Wavelet based acoustic detection of moving vehicles Amir Averbuch Valery Zheludev Neta Rabin and Alon Scholar School of Computer Science Tel Aviv University, Tel Aviv 69978, Israel March 11, 2007 #### Abstract We propose a robust algorithm to detect the arrival of a vehicle of arbitrary type when other noises are present. It is done via analysis of its acoustic signature against an existing database of recorded and processed acoustic signals. To achieve it with minimum number of false alarms, we combine a construction of a training database of acoustic signatures signals emitted by vehicles using the distribution of the energies among blocks of wavelet packet coefficients with a procedure of random search for a near-optimal footprint (RSNOFP). The number of false alarms in the detection is minimized even under severe conditions such as: the signals emitted by vehicles of different types differ from each other, whereas the set of non-vehicle recordings (the training database) contains signals emitted by planes, helicopters, wind, speech, steps, etc. The proposed algorithm is robust even when the tested conditions are completely different from the conditions where the training signals were recorded. The proposed technique has many algorithmic variations. For example, it can be used to distinguish among different types of vehicles. The proposed algorithm is a generic solution for process control that is based on a learning phase (training) followed by an automatic real time detection. #### 1 Introduction The goal is to detect the arrival of vehicles of arbitrary types such as various cars, vans, jeeps and trucks via the analysis of their acoustic signatures with minimal number of false alarms. This processing is done against an existing database of recorded acoustics signals. The problem is complex because of the great variability in vehicles types and because of the surrounding conditions that may contain sounds emitted by planes, helicopters, speech, wind, steps, to name a few, in the recorded database (training datasets). In addition, the velocities of the vehicles, distances from the receiver, the roads the vehicles traveled on are highly variable as well and thus affect the recorded acoustics. A successful detection depends on the constructed acoustics signatures that were built from characteristic features. These signatures enable to discriminate between vehicle (V) and non-vehicle (N) classes. Acoustics signals emitted by vehicles have quasi-periodic structure. It stems from the fact that each part of the vehicle emits a distinct acoustic signal which contains in the frequency domain only a few dominating bands. As the vehicle moves, the conditions are changed and the configuration of these bands may vary, but the general disposition remains. Therefore, we assume that the acoustic signature for the class of signals emitted by a certain vehicle is obtained as a combination of the inherent energies in blocks of wavelet packet coefficients of the signals, each of which is related to a certain frequency band. This assumption has been corroborated in the detection and identification of a certain type of vehicles ([1, 2]). The experiments in the current paper demonstrate that a choice of distinctive characteristic features that discriminate between vehicles and non-vehicle classes can be derived from blocks of wavelet packet coefficients. Extraction of characteristic features (parameters) is a critical task in the training phase of the process. In order to identify the acoustic signatures, in the final phase of the process we combine the outputs from two classifiers. One is the well known Classification and Regression Trees (CART) classifier [5]. The other classifier is based on the distances between the test signal and sets of pattern signals from the V and N classes. The paper has the following structure: In Section 2, we briefly review related works. The structure of the available data is described in Section 3. In Section 4, we outline the scheme of the algorithm and in Section 7 we describe it in full details. Section 6 is devoted to presentation of the experimental results. Section 7 provides some discussion. Appendix I outlines the notions of the wavelet and wavelet packets transforms and Appendix II provides a detailed description of the RSNOFP method. #### 2 Related work Several papers were published that handle the separation between vehicle and non-vehicle sounds. Choe et al [7], extracted the acoustic features by using a discrete wavelet transform. The feature vectors were compared to the reference vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. In [12], discrete cosine transform was applied to signals and a time-varying autoregressive modeling approach was used for their analysis. Averbuch et al [1], designed a system that is based on wavelet packets coefficients in order to discriminate between different types of vehicles. Classification and Regression Trees (CARTs) were used for classification of new unknown signals. In a later paper [2], Averbuch etal used similar methods with multiscale local cosine transform applied to the frequency domain of the acoustic signal. The classifier that was based on Parallel Coordinates methodology. Wu et al [18] used the eigenfaces method [15], which was originally used for human face recognition, to distinguish between different vehicle sound signatures. The data was sliced into frames - short series of time slices. Each frame was then transformed into frequency domain. Classification was done by projecting new frames on principal components that were calculated for a known training set. Munich [14] compared between several speech recognition techniques for classification of vehicle types. These methods were applied to short time Fourier transform of the vehicles acoustic signatures. ## 3 The structure of the acoustics signals The recordings were taken under very different conditions in different dates. The recordings sampling rate (SR) was 48000 samples per second (SPS). It was downsampled to SR of 1000 SPS. We extracted from the set of recordings, which were used for training the algorithm, fragments that contain sounds emitted by vehicles and stored them as the V-class signals. Recorded fragments that did not contain vehicles sounds were stored as the N-class signals. Both classes were highly variable. Recordings in the V-class were taken from different types of vehicles during different field experiments under various surrounding conditions. In particular, the velocities of the vehicles and their distances from the recording device were varied. Moreover, the vehicles traveled on either various paved (asphalt) or unpaved roads, or on a mixture of paved and unpaved roads. Recordings in N-class comprised of sounds emitted by planes, helicopters, sometimes strong wind and speech nearby the receiver, to name a few. Figure 1 displays portions of acoustic signals emitted by two cars with their Fourier transforms. Figure 1: Fragments of two car recordings and their spectra. Frames from left to right: First car and its spectrum, second car and its spectrum. Figure 2 displays portions of acoustic signals emitted by a truck and a van with their Fourier transforms. Figure 2: Fragments of a truck and a van recordings and their spectra. Frames from left to right: Truck and its spectrum, van and its spectrum. We see that the spectra of different cars differ from each other. It is even more apparent in the spectra of other vehicles. Figure 3 displays portions of acoustic signals emitted by a plane and a helicopter with their Fourier transforms, whereas Fig. 4 does the same for speech and wind patterns. Figure 3: Fragments of a plane and a helicopter recordings and their spectra. Frames from left to right: Plane and its spectrum; helicopter and its spectrum. Figure 4: Fragments of a speech and a wind recordings and their spectra. Frames from left to right: Wind and its spectrum; speech and its spectrum. We realized that even within the same class (V or N), the signals differ significantly from each other. The same is true for their Fourier transforms. However, there are some common properties to all these acoustic signals that were recorded from moving vehicles. First, these signals are quasiperiodic in the sense that there exist some dominating frequencies in each signal. These frequencies may vary as motion conditions are changed. However, for the same vehicle, these variations are confined in narrow frequency bands. Moreover, the relative locations of the frequency bands are stable (invariant) to some extent for signals that belong to the same vehicle. Therefore, we conjectured that the distribution of the energy (or some energy-like parameters) of acoustics signals that belong to some class over different areas in the frequency domain, may provide a reliable characteristic signature for this class. ## 4 Formulation of the approach Wavelet packet analysis (see Appendix I) is a highly relevant tool for adaptive search for valuable frequency bands in a signal or a class of signals. Once implemented, a wavelet packet transform of a signal yields a huge (redundant) variety of different partitions of the frequency domain. The transform is computational efficient. Due to the lack of time invariance in the multiscale wavelet packet decomposition, we use the whole blocks of wavelet packet coefficients rather than individual coefficients and waveforms. The collection of energies in blocks of wavelet packet coefficients can be regarded as an averaged version of the Fourier spectrum of the signal, which provides more sparse and more robust representation of signals compared to the Fourier spectrum. We can see it, for example, in Fig. 5, where the displayed energies in their blocks of wavelet packet coefficients of the orthogonal spline wavelet of the sixth order in the sixth level of the wavelet packet
transform of a car acoustics signal. Figure 5: Top: Fourier spectrum of the car signal in Fig. 1. Bottom: Energies in the blocks of wavelet packet coefficients of the sixth level of the wavelet packet transform that uses the orthogonal spline wavelets of sixth order. Variation on the Best Basis algorithm [8, 17] that searches for of a few blocks that mostly discriminate a certain vehicle from other vehicles and the background was used in [1, 2]. Here, this approach did not prove to be robust and efficient because of the variability in vehicles types sought for in Class V and due to different types of background in Class N. Therefore, another way to utilize the wavelet packet coefficients blocks was chosen. This method can be characterized as a random search for the near-optimal footprint (RSNOFP) of a class of signals. This is close to the compressed sensing ([10, 11, 6]) idea. In order to enhance the robustness of the algorithm, we implement three different versions of RSNOFP that validate each other. The sample signals for the training phase and the online signals in the detected phase are formed by imposing a comparatively short window on each input signal followed by a shift of this window along the signal so that adjacent windows are overlapped. #### 4.1 Outline of the approach The complete process has three sequential steps: **Training phase:** We use a set of signals with known membership. These signals are sliced into overlapped fragments of length L (typically, L=1024). The fragments are chosen according to the wavelet packet transform. The blocks energies are calculated and three versions of RSNOFP are applied. As a result, we represent each fragment by three different vectors of length $l \ll L$ (typically, l=12 or l=8). The components of these vectors are the characteristic features of the fragments. These vectors are used as pattern data sets and are also utilized to produce three versions of CART trees. Identification – features extraction phase: We slice the new acquired signal to overlapped fragments of length L. Then, the wavelet packet transform is applied followed by energies calculations of blocks of coefficients. Then, we apply three different transforms that are determined by three versions of RSNOFP. As a result, we represent each fragment by three different vectors of length l. Identification – decision making phase: These vectors are submitted to the corresponding versions of CART trees classifiers. In addition, the vectors are tested by a second classifier that calculates the distances of the vectors from the pattern data sets associated with V and N classes. The final decision on membership of the fragment is derived by combining the answers for all the three vectors from both classifiers. ## 5 Description of the algorithm and its implementation #### 5.1 The algorithm The algorithm is centered around three basic phases: - I. Extraction of characteristic features from V and N classes. It contains the following steps: - 1. The analyzing wavelet filters are chosen. - 2. The training sets of the signals are constructed by slicing the training signals into overlapped segments. - 3. The wavelet packet transform is applied to these segments. - 4. The energies in the blocks of the wavelet packet coefficients are calculated. - 5. RSNOFP is called. It results in the embedding of the training sets of signals into lower-dimensional reference sets that contain its characteristic features. - II. Building the CART classification trees. - **III.** Identifying whether the new signal belongs to either V or N class: - 1. The new signal is sliced into overlapped segments. - 2. The wavelet packet transform is applied to these segments. - 3. The energies in the blocks of the wavelet packet coefficients are calculated. - 4. The set of blocks energies of each segment is embedded into a lower-dimensional vector that contains its characteristic features. - 5. The distances of the vector, which contains characteristic features, from the reference sets of V and N classes are calculated. - 6. The vector is tested by CART classifier. - 7. Decision whether the vector belongs to either V or N class is made. Now we present a detailed description of the implementation of this algorithm. #### 5.2 Implementation #### 5.2.1 Extraction of characteristic features Choice of the analyzing waveforms: A broad variety of orthogonal and biorthogonal filters, which generate wavelet packets coefficients, are available ([9, 16, 3, 4]). We use the 6-th order spline wavelet. This filter reduces the overlap between frequency bands associated with different decomposition blocks. At the same time, the transform with this filter provides a variety of waveforms that have a fair time-domain localization. For details see Appendix I (Section 8). Signal preparation for training the algorithm: Initially, we gather as many recordings as possible for V and N classes, which have to be separated. Then, we prepare from each selected recording, which belongs to a certain class, a number of overlapped slices each of length $L = 2^J$ samples, shifted by $S \ll L$ samples with respect to each other. Altogether, we prepare M^v and M^n slices for the V and N classes, respectively. The slices are arranged into two matrices, where j = 1, ..., L: $A^v = \left\{A_{i,j}^v\right\}_{i=1}^{M^v}$ and $A^n = \left\{A_{i,j}^n\right\}_{i=1}^{M^n}$. Embedding the sets of slices into sets of energies: We use the normalized l_1 norms of the blocks as the energy measure. Then, the following operations are carried out: - 1. The wavelet packet transform up to scale m (typically m=6 if L=1024) is applied to each slice of length L from V and N classes. We take the coefficients from the sparsest (coarsest) scale m. This scale contains $L=2^J$ coefficients that are arranged into 2^m blocks of length $l=2^{J-m}$, each of which is associated with a certain frequency band. These bands form a near-uniform partition of size 2^m of the Nyquist frequency domain. - 2. The "energy" of each block is calculated using the chosen measure. We obtain, to some extent, the distribution of the "energies" of the slice $A^{v\,(n)}(i,:)$ over various frequency bands of widths N_F/m , where N_F is the Nyquist frequency. It is stored in the energy vector $\vec{E}_i^{v\,(n)}$ of length $\lambda=2^m=L/l$ (typically, $\lambda=64$). The energy vectors are arranged into two matrices, where , $j=1,...,\lambda$; $B^v=\left\{B_{i,j}^v\right\}_{i=1}^{M^v}$ and $B^n=\left\{A_{i,j}^n\right\}_{i=1}^{M^n}$. The i-th row of the matrix $B^{v\,(n)}$ is the vector $\vec{E}_i^{v\,(n)}$. This vector is considered to be the averaged Fourier spectrum of the slice $A^{v\,(n)}(i,:)$, as it is seen in Fig. 5. We consider this vector to be a proxy of the slice. By the above operations we reduced the dimension of the database by factor $l=2^{J-m}$. Embedding of sets of energies into the sets of features: The subsequent operations yield a further reduction of the dimensionality in the compressed sensing [10, 11] spirit. It is achieved by the application of three versions of the RSNOFP scheme to the energy matrices B^v and B^n . The RSNOFP scheme is described in Appendix II. As a result, we get three pairs of the reference matrices: D^v_{rand} & D^n_{rand} , D^v_{pca} & D^n_{pca} and D^v_{perm} & D^n_{perm} and the corresponding random matrices ρ_{rand} , ρ_{pca} and ρ_{perm} . These random matrices will be utilized in the identification phase. Compaction of the feature matrices in V-class: In order to refine the feature matrices of V-class, we test their rows. Recall that each row is associated with a segment of a signal that belongs to V-class. We calculate the Mahalanobis distances d^v and d^n of each row in the matrix D^v_{rand} from the sets D^v_{rand} and D^n_{rand} . If for some row $d^v > d^n$, then, we remove this row from the matrix D^v_{rand} . The same is done for the matrices D^v_{pea} and D^v_{perm} . Conclusion: As a result of the above operations, the dimensionality of the training set was substantially reduced. Typically, a segment of length 1024 is embedded into a 12-component vector. Ostensibly, this part of the process looks computationally expensive, especially if, for better robustness, large training sets are involved. This procedure is called once and it is done off-line before the detection phase that is done on-line. Altogether, formation of three pairs of reference matrices requires 2-3 minutes of CPU time on a standard PC. Figure 6 displays one row from matrix D_{perm}^v and one row from matrix D_{perm}^n . These are sets of features from a segment in V-class and a segment in N-class. Figure 6: Left: one row from the matrix D_{perm}^v (features of a segment from the V-class). Right: one row from the matrix D_{perm}^n (features of a segment from the N-class). ## 5.3 Building the Classification and Regression Trees (CARTs) Once we have D^v_{rand} & D^n_{rand} , D^v_{pca} & D^n_{pca} and D^v_{perm} & D^n_{perm} , which are three pairs of the reference matrices, we proceed to build the classifiers. For this purpose we use vectors, which form rows in the reference matrices. The construction of the tree is done by a binary split of the space of input patterns $X \longrightarrow \{X_1 \bigcup X_2 \bigcup \ldots \bigcup X_r\}$, so that, once a vector appeared in the subspace X_k , its membership could be predicted with a sufficient reliability. The answer is the class the vector is assigned to and the probability of this assignment. The basic idea behind the split is that the data in each descendant subset is "purer" than the data in the parent subset. The scheme is described in full details in the monograph [5]. A brief outline that is tailored to acoustic processing is given in [1]. After the construction of the three classification trees T_{rand} , T_{pca} and T_{perm} with three pairs of reference
matrices, we are in a position to classify new signals that were not used in the training phase. #### 5.4 Identification of an acoustic signal An acoustic signal to be identified is preprocessed by the same operations that were used on the training signals. **Preprocessing of a new acoustics signal.** Preprocessing is done similarly to the feature extraction phase. - 1. This signal is sliced to M overlapped segments of length $L=2^J$ samples each, shifted with respect to each other by S samples. The wavelet packet transform up to scale m is applied to each slice. We take the coefficients from the sparsest (coarsest) scale m that are arranged into 2^m blocks of length $l=2^{J-m}$. The "energy" of each block is calculated with the chosen measure. Thus, each i-th slice is embedded into an energy vector \vec{E}_i of length $\lambda=2^m=L/l$. The energy vectors are arranged in the matrix $B=\{B_{i,j}\}$, i=1,...,M, $j=1,...,\lambda$, where the i-th row of the matrix B is the vector \vec{E}_i . - 2. In order to embed the energy matrix B into the features spaces, we multiply it subsequently by the random matrices ρ_{rand} , ρ_{pca} and ρ_{perm} . These multiplications produce three features matrices D_{rand} , D_{pca} and D_{perm} , where the *i*-th row in each matrix is associated with the *i*-th segment of the processed signal. **Identification of a single segment.** To identify the *i*-th segment of a signal, we take three vectors, \vec{v}_{rand}^i , \vec{v}_{pca}^i and \vec{v}_{perm}^i , which form the *i*-th rows of the matrices D_{rand} , D_{pca} and D_{perm} , respectively. - 1. These vectors are submitted to their respective versions T_{rand} , T_{pca} and T_{perm} of the classification tree. Once a vector is submitted to the tree, it is assigned to one of the subsets X_k of the input space X. These trees produce three decisions τ_{rand} , τ_{pca} and τ_{perm} together with the corresponding probabilities p_{rand} , p_{pca} and p_{perm} . The decision $\tau_{(\cdot)}$ determines the most probable membership of the segment. Here (\cdot) stands for rand, or pca or perm. The value $\tau_{(\cdot)} = 1$ if the CART assigns the segment to V-class and $\tau_{(\cdot)} = 0$ otherwise. - 2. The distances (for example, Mahalanobis or Euclidean) between the vectors \vec{v}_{rand}^i , \vec{v}_{pca}^i and \vec{v}_{perm}^i and the respective pairs of the reference sets D_{rand}^v & D_{rand}^n , D_{pca}^v & D_{pca}^n and D_{perm}^v & D_{perm}^n are calculated. This calculation produces three decisions $\tilde{\tau}_{rand}$, $\tilde{\tau}_{pca}$ and $\tilde{\tau}_{perm}$ together with the corresponding probabilities \tilde{p}_{rand} , \tilde{p}_{pca} and \tilde{p}_{perm} in the following way. Let d^v and d^n be the distances of a vector $\vec{v}_{(\cdot)}^i$ from the respective pair of the reference sets $D_{(\cdot)}^v$ and $D_{(\cdot)}^n$. If $d^v < d^n$ then the decision is $\tilde{\tau}_{(\cdot)} = 1$ (the segment is assigned to V-class), otherwise $\tilde{\tau}_{(\cdot)} = 0$ (the segment is assigned to N-class). If $d^v < d^n$ then the membership probability in the V-class is defined as $\tilde{p}_{(\cdot)} = 1 d^v/d^n$, otherwise $\tilde{p}_{(\cdot)} = 0$. This classification scheme is similar to the well known Linear Discriminant Analysis (LDA) classifier [13]. If the Mahalanobis distances are used then it is identical to LDA. We call this scheme the Minimal Distance (MD) classifier. 3. Two thresholds values t and \tilde{t} are set and the results for the i-th segment are combined into three 3-component column vectors \vec{y}_{rand}^i , \vec{y}_{pca}^i and \vec{y}_{perm}^i , where: $$y_{(\cdot)}^{i}(1) = \begin{cases} 1, & \text{if } p_{(\cdot)} > t \\ 0, & \text{otherwise,} \end{cases}$$ $$y_{(\cdot)}^{i}(2) = \begin{cases} 1, & \text{if } \tilde{p}_{(\cdot)} > \tilde{t} \\ 0, & \text{otherwise,} \end{cases}$$ $$y_{(\cdot)}^{i}(3) = \tau_{(\cdot)} \times \tilde{\tau}_{(\cdot)}.$$ $$(1)$$ #### Identification of a recording. - 1. The vectors \vec{y}_{rand}^i , \vec{y}_{pca}^i and \vec{y}_{perm}^i are gathered into three matrices Y_{rand} , Y_{pca} and Y_{perm} of size $3 \times M$, where M is the number of overlapping segments produced from the analyzed signal. The vectors \vec{y}_{i}^i , serve as the i-th columns in the respective matrices Y. - 2. The rows of the matrices are processed by a moving average. - 3. The matrices Y_{rand} , Y_{pca} and Y_{perm} are combined into the matrix Y in the following way. Each entry in Y is defined as the median value of the respective entries of the three matrices: $$Y(i,j) = \operatorname{median}(Y_{rand}(i,j), Y_{pca}(i,j), Y_{perm}(i,j)).$$ (2) Conclusions. The matrix Y contains the results for the analyzed signal. Its first row contains the averaged answers (which have significant probabilities) from the CART classifier. Its value at each point is the number of positive (class V) answers in the vicinity of this point, which is divided by the length of the vicinity. It represents the "density" of the positive answers around the corresponding segment. The structure of the second row is similar to the structure of the first row with the difference that these answers come from the MD classifier instead of answers from the CART classifier. The third row of the matrix Y combines the answers from both classifiers. First, these answers are multiplied by each other. The combined answer is equal to one for segments where both classifiers produce the answer one (V-class) and zero otherwise. Thus, the classifiers cross-validate each other. Then, the results are processed by the application of the moving average providing the "density" for the positive answers. This row in the matrix Y yields the most robust result from the detection process with minimal false alarm. We presented a scheme for the detection of the arrival of any moving vehicle. Obviously, the scheme is also applicable for the detection of the arrival of the sought after vehicles. ## 6 Experimental results We conducted a series of experiments to detect the arrival of vehicles of arbitrary type in the presence of surrounding noises. Altogether 200 recordings were available. They were taken in five different areas. Many recordings contained sounds emitted by different vehicles combined with the sounds of wind, speech, aircrafts etc. The original sampling rate (SR) was 48000 samples per second (SPS). The signals were downsampled to SR of 1000 SPS. The motion dynamics, the distances of vehicles from the receiver, the surrounding conditions were highly diverse. #### 6.1 Detection experiments The first task was to form the reference database of signals with known membership (training) for building the classifiers. This database was derived from the recordings by clipping the corresponding fragments. The CAR fragments were extracted from 10 recordings, 5 recordings were used for the TRUCK fragments and the same number for the VAN fragments. Diverse non-vehicle fragments were extracted from 35 recordings. Altogether, 38 recordings were involved in the training process (most of them contained sounds from different sources). We tested various families of wavelet packets and various norms for the feature extraction and various combinations of features presented to the MD and CART classifiers. The best results were achieved with wavelet packet transform that uses the sixth order spline filters and the l_1 norm. We separated the reference signals into two groups. One group (V class) contains all signals associated with vehicles and the other group (N class) contains all the non-vehicles signals. The signals were sliced into overlapped segments of length L=1024 that were shifted with respect to one another by S=256, thus, the overlap was 3/4 of a fragment. We extracted the characteristic features from the segments as explained in Section 5.2.1. Each segment was expanded by the wavelet packet transform up to 6th level (scale) and the l_1 norm was used as an "energy" measure for all the 64 blocks of the 6th level. As a result of the procedures that were described in Section 5.2.1, we selected various sets of discriminant blocks. These procedures produced three pairs of reference matrices: D^v_{rand} & D^n_{rand} , D^v_{pca} & D^n_{pca} and D^v_{perm} & D^n_{perm} with the corresponding random matrices ρ_{rand} , ρ_{pca} and ρ_{perm} . Each matrix has 12 columns according to the number of characteristic features. These matrices were used for the MD classification and also were utilized for building three CART trees T_{rand} , T_{pca} and T_{perm} . For the MD classification, we used all the available features (12), unlike building the CART trees, where better results were achieved with sets containing only 8 features. All the available recordings were employed in the detection phase. A recording number k was embedded into three features matrices D_{rand}^k , D_{pca}^k and D_{perm}^k , where the i-th row of each matrix is associated with the i-th segment of the recording (see Section 5.4). Each row was tested with the MD and CART classifiers. The results were gathered into the Y^k matrix. The Euclidean distance was used for the MD classification. In Figs. 7–15, we present a few results from the experiments on detection of vehicles of arbitrary types. All the figures are identically organized. Each comprises four figures. The top figure depicts the original recording #k. The next three figures present five rows from the Y^k matrix with respect to time scale. The second from the top figure presents the combined answers (the median from three answers) from CART classifiers processed by the moving average. The third from the top figure similarly displays the results from the MD classifiers. The bottom figure illustrates the combined results from both classifiers.
These are the answers from both classifiers are multiplied with each other and processed by the moving average. #### 6.1.1 Examples **Recording # 1:** We display in Fig. 7 the results from testing recording # 1. This recording participated in the training phase. It is apparent that arrivals of a car and a track at around 40 and 55 seconds from the start of the recording, respectively, are correctly detected by the CART and MD classifiers. Figure 7: Results from testing recording # 1. The recording contains sounds emitted by a car (at around 40 sec) and a truck (at around 55 sec). This recording participated in the training phase. Recording # 2: We display in Fig. 8 the results from testing recording # 2. This recording participated in the training phase. Arrival of two cars one at around 11 and another at around 27 seconds from start of the recording, respectively, are correctly detected by the CART and MD classifiers. The sound of an helicopter became audible 27 seconds from start of the recording. This sound is present till the end of the recording. It initiated some false alarms, which were eliminated by combining the classifiers (bottom figure). Figure 8: Results from testing recording # 2. The recording contains sounds emitted by a car (at around 11 sec) and by another car (at around 27 sec). This recording participated in the training phase. Recording # 3: We display in Fig. 9 the results from testing recordings # 3. A fragment of 60 seconds from start of the recording participated in the training phase for N class. A loud speech is present in the non-vehicle background. It lasted 100 seconds from start of the recording. In addition, there was a a plane sound from second 107 till the end of the recording. A van briefly passed by at around 105 second from start of the recording. It was correctly detected by the CART and MD classifiers. The number of false alarms was reduced by combining the classifiers (bottom figure). Figure 9: Results of testing recording # 3. The recording contains loud speech through 100 sec. from start, sounds emitted by a car (at around 105 sec) and sound of a plane (from 107 sec till the end of the recording). A fragment of 60 seconds from start of the recording participated in the training phase for the class N. Recording # 4: We display in Fig. 10 the results from testing recordings # 4. This recording did not participate in the training phase. In the beginning of the recording, sound from a remote vehicle is heard. Then, the jumpy vehicle passed by the receiver at around 70, 134 and 200 seconds from start. In its last passage, it was followed by another car. All the events were correctly detected by the CART and MD classifiers. The MD classifier produced some false alarms, which were eliminated by combining the classifiers (bottom figure). Figure 10: Results from testing recording # 4. In the beginning, the sound from a remote vehicle is heard. The jumpy vehicle passed by the receiver at around 70 sec. from start, at around 134 sec. and at around 200 sec. In last passage, it was followed by another car. The recording did not participate in the training phase. Recording # 5: We display in Fig. 11 the results from testing recordings # 5. This recording did not participate in the training phase. In the beginning of the recording, a truck passed by the receiver followed by a tender. At around 70 seconds from start of the recording a car followed by a truck passed by. In the end, a minibus and a car arrived. All the events were correctly detected by CART and MD classifiers for each sampling rate. The MD classifier produced some false alarms, which were reduced by combining the classifiers (bottom figure). Figure 11: Results from testing recording # 5. In the beginning of the recording a truck passed by the receiver followed by a tender. At around 70 sec. from the start, a car followed by a truck passed by. In the end a minibus and a car arrived. This recording did not participate in the training phase. Recording # 6: We display in Fig. 12 the results from testing recordings # 6. The recording did not participate in the training phase. Two trucks passed by the receiver moving in opposing directions at around 50 seconds from start. Strong wind was present. The event was correctly detected by CART and MD classifiers. The MD classifier produced some false alarms, which were reduced by combining the classifiers (bottom figure). Figure 12: Results from testing recording # 6. Two trucks passed by the receiver in opposing directions at around 50 sec. from start. Strong wind was present at the scene. The recording did not participate in the training phase. Recording # 7: We display in Figs. 13 the results from testing recordings # 7. The recording did not participate in the training phase. A truck passed by the receiver from 30 seconds to 190 seconds from start. Then, a strong sound from a plane dominated the acoustics till the end of the recording. The truck was correctly detected by the CART and MD classifiers. The MD classifier produced some false alarms, which were reduced by combining the classifiers (bottom figure). The plane was not assigned to V class. Figure 13: Results from testing recording # 7. A truck passed by the receiver from 30 sec. to 190 sec. from the start, then a strong sound from a plane dominated the acoustics till the end of the recording. Strong wind was present. This recording did not participate in the training phase. Recording # 8: We display in Figs. 14 the results from testing recordings # 8. The recording did not participate in the training phase. A truck followed by a minibus passed by the receiver at around 40 seconds from start and one more truck at around 65 seconds. Strong wind was present. The vehicles were correctly detected by the CART and MD classifiers. The MD classifier produced some false alarms, which were eliminated by combining the classifiers (bottom figure). Figure 14: Results from testing recording # 8. A truck followed by a minibus passed by the receiver at around 40 sec. from start and one more truck at around 65 sec.. Strong wind was present. This recording did not participate in the training phase. Recording # 9: We display in Fig. 15 the results from testing recordings # 9. The recording did not participate in the training phase. A sound from a truck was heard within the intervals 15 to 50 seconds and 80 to 110 seconds from start. Then, a plane sound appeared. It lasted till the end of the recording. The truck was correctly detected by the CART and MD classifiers. The plane was not assigned to V class. The MD classifier performed worse. Figure 15: Results from testing recording # 9. Sound from a truck was heard within the intervals 15 to 50 sec. and 80 to 110 sec. from start, then the sound from a plane appeared at the acoustics, which lasted till the end of the recording. This recording did not participate in the training phase. #### Comments - The detection experiments demonstrate the relevance of our approach to feature extraction. - Combination of three schemes for feature extraction performs better than any single scheme. - Combining the classifiers MD with CART significantly reduces the number of false alarms. - The algorithm produced satisfactory detection results even when the conditions of the real signals essentially differ from the training data and the surrounding conditions. When the conditions of the captured signals were close to the training conditions, the detection is almost perfect. - The algorithm performs similarly on signal with sampling rates of 1000 SPS and 600 SPS. In few cases, the results for SR of 1000 SPS were significantly better than those for SR of 600 SPS. ### 7 Conclusions We presented a robust algorithm that detects the arrival of a vehicle of arbitrary type via the analysis of its acoustic signature against an existing database of recorded and processed acoustic signals. To minimize the number of false alarms, we constructed an acoustic signature of a certain vehicle using the distribution of the energies among blocks which consist of its wavelet packet coefficients. This distribution serves as an averaged version of the Fourier spectrum of the signal. To reduce the dimensionality of the features sets, we designed a scheme of random search for the near-optimal footprint (RSNOFP), which proved to be an efficient tool for the extraction of a small number of characteristic features of the objects to be detected. As decision units for detection, a classifier that is based on the minimal distance (MD) from the reference data sets and the Classification and Regression Tree (CART) classifier were used. These classifiers cross-validated each other. The detection process is fast and can be implemented in real time. This technology, which has many algorithmic variations, is generic and can be used to solve a wide range of classification and detection problems such as process control, which are based on acoustic processing and, more generally, for classification and detection of signals which have near-periodic structure. Distinguishing between different vehicles can also be achieved via this technology. ## 8 Appendix I: Wavelet and wavelet packet transforms Wavelet, in general, and wavelet packet, in particular, transforms are widespread and have been described comprehensively in the literature [9, 17, 16]. Therefore, we restrict ourselves to mention only relevant facts that are necessary to understand the construction of the algorithm. The output from the application of the wavelet transform to a signal f of length $n = 2^J$ is a set of n correlated coefficients of the signal with scaled and shifted versions of two basic waveforms – the father and mother wavelets. The transform is implemented through iterated application of a conjugate pair of low– (L) and high– (H) pass filters followed by downsampling. In the first decomposition step, the filters are applied to f and, after downsampling, the result has two
blocks w_0^1 and w_1^1 of the first scale coefficients, each of size n/2. These blocks consist of the correlation coefficients of the signal with 2-sample shifts of the low frequency father wavelet and high frequency mother wavelet, respectively. The block w_0^1 contains the coefficients necessary for the reconstruction of the low-frequency component of the signal. Because of the orthogonality of the filters, the energy $(l_2 \text{ norm})$ of the block w_0^1 is equal to that of the component W_0^1 . Similarly, the high frequency component W_1^1 can be reconstructed from the block w_1^1 . In this sense, each decomposition block is linked to a certain half of the frequency domain of the signal. While block w_1^1 is stored, the same procedure is applied to block w_0^1 in order to generate the second level (scale) of blocks w_0^2 and w_1^2 of size n/4. These blocks consist of the correlation coefficients with 4-sample shifts of the two times dilated versions of the father and mother wavelets. Their spectra share the low frequency band previously occupied by the original father wavelet. Then, w_0^2 is decomposed in the same way and the procedure is repeated m times. Finally, the signal f is transformed into a set of blocks $f \longrightarrow \{w_0^m, w_1^m, w_1^{m-1}, w_1^{m-2}, \ldots, w_1^2, w_1^1\}$ up to the m-th decomposition level. This transform is orthogonal. One block is remained at each level (scale) except for the last one. Each block is related to a single waveform. Thus, the total number of waveforms involved in the transform is m+1. Their spectra cover the whole frequency domain and split it in a logarithmic form. Each decomposition block is linked to a certain frequency band (not sharp) and, since the transform is orthogonal, the l_2 norm of the coefficients of the block is equal to the l_2 norm of the component of the signal f whose spectrum occupies this band. Through the application of the wavelet packet transform, many more waveforms, namely, 2^j waveforms at the j-th decomposition level are involved. The difference between the wavelet packet and wavelet transforms begins in the second step of the decomposition. Now both blocks w_0^1 and w_1^1 are stored at the first level and at the same time both are processed by the pair of L and H filters, which generate four blocks w_0^2 , w_1^2 , w_2^2 , w_3^2 in the second level. These are the correlation coefficients of the signal with 4-sample shifts of the four libraries of waveforms whose spectra split the frequency domain into four parts. All of these blocks are stored in the second level and transformed into eight blocks in the third level, etc. The involved waveforms are well localized in time and frequency domains. Their spectra form a refined partition of the frequency domain (into 2^j parts in scale j). Correspondingly, each block of the wavelet packet transform describes a certain frequency band. Flow of the wavelet packet transform is given by Fig. 16. The partition of the frequency domain corresponds approximately to the location of blocks in the diagram. # WAVELET PACKETS Figure 16: Flow of the wavelet packet. There are many wavelet packet libraries. They differ from each other by their generating filters L and H, the shape of the basic waveforms and their frequency content. In Fig. 17, we display the wavelet packets derived from the spline of 6-th order after decomposition into three scales. While the splines do not have a compact support in time domain, they are well localized. They produce perfect splitting of the frequency domain (see Fig. 17 right). Figure 17: Wavelet packets derived from the spline of 6-th order after decomposition into three scales (left) and their spectra (right). There is a duality in the nature of the wavelet coefficients of a certain block. On one hand, they indicate the presence of the corresponding waveform in the signal and measure its contribution. On the other hand, they evaluate the contents of the signal inside the related frequency bands. We may argue that the wavelet packet transform bridges the gap between time-domain and frequency-domain representations of a signal. As we advance into coarser level (scale), we see a better frequency resolution at the expense of time domain resolution and vice versa. In principle, the transform of a signal of length $n=2^J$ can be implemented up to the J-th decomposition level. At this level there exist n different waveforms, which are close to the sine and cosine waves with multiple frequencies. In Fig. 18, we display a few wavelet packets derived from the spline of the 6-th order after decomposition into six levels . The waveforms resemble the windowed sine and cosine waves, whereas their spectra split the Nyquist frequency domain into 64 bands. Figure 18: Wavelet packets derived from the spline of 6-th order after decomposition into six scales (left) and their spectra (right). # 9 Appendix II: Random search for a near optimal footprint (RSNOFP) scheme **RSNOFP: version I.** A random matrix R_1 of size $r \times \lambda$, where $r \ll \lambda$ (typically, r = 20) is created. Entries of the matrix R_1 are Gaussian random variables. The rows in the matrix are normalized. The matrix B^v (defined in section 5.2) is multiplied by the matrix R_1 . As a result, we obtain a new matrix $C^v = B^v \cdot R_1 = \left\{ C^v_{i,j} \right\}$ of size $M^v \times r$. Each row in C^v is associated with the corresponding slice from A^v . To select the most valuable columns in the matrix C^v , we average the columns of this matrix $$\vec{c}^v = \frac{1}{M^v} \sum_{i=1}^{M^v} |C_{i,j}^v| = \{c_j^v\}, \ j = 1, ..., r.$$ Let K be the set of indices k < r of the largest coordinates of the vector \vec{c}^v (typically, k = 12). Then, the columns, whose indices do not belong to K, are removed from the matrix C^v and the matrix D^v of size $M^v \times k$ is obtained. This operation is equivalent to multiplication of B^v with the matrix ρ of size $k \times \lambda$, which is derived from R_1 by removing the rows, whose indices do not belong to K. Thus, the initial matrix A^v consisting of the V-class slices, whose size was, for example, $M^v \times 1024$, is reduced to the matrix D^v of the random footprints of the slices. The size of D^v is $M^v \times 12$. To produce a similar reduction for the matrix A^n in N-class slices, we multiply the N-class energy matrix B^n with the matrix ρ . As a result, we obtain the random footprints matrix $D^n = B^n \cdot \rho$ of size $M^n \times 12$. We consider the coordinates of the i-th row of the matrix $D^{v(n)}$ as the set of k characteristic features of the i-th slice from the matrix $A^{v(n)}$. Now, the Mahalanobis distances μ_i , $i = 1, ..., M^v$, of each row in the V-class matrix D^v from the matrix D^n are computed. Then, the sequence $\{\mu_i\}$ is averaged $$\Delta = \frac{1}{M^v} \sum_{i=1}^{M^v} \mu_i.$$ The value Δ is considered to be distance between the sets D^v and D^n of features. The matrices D^v , D^n , ρ and the value Δ are stored and we proceed to optimize the features. All the above operations are conducted using a random matrix R_2 , whose structure is similar to the structure of the matrix R_1 . As a result, we obtain the features matrices D_2^v and D_2^n , the random matrix ρ_2 and the distance value Δ_2 . The distance value Δ_2 is compared to the stored value Δ . Assume, $\Delta_2 > \Delta$. This means that the features matrices D_2^v and D_2^n are better separated from each other than the stored matrices D^v and D^n . In this case, we denote D_2^v , D_2^n , ρ_2 and the value Δ_2 as D^v , D^n , ρ and the value Δ , respectively. They are stored while replacing the previous stored items. If $\Delta_2 \leq \Delta$ then the stored items are left intact. We iterate this procedures up to 500 times. In the end, we stored the features matrices D^v and D^n such that the "distance" Δ between them among all the iterations is maximal. We have stored the reduced random matrix ρ and the pattern matrices D^v and D^n , which will be used in the identification phase. These items are denoted as D^v_{rand} , D^n_{rand} and ρ_{rand} . **RSNOFP: Version II.** This version is similar, to some extent, to Version I. The difference is that, instead of selecting the most valuable columns in the matrix C^v of size $M^v \times r$, we apply the Principal Component Analysis (PCA) to this matrix. As a result, we obtain the matrix $P = \{P_{i,j}\}$ of size $r \times r$. Each column of P contains coefficients for one principal component. The columns are arranged in decreasing component variance order. The size of P is reduced to $r \times k$ by retaining only the first k columns $$P_k = \{P_{i,j}\}, i = 1, ..., r, j = 1, ..., k.$$ We obtain the feature matrix D^v for the V-class by multiplying C^v by P_k : $$D^v = C^v \cdot P_k = B^v \cdot R_1 \cdot P_k = B^v \cdot \rho$$, where $\rho = R_1 \cdot P_k$. The size of the matrix ρ is $k \times \lambda$. Similarly, we produce the feature matrix D^n for the N-class: $D^n = B^n \cdot \rho$. Similarly to Version I, we measure the "distance" Δ between the feature sets D^v and D^n . The matrices D^v , D^n , ρ and the value Δ are stored and we proceed to optimization of the features, which is identical to Version I. In the end, we stored the features matrices D^v and D^n and the matrix ρ . These items are denoted by D^v_{pca} , D^n_{pca} and ρ_{pca} . **RSNOFP: version III.** This version differs from versions I and II. Here, we do not multiply the energy matrix B^v by a random matrix but instead we perform a random permutation of the columns and retain the first r columns. Thus, we get the matrix C^v of size $M^v \times r$.
Note, that this transform can be presented as the multiplication of the matrix B^v by a matrix T of size $\lambda \times r$, $C^v = B^v \cdot T$, where each column consists of zeros except for one entry, which is equal to 1. **Example:** Assume that the matrix T is of size 4×3 that executes the permutation $[1\ 2\ 3\ 4] \rightarrow [3\ 1\ 4\ 2]$ of the columns of a matrix of size 4×4 while retaining the first three columns: $$T = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right).$$ The other operations are similar to the operations in Version II. We apply to the matrix C^v the PCA algorithm, which results in the matrix $P = \{P_{i,j}\}$ of size $r \times r$ of coefficients of the principal components. The size of P is reduced to $r \times k$ by retaining only the first k columns $$P_k = \{P_{i,j}\}, i = 1, ..., r, j = 1, ..., k.$$ We obtain the feature matrix D^v for the V-class by multiplying C^v by P_k : $$D^v = C^v \cdot P_k = B^v \cdot R_1 \cdot P_k = B^v \cdot \rho$$, where $\rho = R_1 \cdot P_k$. The size of the matrix ρ is $k \times \lambda$. Similarly, we produce the feature matrix D^n for the N-class: $D^n = B^n \cdot \rho$. We measure the "distance" Δ between the sets of features D^v and D^n . The matrices D^v , D^n , ρ and the value Δ are stored and we proceed to optimize the features, which is identical to Versions I and II. In the end, the features matrices D^v and D^n and the matrix ρ are stored. They are denoted as D^v_{perm} , D^n_{perm} and ρ_{perm} . We graphically illustrate the relations between the RSNOFP procedures (version II) by the diagram in Fig. 19. Figure 19: RSNOFP procedures (version II). WPT stands for wavelet packet transform. #### References - [1] A. Z. Averbuch, E. Hulata, V. A. Zheludev, I. Kozlov A wavelet packet algorithm for classification and detection of moving vehicles, Multidimensional Systems and Signal Processing, 12(1), 2001, 9-31. - [2] A. Averbuch, I. Kozlov, V. Zheludev, Wavelet packet based algorithm for identification of quasi-periodic signals Proc. SPIE 4478, Wavelet Applications in Signal and Image Processing IX, (A. Aldroubi, A. F. Laine; M. A. Unser; Eds.) 353-360 (2001). - [3] A. Averbuch, V. Zheludev, Wavelet transforms generated by splines, to appear in International Journal of Wavelets, Multiresolution and Information Processing. - [4] A. Averbuch, V. Zheludev, Wavelet and frame transforms originated from continuous and discrete splines, in Advances in Signal Transforms: Theory and Applications, L. Yaroslavsky (Editor), 2006. - [5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, Chapman & Hall, Inc., New York, 1993. - [6], E. Candes, J. Romberg and T. Tao, Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information, IEEE Transactions on Inform. Th., 52/2, (2006), 489–509. - [7] H.C. Choe, R.E Karlsen, T. Meitzler, G.R. Gerhart and D. Gorsich, Wavelet-Based Ground Vehicle Recognition Using Acoustic Signals, Proc of the SPIE, 2762, (1996), 434-445, - [8] R. R. Coifman, Y. Meyer, M. V. Wickerhauser, Adapted waveform analysis, wavelet-packets, and applications, *In Proceedings of ICIAM'91*, SIAM Press, Philadelphia, 1992, 41-50. - [9] I. Daubechies, Ten lectures on wavelets. SIAM, 1992. - [10] D. Donoho, Compressed Sensing, IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006. - [11] D. Donoho and Y. Tsaig, Extensions of Compressed Sensing, Signal Processing, 86(3), pp. 533-548, March 2006. - [12] KIE B. EOM, Analysis of Acoustic Signatures from Moving Vehicles Using Time-Varying Autoregressive Models, journal = Multidimensional Systems and Signal Processing, 10, (1999), 357-378. - [13] R. A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugenics, 7, (1936), 179-188. - [14] M.E. Munich, Bayesian Subspace Method For Acoustic Signature Recognition Of Vehicles, Proc. of the 12th European Signal Processing Conf. EUSIPCO, (2004). - [15] L. Sirovich and M. Kirby, Low-dimensional Procedure for the Characterization of Human Faces, J. Opt. Soc. Aner. Soc. A, 4/1, (1987) - [16] S. Mallat, A wavelet tour of signal processing, Acad Press, 1998. - [17] W. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, AK Peters, Wellesley, Massachusetts, 1994. - [18] H. Wu, M. Siegel, and P. Khosla, Vehicle Sound Signature Recognition by Frequency Vector Principal Component Analysis, IEEE Trans. on Instrumentation and Measurement, 48/5, (1999), 1005 - 1009.