
amplification in the neighborhood of a specific pixel value in CLAHE. The Blind/
Reference less Image Spatial Quality Evaluator (BRISQUE) metric assessed the image
quality after enhancement. The lower the BRISQUE score, the more perceptual quality it
retains.

3.2 Transfer learning

The performance of any deep learning model depends on the available training data.
Massive datasets are proven to increase the performance metrics of the deep learning
models. However, this is not usually the case in the real world due to privacy concerns,
especially in medical image data. We use transfer learning to overcome this challenge of
limited data. Transfer learning uses the weights pre-trained on a similar dataset; it is then
adapted to the new target task by fine-tuning it for the task at hand. We fine-tuned the
already pre-trained models on ImageNet in our proposed method.

3.3 Deep learning models

The literature survey discussed earlier ascertained that using pre-trained deep CNN models
provided an overall better performance. Existing pre-trained deep CNN models such as
VGG16 [48], VGG19 [48], MobileNet [56], MobileNetV2 [56], InceptionResNetV2 [14],
DenseNet121 [60], DenseNet169 [60], DenseNet201 [60], InceptionV3 [16], ResNet50 [59],
ResNet101 [59], ResNet152 [59], ResNet50V2 [12], ResNet101V2 [12], ResNet152V2 [12],
EfficientNetB0 [13] and Xception [61] are trained on the Contrast Limited Adaptive Histo-
gram Equalization (CLAHE) enhanced dataset to select the top four best performing models.
The features of the selected architectures are extracted from the global average pooling layer to
retrieve a feature map for each image. These extracted features are concatenated for stacked
ensemble learning.

3.3.1 MobileNet

MobileNet is a deep convolutional neural network model open-sourced by Google [56],
designed for mobile and embedded vision applications. It is a streamlined architecture
that uses depthwise separable convolution for lightweight computations. Depthwise
separable convolution comprises two factorized convolutions: standard depthwise convo-
lution and pointwise convolution, as shown in Fig. 2. The first phase is the depthwise
spatial convolution, where the convolution is done depthwise for each input channel with
a single filter. The following phase uses pointwise convolution, which applies 1 × 1
convolution to combine the output of depthwise convolution, thereby reducing the

21319Multimedia Tools and Applications (2023) 82:21311–21351



computational cost. This method of factorizing the convolution process into two phases
reduces the model’s size. MobileNet uses 28 convolutional layers with 3 × 3 depthwise
separable convolutions. All layers in the architecture are followed by batch normalization
and ReLU nonlinear activation. Figure 3 describes the entire architecture of MobileNet.

3.3.2 DenseNet

Convolutional Neural Networks rely on the gradients in the image for feature retrieval.
Increasing convolution layers introduces the vanishing gradient problem, hence explaining
the staggering performance with the increasing number of convolutional layers. A unique
network architecture called the DenseNet was proposed by Huang et al. [60] as a solution to
this vanishing gradient problem. In DenseNet, each layer is interconnected in a feed-forward
manner. Features maps of all preceding layers are used as input to each layer, and their feature
maps are used as inputs into all subsequent layers. This collective knowledge retained several
advantages: an improved flow of information in the network alleviated the problem of
relearning redundant features and decreased the number of learnable parameters.

Furthermore, since each layer has direct access to the gradients of any preceding layer,
training deep network architectures become much more manageable. In addition, the
regularizing effect introduced by the deep connections reduces overfitting when trained
on small datasets. Our proposed approach uses DenseNet121, DenseNet169 and
DenseNet201. The DenseNet121 was the first model released from the DenseNet family
with 121 convolutional layers. After that, researchers began experimenting with added
convolutional layers and eventually released DenseNet169 with 169 convolutional layers.
The DenseNet201 with 201 layers is the most recent advancement in the DenseNet
models and outperforms all other deep CNN models. Figure 4 illustrates the architecture
of the DenseNet model.

3.3.3 Hyperparameters

Hyperparameter tuning plays a significant role in increasing the performance of the model.
Thus, after extracting the feature maps from global average pooling, we added a dropout rate
of 0.4 to avoid overfitting. Next, the feature maps are sent to the softmax layer, which uses the
sigmoid activation function for the binary - NORMAL and PNEUMONIA classification.

Fig. 2 Illustration of the working of a depthwise separable convolution network
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Finally, we fine-tuned the models based on different optimizers to find the best
hyperparameters, as shown in Table 3.

The Binary Cross Entropy calculates the difference between the expected and actual output.
The value for the loss function ranges between 0 and 1 and is given by Eq. 1.

Loss ¼ ∑
outputsize

i¼0
yi*log byi� �

þ 1−yið Þ*log 1−byi� �
ð1Þ

3.4 T-SNE feature representation

t-Distributed Stochastic Neighbour Embedding(t-SNE) is a non-linear dimensionality reduc-
tion technique primarily used for visualizing high-dimensional data. This algorithm calculates

Fig. 3 a Entire MobileNet architecture with normal convolutions and depthwise separable convolutions. b All
the layers following a depthwise separable convolution block. c All the layers following a normal (3 × 3)
convolution block in MobileNet architecture
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the resemblance between pairs of instances in high and low dimensional space and then
optimizes them using the cost function. The feature maps of the test data are visualized using
the t-SNE plot. Unlike PCA, this representation allowed us to visualize the binary classes
(normal and pneumonia) as clusters. It gives an insight into how well the predictions are made.
This visualization gives an insight into the required classifiers for the task.

Table 3 List of hyperparameters and their values used in our study to finalize the perfect combination for the task
at hand

Hyper Parameter Corresponding Values

Optimizer Adam, SGD, Nadam, RMSprop, Adamax, Adagrad
Learning rate 0.001
Batch size 32

Fig. 4 a The entire architecture of DenseNet deconstructed into in b Trans block with Dense interconnections
and c Dense block used in the DenseNet architecture
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3.5 Stacking classifier

Ensemble learning is the most commonly used technique to increase the performance of a
model, thereby making it much more robust. Stacking classifiers is one of the most widely
used ensemble techniques for classification or regression. This type of classifier combines
different heterogeneous machine learning algorithms such as logistic regression, support vector
classifier, and k-nearest classifier, unlike other techniques such as bagging and boosting. The
stacking classifier consists of two stages. The first stage consists of several machine learning
classifiers stacked together whose predictions are trained on the second stage classifier. The
second stage classifier, called the meta classifier, provides the final classification.

3.5.1 SVC

The support vector classifier generates decision boundary in such a way that maximizes the
margin between the support vectors belonging to different classes. This operation is preceded
by mapping to high dimensional spaces with different kernel functions.

3.5.2 KNN

The K-Nearest Neighbour algorithm uses the proximity between k neighbours to classify the
data points. The distance between the data points is calculated using different methods namely:
hamming, Manhattan and Euclidean. The majority class of the first k distances in the
ascending order assign the categorical class value to a given data point.

3.5.3 Logistic Regression

The Logistic Regression is the simplest solution to any binary classification task. It uses a
nonlinear log transformation to map and classify points without a linear relationship. If the
value of the logistic function is greater than 0.5, it is said to belong to class 1 or else class 0.

3.5.4 NuSVC

The NuSVC is very similar to SVC, except that instead of parameter C, which penalizes the
wrong predictions in the optimization algorithm, the NuSVC uses the regularization parameter
nu. While C has no direct interpretation, the parameter nu sets the upper bound and lower
bound on the fraction of margin errors and the fraction of support vectors, respectively.

3.5.5 Random Forest Classifier

The Random Forest algorithm, used for classification and regression, is one of the most
commonly used machine learning algorithms. Decision Trees are the main components of
Random Forests. The algorithm becomes more advanced as the number of trees in-
creases. It chooses the best result from the votes gathered by the trees, making it robust.
The higher the number of trees in the forest, the more accurate it is, and the problem of
overfitting is avoided. It comprises two phases: the first is to combine N decision trees
with building a random forest, and the second is to generate predictions for each tree
created in the first phase.
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3.5.6 Gaussian Naïve Bayes Classifier

The Gaussian Naive Bayes model works based on the Bayes’ theorem, assuming that the
features are independent of each other. The model learns the conditional probability distribution
of the input features such that the likelihood of obtaining the correct class is maximized, as
shown in Eq. 2.

ŷ ¼ argmax
y

P yð Þ ∏
n

i¼1
P xijyð Þ ð2Þ

3.5.7 AdaBoost Classifier

AdaBoost, also known as Adaptive Boosting, is a machine learning approach utilized as a part
of an ensemble method. Decision trees with one level, or decision trees with only one split, are
the most popular algorithm used with AdaBoost. This approach creates a model by assigning
equal weights to all data points. It then gives points that are incorrectly categorized a higher
weight. In subsequent models, points with greater weights are given more importance. This
iterative process will continue to train models until a lower error is received.

3.5.8 Bagging Classifier

A bagging classifier is an ensemble meta-estimator technique that fits base classifiers on
random subsets of the original dataset and then combines their predictions by voting or
average to generate the final prediction.

3.5.9 Extra Trees Classifier

The Extra Trees Classifier uses a meta estimator to get the final prediction based on predictions
made by randomized decision trees that fit on various sub-samples of the data.

3.6 Stratified K-fold cross-validation

Cross-validation is the most widely employed technique to estimate the model’s performance on
unseen data. The performance on unseen data is of utmost importance for real-world deployment.
The Stratified K-fold Cross-Validation technique is used when we have an imbalanced dataset. It
is an extension of normal K-fold cross-validation. But here, rather than splits being completely
random, the ratio of target classes is the same in each fold. Hence this method is used to preserve
the class ratio for our target classes and when we have relatively fewer training examples.

4 Dataset description

All the experiments in this study were conducted on the Kermany et al. [38] dataset. The
dataset contains 5856 chest X-ray images, which belong to two classes Normal (1583 X-rays)
and Pneumonia (4273 X-rays). The existing dataset was imbalanced and was therefore re-
redistributed for unbiased training. Table 4 illustrates the new data distribution. The chest X-
ray images are from children aged between 1 to 5 years from the Guangzhou Women and
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Children’s Medical Centre. The second row with white patches in the alveolar region of the
lungs in the X-ray image shown in Fig. 5 represents the residence of pus and fluid.

4.1 Performance metrics

The critical aspect of evaluation metrics is distinguishing between models’ performances. The
primary metrics used in this study to evaluate our models are accuracy, precision, recall, F1-
score, and the AUC value. The confusion matrix shown in Fig. 6 illustrates the predictions
made by the model. The rows and columns of the confusion matrix represent the actual values
and the predicted values of the target variable, respectively.

True Positive (TP) - number of pneumonia X-rays correctly predicted as pneumonia
False Negative (FN) - number of pneumonia X-rays wrongly predicted as normal
True Negative (TN) - number of normal X-rays correctly predicted as normal
False Positive (FP) - number of normal X-rays predicted wrongly as pneumonia

The accuracy of a model is calculated as the ratio of correct predictions to the total number of
predictions, as shown in Eq. 3. Precision is the ratio of the true positives and the number of
predicted positives, as shown in Eq. 4. The recall for a class label is calculated as the ratio between
the true positive and the total number of actual positives, as shown in Eq. 5. It measures the

Fig. 5 Samples of Normal x-rays and Pneumonia x-rays from the dataset in the first row and second row
respectively

Table 4 Distribution of the dataset
for our study Category Train Validation

Normal 1400 183
Pneumonia 1700 2573
Total 3100 2756
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model’s ability to detect positive samples. If the model correctly classifies all the positive samples,
then the recall will be 1. F1 score is the harmonic mean of precision and recall, as shown in Eq. 6.
AUC is a measure to distinguish between classes, i.e., when the AUC value is equal to 1, the
classifier will be able to differentiate between children with and without pneumonia.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð3Þ

Precision ¼ TP
TP þ FP

ð4Þ

Recall ¼ TP
TP þ FN

ð5Þ

F1 score ¼ 2
Precision*Recall
Precisionþ Recall

� �
ð6Þ

Fig. 6 Confusion matrix

Table 5 Parameter used for
CLAHE image enhancement with
the Brisque average calculated over
20 pneumonia samples

Image
enhancement used

Clip limit Tile grid size Mean Brisque
score

CLAHE 0.03 8,8 129.47
0.02 8,8 129.22
0.01 4,4 129.26
0.01 8,8 129.16
0.01 16,16 133.40
0.01 32,32 139.53
0.01 64,64 142.89
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5 Results and discussion

Several deep CNN architectures were trained and validated on the CLAHE enhanced dataset to
find the best-performing models suited for the task at hand. The parameters for CLAHE
enhancement were selected meticulously to ensure that the crucial features in these chest X-
rays do not disappear in the process. Table 5 describes parameters and their BRISQUE scores
for the image enhancement techniques used. These scores are calculated as the mean of twenty
pneumonia X-rays. The parameters resulting in the least BRISQUE scores are selected for

Table 6 Fine-tuning information
and the number of trainable param-
eters associated with each model
used in our study

Deep CNN model Fine-tuned from Total number of trainable
parameters

MobileNetV2 77 2,064,769
MobileNet 50 2,665,473
EfficientNetB0 118 3,700,169
DenseNet121 213 4,632,897
DenseNet169 297 8,544,833
DenseNet201 353 12,741,185
VGG16 9 13,569,793
Xception 66 14,860,313
InceptionV3 155 16,791,489
VGG19 11 17,699,329
ResNet50V2 95 21,352,449
ResNet50 87 21,364,225
ResNet101V2 188 30,625,793
ResNet101 172 30,640,129
ResNet152V2 282 39,836,673
ResNet152 257 39,855,617
InceptionResNetV2 390 41,922,529

Table 7 Performance chart of deep learning models with values rounded off to the nearest two decimal positions
on the CLAHE enhanced images

MODEL ACCURACY PRECISION RECALL F1-SCORE AUC

RESNET152 0.47 1.00 0.43 0.60 0.71
MOBILENETV2 0.61 1.00 0.59 0.74 0.79
RESNET101 0.63 1.00 0.66 0.80 0.82
VGG16 0.85 1.00 0.84 0.91 0.90
RESNET152V2 0.86 1.00 0.85 0.92 0.92
INCEPTIONRESNETV2 0.89 0.89 0.88 0.94 0.94
RESNET101V2 0.91 0.96 0.94 0.95 0.71
XCEPTION 0.91 1.00 0.90 0.95 0.97
RESNET50V2 0.92 1.00 0.91 0.95 0.95
VGG19 0.93 0.93 1.00 0.97 0.50
RESNET50 0.93 0.93 1.00 0.97 0.50
EFFICIENTNETB0 0.93 0.93 1.00 0.97 0.50
INCEPTIONV3 0.94 1.00 0.93 0.97 0.96
DENSENET121 0.94 1.00 0.94 0.97 0.97
MOBILENET 0.97 0.99 0.97 0.98 0.95
DENSENET169 0.98 1.00 0.98 0.99 0.96
DENSENET201 0.98 0.99 0.98 0.99 0.94
PROPOSED METHOD 0.99 1.00 0.99 0.99 0.93
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enhancement. Looking at the mean BRISQUE values, it is noticed that increasing the tile grid
size leads to loss of perceptual quality. The parameters clip limit =0.01, and tile grid size = 8,8
were selected for this study.

Literature survey concludes that several deep CNN architectures achieve competing accu-
racies for pediatric pneumonia diagnosis. To find the best architectures for the task at hand, the
following models are analyzed and compared: VGG16, VGG19, MobileNet, MobileNetV2,
InceptionResNetV2, DenseNet121, DenseNet169, DenseNet201, InceptionV3, ResNet50,
ResNet101, ResNet152, ResNet50V2, ResNet101V2, ResNet152V2, Xception and
EfficientNetB0. Each of the models above were pre-trained on ImageNet weights with the
corresponding input image of size 224 × 224, 224 × 224, 224 × 224, 224 × 224, 224 ×
224, 224 × 224, 224 × 224, 224 × 224, 299 × 299, 224 × 224, 244 × 244, 224 × 224, 224
× 224, 224 × 224, 299 × 299, 299 × 299, and 224 × 224 respectively. All the architectures
were trained for 30 epochs with Adam as the optimization function and the learning rate as
0.001 in Google Colab resourced with K80 GPU and 12 GB RAM. Tensorflow2 and Keras2
were used to build and evaluate the models. The models were fine-tuned from their specified
layers, as shown in Table 6. Table 6 also includes the trainable parameters for all the models
used in this study.

Fig. 7 Confusion matrix for (a) MobileNet predictions on the test data (b) DenseNet121 predictions on the test
data (c) DenseNet169 predictions on the test data (d) DenseNet201 predictions on the test data
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The results in Table 7 show that DenseNet169 and DenseNet201 are the best performing
models. The family of DenseNet models performs consistently well compared to other
architectures. DenseNet169 and DenseNet201 achieve the highest accuracy of 97.79%.
MobileNet precedes them with an accuracy of 97%, followed by DenseNet121 with an
accuracy of 94%. One common attribute in the best-performing models is the residual
connection. The residual connections are a key factor that has suppressed over-fitting and
thus enabled the above models to perform well on the test data. The thought of collective

Fig. 8 ROC curve for (a) MobileNet predictions on the test data (b) DenseNet121 predictions on the test data (c)
DenseNet169 predictions on the test data (d) DenseNet201 predictions on the test data

Fig. 9 MobileNet model performance on the validation set using different optimizers
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knowledge and residual connections in Densenets has enabled it to achieve the highest
accuracy. The confusion matrix for the test data predictions from MobileNet, DenseNet121,
DenseNet169, and DenseNet201 are shown in Fig. 7. MobileNet predicts 67 false negatives
and 13 false positives. DenseNet121, DenseNet169 and DenseNet201 predicts 9,49,43 false
negatives and 66,12,18 false positives respectively. DenseNet121 has the lowest false-negative

Fig. 11 Densenet169 model performance on the validation set using different optimizers

Fig. 12 Densenet201 model performance on the validation set using different optimizers

Fig. 10 Densenet121 model performance on the validation set using different optimizers
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predictions in the Densenet family. The confusion matrices conclude that the architectures are
unable to deal with false predictions. The ROC curves for test data predictions using
MobileNet, DenseNet121, DenseNet169, and DenseNet201 are shown in Fig. 8. DenseNet201
has the lowest AUC value of 0.94 compared to the rest. DenseNet121 and DenseNet169 share
the highest AUC score of 0.96. Our proposed method achieves the highest accuracy, precision,
recall, and f1-score but shows a reduced AUC score.

Extensive experiments were conducted for hyperparameter tuning of each of the best-
performing models. The models were fine-tuned on different optimizers to find the best fit for

Fig. 14 Training and validation accuracy-loss history of the fine-tuned DenseNet121 model

Fig. 15 Training and validation accuracy-loss history of the fine-tuned DenseNet169 model

Fig. 13 Training and validation accuracy-loss history of the fine-tuned MobileNet model
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the task at hand. The Adam optimizer performs best for all models, as seen in Figs. 9, 10, 11
and 12. Based on Figs. 9, 10, 11, and 12, the optimal hyperparameters with the Adam
optimizer and a constant learning rate of 0.001 were chosen for feature extraction. The
validation loss and accuracy plots of MobileNet, DenseNet121, DenseNet169, and
DenseNet201 are shown in Figs. 13, 14, 15 and 16. All the architectures exhibit initial
oscillatory behavior. This oscillation is persistent in MobileNet and Densenet121 whereas,
in Densenet169 and Densenet201, it gradually reduces with the increasing number of epochs.
For the MobileNet model, the validation loss and accuracy are constrained to 1–0 and 0.75–1,
respectively. For the DenseNet121 model, the validation loss and accuracy are constrained to
1.2–0 and 0.8–1, respectively. For the DenseNet169 model, the validation loss and accuracy
are constrained to 3.7–0 and 0.4–1, respectively. For the DenseNet201 model, the validation
loss and accuracy are constrained to 2.8–0 and 0.6–1, respectively.

With the best performing models selected from Table 7, we propose using MobileNet,
DenseNet121, DenseNet169, and DenseNet201 for feature extraction. The extracted features

Fig. 16 Training and validation accuracy-loss history of the fine-tuned DenseNet201 model

Fig. 17 t-SNE feature representation of the test data extracted from the MobileNet model
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are concatenated for the final classification. The extracted features are visualized using the t-
SNE representation for the layman’s interpretability of the features predicted by the models.
The parameter values used for visualization are n_components = 2, perplexity = 40, and
n_iter = 300. Figs. 17, 18, 19, and 20 illustrate the t-SNE plot of the extracted feature maps
from each selected architecture.

The t-SNE feature representations conclude that all the models have minor overlapping
cluster formations and are non-linearly separable. In the cluster formation of the concatenated

Fig. 19 t-SNE feature representation of the test data extracted from the DenseNet169 model

Fig. 18 t-SNE feature representation of the test data extracted from the DenseNet121 model
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features, Fig. 21, we notice fewer overlaps than their individual counterparts. The feature
representations indicate a possible classifier that can deal with such complexity. This study
proposes using the stacking classifier to deal with the non-linearly separable classification.

Class Activation Maps (CAM) are employed to understand the region of interest proposed
by these deep CNN architectures. An overview of the regions of interest in the predictions is
crucial before real-time deployment as a life-saving resource. The first set of class activation

Fig. 21 t-SNE feature representation of the test data from the feature fusion of MobileNet, DenseNet121,
DenseNet169, and DenseNet201

Fig. 20 t-SNE feature representation of the test data extracted from the DenseNet201 model
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maps for each model misclassified normal as pneumonia, normal as pneumonia, and pneu-
monia as normal, as shown in Figs. 22, 24, 26, and 28, respectively. The second set of the class
activation maps for each model correctly classifies normal and pneumonia X-rays, as shown in
Figs. 23, 25, 27, and 29, respectively. From the CAMs of each model, we conclude that the
misclassified samples are possibly due to over-fitting. The plots conclude that the accurateness of
class activation maps of the concatenated features relies purely on the strength of the individual
models. The CAMs of the extracted features from MobileNet, DenseNet121, DenseNet169, and
DenseNet201 and their concatenated features are shown in Figs. 30 and 31 for pediatric
pneumonia diagnosis for misclassified and correctly classified samples, respectively.

Several machine learning classifiers were trained on the concatenated features and validated
against the stacking classifier. Table 8 concludes that the stacking classifier outperforms all
machine learning classifiers by leveraging the strength of individual estimators. The first stage in
the stacking classifier leverages the RandomForests, Support Vector Classifier,
KNeighborsClassifier, GNBClassifier, LogisticRegression, Nu-Support Vector Classifier,
ExtraTreesClassifier, AdaBoost Classifier, and a Bagging Classifier. The hyperparameters for

Fig. 22 Class activation maps of misclassified X-rays from MobileNet (row 1: normal classified as pneumonia,
row 2: normal classified as pneumonia, row 3: pneumonia classified as normal)
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each of these classifiers were selected using the Bayesian optimization strategy in optune and are
detailed in Table 9. Individual predictions from each of the five classifiers are sent to the meta-
classifier for the final classification. The meta classifier uses Nu-SVC with nu = 0.5, kernel =
“rbf”, degree = 3. StratifiedK-Fold cross-validation with n_splits = 30was employed to help the
model learn the most from the existing limited dataset and prevent over-fitting.

The confusion matrix for Stratified K-Fold cross-validation stacking classifier predictions
on the test set is shown in Fig. 32. The false predictions are lower in number compared to the
raw predictions from the deep CNN architectures due to the collective strength of individual
CNN models and the wide range of machine learning classifiers. The perfect combination of
base estimators is of utmost importance. Though the accuracy increased by 0.83%, the AUC
value has not increased. The number of false-positive predictions is minimal and equal to the
number of false positives in DenseNet169. Though the number of false negatives is not as
minimal as that of DenseNet121, the proposed approach has overall reduced false predictions.
Looking at the confusion matrix, the loss of 1.38% in the model’s accuracy might favorably be
due to the imbalanced dataset or insufficient training samples. Another possible reason is the

Fig. 23 Class activation maps of correctly classified X-rays fromMobileNet (row 1: normal classified as normal,
row 2: pneumonia classified as pneumonia, row 3: pneumonia classified as pneumonia)
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use of a simple feature concatenation technique that solely relies on their individual predictors.
The proposed method achieves an accuracy of 98.62%.

Table 10 compares our proposed approach’s performance, technique, and classification
classes with other recent works. The proposed work exhibits competing performances with
other literary works. All the works mentioned in the Table 1 validated their results tested on the
Kermany et al. [38] dataset. The advantage of the proposed method compared to other works
in Table 10 is in the visualization of features learned by the model using both CAMs and t-
SNE plots. Since the feature concatenation of MobileNet, DenseNet121, DenseNet169, and
DenseNet201 are used as the feature extractor is based on the commonly available ImageNet
weights, reproducibility is easier. In addition to stacking various machine learning classifiers
for rich predictions, the proposed models were tested on unseen similar lung disease datasets
for generalization and robustness, which was previously absent in recent works.

The proposed model’s limitation is its heavy reliance on the individual deep CNN
architectures and the correct combination of base classifiers for accurate classification. It
was noticed that the meta classifier played a crucial role in determining the performance of

Fig. 24 Class activation maps of misclassified X-rays from DenseNet121 (row 1: normal classified as pneumo-
nia, row 2: normal classified as pneumonia, row 3: pneumonia classified as normal)
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the proposed architecture. While a few experiments resulted in AUC scores reaching 98%, it
reduced other metrics by a negligible percentage, and the same was observed vice-versa. The
dependence on the fit deep CNN models is a drawback as any one of the models being overfit
can affect the final predictions. Though ensemble learning was used to prevent overfitting, the
performances indicate the need for cost-sensitive learning-based approaches to learn from the
small-scale imbalanced dataset. Other limitations include the inability to subclassify into
different stages of pediatric pneumonia like early, latent and severe.

5.1 Robustness and generalization of the proposed approach for lung disease
classification

Generalization is an important criterion to be considered before real-time deployment. The
proposed deep CNNmodels trained on the Kermany et al. [38] pediatric pneumonia dataset are
tested on similar lung diseases like COVID-19, Tuberculosis, and Pneumonia [6, 15, 27, 43,
62]. The extracted features from each of MobileNet, DenseNet121, DenseNet169, and

Fig. 25 Class activation maps of correctly classified X-rays from DenseNet121 (row 1: normal classified as
normal, row 2: pneumonia classified as pneumonia, row 3: pneumonia classified as pneumonia)
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DenseNet201 are concatenated and classified using the k-means clustering algorithm. The k-
means algorithm was employed to infer the ability to correctly form clusters in the extracted
features for reliable classification of similar lung diseases. The results for each dataset are
analyzed as classification reports and confusion matrices.

In the COVID-19 vs. normal vs. pneumonia classification dataset [4], the proposed feature
fusion achieves an accuracy of 45% with good classification margins for the normal category,
as shown in Table 11. The models achieve 1643 correct classifications for normal images. It
shows misclassification for the viral adult pneumonia, and COVID-19 predictions as the model
are unable to extract the required features for COVID-19 and adult pneumonia detection. The
same can be observed in the normal vs. pneumonia vs. tuberculosis classification dataset [4,
58], where the proposed feature fusion achieves an accuracy of 48% with good classification
margins for the normal category, as shown in Table 12. The models achieve 1646 correct
classifications for normal images. It shows misclassification for the viral adult pneumonia and
tuberculosis predictions as the models are unable to extract the required features for the same.
The proposed method achieves an accuracy of 60% in the normal vs. pneumonia dataset [43]

Fig. 26 Class activation maps of misclassified X-rays from DenseNet169 (row 1: normal classified as pneumo-
nia, row 2: normal classified as pneumonia, row 3: pneumonia classified as normal)
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with 80 false negative predictions, as shown in Table 13 and Fig. 33. The results show the
proposed models’ capability to classify normal chest X-rays from chest X-rays with infections
correctly. The results also conclude that though the challenges of pediatric pneumonia
diagnosis are characteristically different from adult pneumonia and other similar lung diseases,
the proposed method can be extended to aid with diagnosing other lung diseases.

6 Conclusion and future work

This work proposes a computer-aided diagnosis model for detecting pediatric pneumonia
using chest X-rays. The use of low radiation levels in chest X-rays for children makes
detection a difficult task. Highly trained physicians then diagnose these chest X-rays meticu-
lously to confirm the presence of the acute infection. This process requires loads of time and
heavily relies on the availability of experts, which is not always feasible. Other works in the
same field include using novel architectures and an ensemble of deep CNN models with the

Fig. 27 Class activation maps of correctly classified X-rays from DenseNet169 (row 1: normal classified as
normal, row 2: pneumonia classified as pneumonia, row 3: pneumonia classified as pneumonia)
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added advantage of using an augmented dataset to increase the number of samples in each
category. For predictions, the proposed approach uses Contrast Limited Adaptive Histogram
Equalization (CLAHE) enhanced chest X-ray images. Our work uses the existing deep CNN
models for feature extraction; visualized using t-SNE feature representations and class activa-
tion maps. The best-performing models’ features are concatenated and sent to the stacking
classifier for the final - Normal, Pneumonia classification. Redistribution of the dataset instead
of added augmentations to ensure unbiased training was the initial dominant factor for reliable
performance. Our work uses transfer learning on pre-trained models to compensate for the
availability of a limited dataset and introduces data augmentations to prevent overfitting. The
features from MobileNet, DenseNet121, DenseNet169 and DenseNet201 are concatenated for
stacked ensemble learning. The advantage of the proposed models for this task in specific has
been studied in detail. A stacking classifier covering nearly all machine learning models was
employed. Stacking classifier with Stratified K-Fold cross-validation results in an accuracy of
98.62%. The proposed models were tested on other lung disease datasets to validate the
performance across unseen data for inference.

Fig. 28 Class activation maps of misclassified X-rays from DenseNet201 (row 1: normal classified as pneumo-
nia, row 2: normal classified as pneumonia, row 3: pneumonia classified as normal)
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As future work, we would like to explore more about other histogram equalization
techniques such as Gamma Correction (GC), Multipeak Histogram Equalization (MPHE),
and Multipurpose Beta Optimized Bihistogram Equalization (MBOBHE) for pediatric pneu-
monia prediction. We notice minor outliers and feature overlap between normal and pneumo-
nia chest X-rays in the t-SNE plots. The t-SNE plots conclude the need for a better architecture
to capture many more intrinsic patterns. Introducing attention-based networks and trans-
formers is another possible future direction. Attention-based concatenation instead of
simple feature concatenations can be utilized. Augmentations for training might help the
model perform much better and reduce the current misclassification rate of 1.38%. With
our work performing better CheXNet, which has surpassed normal radiologist level
categorization, it will be of immense help to all physicians and radiologists for accurate
diagnoses in a matter of seconds. This early detection will help reduce the mortality rate
of children suffering from pneumonia.

Fig. 29 Class activation maps of correctly classified X-rays from DenseNet201 (row 1: normal classified as
normal, row 2: pneumonia classified as pneumonia, row 3: pneumonia classified as pneumonia)
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Fig. 30 Class activation maps of an X-ray with pneumonia misclassified as normal from each of the selected
architectures. As seen the CAM of the final concatenated feature map is spread over the entire image due to the
drawback of using simple feature concatenation techniques
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Fig. 31 Class activation maps of an X-ray without pneumonia correctly classified as normal from each of the
selected architectures. As seen the CAM of the final concatenated feature map is concentrated to a specific part of
the entire X-ray
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Table 8 Performance comparison of different machine learning classifiers with the stacking classifier with values
rounded off to the nearest two decimal positions

Classifier Accuracy Precision Recall F1-score AUC

Logistic regression 97.42 99.96 97.28 98.60 98.37
Support vector classifier 97.75 99.92 97.67 98.78 98.29
Nu- Support vector classifier 98.55 99.69 98.76 99.22 97.19
K-Nearest classifier 97.42 99.92 97.32 98.60 98.11
MLP classifier 97.24 99.96 97.09 98.50 98.27
Gaussian naïve bayes 97.57 99.60 97.78 98.69 96.16
BernoulliNB 96.84 99.60 97.00 98.29 95.77
Gradient boosting classifier 96.99 99.76 97.00 98.36 96.86
XGB classifier 97.28 99.80 97.28 98.52 97.27
DecisionTree classifier 96.52 99.84 96.42 98.10 97.12
RandomForest classifier 97.61 99.88 97.55 98.70 97.96
ExtraTrees classifier 97.71 99.88 97.67 98.76 98.01
Bagging classifier 96.77 99.76 96.77 98.24 96.75
AdaBoost classifier 97.50 99.80 97.51 98.64 97.39
LGB classifier 97.35 99.84 97.32 98.56 97.57
CatBoost classifier 97.53 99.84 97.51 98.66 97.66
HistGradientBoosting classifier 97.17 99.80 97.16 98.46 97.22
Proposed method 98.62 98.99 99.53 99.26 93.17

Table 9 Fine-tuning information and the number of trainable parameters associated with each model used in our
study

Classifier Hyperparameters

Support Vector
classifier

C=2, kernel= ‘poly’, degree=3, gamma= ‘scale’, coef0=0.0, tol=0.0003

K- Nearest Neighbors
classifier

n_neighbors=175, weights= ‘uniform’, algorithm= ‘brute’,p=2,leaf_size=42

Logistic Regression tol=3.89253667505987e-05, C=1, penalty= ‘l2’, max_iter=102
NuSVC nu=0.38, kernel=‘rbf’, gamma=‘scale’,tol=2.522320748167019e-05,probability=False
RandomForest n_estimators=100, criterion= ‘gini’, min_samples_split=2, min_samples_leaf=1,

min_weight_fraction_leaf=0.0, min_impurity_decrease=0.0, ccp_alpha=0.0
GaussianNB var_smoothing=1e-09
AdaBoostClassifier base_estimator=DecisionTreeClassifier, n_estimators=50, learning_rate=1.0,

algorithm= ‘SAMME.R’
BaggingClassifier base_estimator= DecisionTreeClassifier, n_estimators=10, max_samples=1,

max_features=1
ExtraTreesClassifier n_estimators=10, criterion= ‘gini’, min_samples_split=2, min_samples_leaf=1,

max_features=“auto”
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Table 10 Performance of other recent works on the Kermany et al. [38] dataset with values rounded off to the
nearest two decimal positions

Author Classes Technique Accuracy
(%)

Precision
(%)

Recall
(%)

AUC
(%)

Feature
Extraction
Time

Kermany et al.
[38]

Normal and
Pneumonia

Inception V3 pretrained
CNN model

92.8 90.1 93.2 – –

Nahida et al.
[54]

Normal and
Pneumonia

Two-Channel CNN
model

97.92 98.38 97.47 97.97

Stephen et al.
[4]

Normal and
Pneumonia

Custom CNN model
without
Transfer Learning

93.73 – – – –

Chouhan et al.
[65]

Normal and
Pneumonia

Majority voting ensemble
model

96.39 93.28 99.62 99.34 –

Rajaraman et al.
[58]

Normal and
Pneumonia

Custom VGG-16 model 96.2 97.0 99.5 99.0 –

Siddiqi et al.
[55]

Normal and
Pneumonia

Deep sequential CNN
model

94.39 92.0 99.0 – –

Hashmi et al.
[43]

Normal and
Pneumonia

Weighted classifier 98.43 – – 99.76 –

Yu Xiang et al.
[34]

Normal and
Pneumonia

CGNET 98.72 97.48 99.15 – –

El Asnaoui et al.
[42]

Normal and
Pneumonia

Deep CNN model 96.27 98.06 94.61 – –

Mittal et al.
[68]

Normal and
Pneumonia

CapsNet architecture 96.36 – – – –

Rahman et al.
[66]

Normal and
Pneumonia

Deep CNN model 98.0 97.0 99.0 98.0 –

Sagar Kora Venu
et al. [9]

Normal and
Pneumonia

Weighted average
ensemble model

98.46 98.38 99.53 99.60 –

Fig. 32 Confusion matrix for predictions made on the test dataset using the stacked classifier with feature
concatenations
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Table 11 Classification report for predictions made on the COVID-19 vs normal vs pneumonia classification
dataset [4] using feature fusion from MobileNet, DenseNet121, DenseNet169 and DenseNet201

Precision Recall F1-score Support

COVID-19 0.24 0.29 0.26 1086
NORMAL 0.67 0.54 0.60 3053
VIRAL PNEUMONIA 0.09 0.18 0.12 407
accuracy 0.45 4546
macro avg 0.34 0.34 0.33 4546
weighted avg 0.52 0.45 0.48 4546

Table 12 Classification report for predictions made on the normal vs pneumonia vs tuberculosis classification
dataset [4, 27, 58] using feature fusion from MobileNet, DenseNet121, DenseNet169 and DenseNet201

Precision Recall F1-score Support

NORMAL 0.83 0.53 0.65 3090
VIRAL PNEUMONIA 0.10 0.17 0.13 381
TUBERCULOSIS 0.06 0.27 0.10 231
accuracy 0.48 3702
macro avg 0.33 0.33 0.29 3702
weighted avg 0.71 0.48 0.56 3702

Table 13 Classification report for predictions made on the normal vs pneumonia classification dataset [15, 43]
using feature fusion from MobileNet, DenseNet121, DenseNet169 and DenseNet201

Precision Recall F1-score Support

NORMAL 0.56 1.00 0.71 100
PNEUMONIA 1.00 0.20 0.33 100
accuracy 0.60 200
macro avg 0.78 0.60 0.52 200
weighted avg 0.78 0.60 0.52 200

Table 10 (continued)

Author Classes Technique Accuracy
(%)

Precision
(%)

Recall
(%)

AUC
(%)

Feature
Extraction
Time

Toğaçar et al.
[11]

Normal and
Pneumonia

Deep CNN model 96.84 96.88 96.83 96.80 –

Nahida et al.
[47]

Normal and
Pneumonia

SMOTE on ensembled
features
from VGG-19 and
CheXNet

98.90 – – 99.00 –

Islam et al.
[10]

Normal and
Pneumonia

Feature concatenations
with ANN

98.99 99.18 98.90 – 00:04:16

Proposed Work Normal and
Pneumonia

Stacking Classifier based
feature concatenations
from MobileNet,
DenseNet121,
DenseNet169 and
DenseNet201

98.62 98.99 99.53 93.17 00:01:30
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Fig. 33 Confusion matrix for predictions made on the (a) COVID-19 vs normal vs pneumonia classification
dataset [4], (b) normal vs pneumonia vs tuberculosis classification dataset [4, 58] and normal vs pneumonia
classification dataset [43] using the feature fusion approach
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