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Abstract

We propose a robust algorithm to detect the arrival of a vehicle of arbitrary type when other
noises are present. It is done via analysis of its acoustic signature against an existing database
of recorded and processed acoustic signals. To achieve it with minimum number of false alarms,
we combine a construction of a training database of acoustic signatures signals emitted by
vehicles using the distribution of the energies among blocks of wavelet packet coefficients with
a procedure of random search for a near-optimal footprint (RSNOFP). The number of false
alarms in the detection is minimized even under severe conditions such as: the signals emitted
by vehicles of different types differ from each other, whereas the set of non-vehicle recordings
(the training database) contains signals emitted by planes, helicopters, wind, speech, steps, etc.
The proposed algorithm is robust even when the tested conditions are completely different from
the conditions where the training signals were recorded. The proposed technique has many
algorithmic variations. For example, it can be used to distinguish among different types of
vehicles. The proposed algorithm is a generic solution for process control that is based on a
learning phase (training) followed by an automatic real time detection.

1 Introduction

The goal is to detect the arrival of vehicles of arbitrary types such as various cars, vans, jeeps
and trucks via the analysis of their acoustic signatures with minimal number of false alarms. This
processing is done against an existing database of recorded acoustics signals. The problem is
complex because of the great variability in vehicles types and because of the surrounding conditions
that may contain sounds emitted by planes, helicopters, speech, wind, steps, to name a few, in the
recorded database (training datasets). In addition, the velocities of the vehicles, distances from the
receiver, the roads the vehicles traveled on are highly variable as well and thus affect the recorded
acoustics.

A successful detection depends on the constructed acoustics signatures that were built from
characteristic features. These signatures enable to discriminate between vehicle (V) and non-
vehicle (N) classes. Acoustics signals emitted by vehicles have quasi-periodic structure. It stems
from the fact that each part of the vehicle emits a distinct acoustic signal which contains in the
frequency domain only a few dominating bands. As the vehicle moves, the conditions are changed
and the configuration of these bands may vary, but the general disposition remains. Therefore, we
assume that the acoustic signature for the class of signals emitted by a certain vehicle is obtained
as a combination of the inherent energies in blocks of wavelet packet coefficients of the signals,



each of which is related to a certain frequency band. This assumption has been corroborated
in the detection and identification of a certain type of vehicles ([1, 2]). The experiments in the
current paper demonstrate that a choice of distinctive characteristic features that discriminate
between vehicles and non-vehicle classes can be derived from blocks of wavelet packet coefficients.
Extraction of characteristic features (parameters) is a critical task in the training phase of the
process.

In order to identify the acoustic signatures, in the final phase of the process we combine the
outputs from two classifiers. One is the well known Classification and Regression Trees (CART)
classifier [5]. The other classifier is based on the distances between the test signal and sets of
pattern signals from the V and N classes.

The paper has the following structure: In Section 2, we briefly review related works. The
structure of the available data is described in Section 3. In Section 4, we outline the scheme of the
algorithm and in Section 7 we describe it in full details. Section 6 is devoted to presentation of
the experimental results. Section 7 provides some discussion. Appendix I outlines the notions of
the wavelet and wavelet packets transforms and Appendix II provides a detailed description of the
RSNOFP method.

2 Related work

Several papers were published that handle the separation between vehicle and non-vehicle sounds.

Choe et al [7], extracted the acoustic features by using a discrete wavelet transform. The
feature vectors were compared to the reference vectors in the database using statistical pattern
matching to determine the type of vehicle from where the signal originated. In [12], discrete cosine
transform was applied to signals and a time-varying autoregressive modeling approach was used for
their analysis. Averbuch et al [1], designed a system that is based on wavelet packets coefficients
in order to discriminate between different types of vehicles. Classification and Regression Trees
(CARTSs) were used for classification of new unknown signals. In a later paper [2], Averbuch et
al used similar methods with multiscale local cosine transform applied to the frequency domain
of the acoustic signal. The classifier that was based on Parallel Coordinates methodology. Wu
et al [18] used the eigenfaces method [15], which was originally used for human face recognition,
to distinguish between different vehicle sound signatures. The data was sliced into frames - short
series of time slices. Each frame was then transformed into frequency domain. Classification
was done by projecting new frames on principal components that were calculated for a known
training set. Munich [14] compared between several speech recognition techniques for classification
of vehicle types. These methods were applied to short time Fourier transform of the vehicles’
acoustic signatures.

3 The structure of the acoustics signals

The recordings were taken under very different conditions in different dates. The recordings sam-
pling rate (SR) was 48000 samples per second (SPS). It was downsampled to SR of 1000 SPS.

We extracted from the set of recordings, which were used for training the algorithm, fragments
that contain sounds emitted by vehicles and stored them as the V-class signals. Recorded fragments
that did not contain vehicles sounds were stored as the N-class signals. Both classes were highly
variable. Recordings in the V-class were taken from different types of vehicles during different field



experiments under various surrounding conditions. In particular, the velocities of the vehicles and
their distances from the recording device were varied. Moreover, the vehicles traveled on either
various paved (asphalt) or unpaved roads, or on a mixture of paved and unpaved roads. Recordings
in N-class comprised of sounds emitted by planes, helicopters, sometimes strong wind and speech
nearby the receiver, to name a few.

Figure 1 displays portions of acoustic signals emitted by two cars with their Fourier transforms.

Figure 1: Fragments of two car recordings and their spectra. Frames from left to right: First car
and its spectrum, second car and its spectrum.

Figure 2 displays portions of acoustic signals emitted by a truck and a van with their Fourier
transforms.
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Figure 2: Fragments of a truck and a van recordings and their spectra. Frames from left to right:
Truck and its spectrum, van and its spectrum.

We see that the spectra of different cars differ from each other. It is even more apparent in
the spectra of other vehicles. Figure 3 displays portions of acoustic signals emitted by a plane
and a helicopter with their Fourier transforms, whereas Fig. 4 does the same for speech and wind
patterns.



Figure 3: Fragments of a plane and a helicopter recordings and their spectra. Frames from left to
right: Plane and its spectrum; helicopter and its spectrum.

Figure 4: Fragments of a speech and a wind recordings and their spectra. Frames from left to right:
Wind and its spectrum; speech and its spectrum.

We realized that even within the same class (V or N), the signals differ significantly from each
other. The same is true for their Fourier transforms. However, there are some common properties
to all these acoustic signals that were recorded from moving vehicles. First, these signals are quasi-
periodic in the sense that there exist some dominating frequencies in each signal. These frequencies
may vary as motion conditions are changed. However, for the same vehicle, these variations are
confined in narrow frequency bands. Moreover, the relative locations of the frequency bands are
stable (invariant) to some extent for signals that belong to the same vehicle.

Therefore, we conjectured that the distribution of the energy (or some energy-like parameters)
of acoustics signals that belong to some class over different areas in the frequency domain, may
provide a reliable characteristic signature for this class.

4 Formulation of the approach

Wavelet packet analysis (see Appendix I) is a highly relevant tool for adaptive search for valuable
frequency bands in a signal or a class of signals. Once implemented, a wavelet packet transform
of a signal yields a huge (redundant) variety of different partitions of the frequency domain. The



transform is computational efficient. Due to the lack of time invariance in the multiscale wavelet
packet decomposition, we use the whole blocks of wavelet packet coeflicients rather than individual
coefficients and waveforms. The collection of energies in blocks of wavelet packet coefficients can be
regarded as an averaged version of the Fourier spectrum of the signal, which provides more sparse
and more robust representation of signals compared to the Fourier spectrum. We can see it, for
example, in Fig. 5, where the displayed energies in their blocks of wavelet packet coefficients of the
orthogonal spline wavelet of the sixth order in the sixth level of the wavelet packet transform of a
car acoustics signal.
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Figure 5: Top: Fourier spectrum of the car signal in Fig. 1. Bottom: Energies in the blocks of
wavelet packet coefficients of the sixth level of the wavelet packet transform that uses the orthogonal
spline wavelets of sixth order.

Variation on the Best Basis algorithm [8, 17] that searches for of a few blocks that mostly
discriminate a certain vehicle from other vehicles and the background was used in [1, 2]. Here,
this approach did not prove to be robust and efficient because of the variability in vehicles types
sought for in Class V and due to different types of background in Class N. Therefore, another way
to utilize the wavelet packet coefficients blocks was chosen. This method can be characterized as a
random search for the near-optimal footprint (RSNOFP) of a class of signals. This is close to the
compressed sensing ([10, 11, 6]) idea.

In order to enhance the robustness of the algorithm, we implement three different versions of
RSNOEFP that validate each other.

The sample signals for the training phase and the online signals in the detected phase are formed
by imposing a comparatively short window on each input signal followed by a shift of this window
along the signal so that adjacent windows are overlapped.

4.1 Outline of the approach

The complete process has three sequential steps:

Training phase: We use a set of signals with known membership. These signals are sliced into



overlapped fragments of length L (typically, L = 1024). The fragments are chosen according
to the wavelet packet transform. The blocks energies are calculated and three versions of
RSNOFP are applied. As a result, we represent each fragment by three different vectors
of length | < L (typically, | = 12 or | = 8). The components of these vectors are the
characteristic features of the fragments. These vectors are used as pattern data sets and are
also utilized to produce three versions of CART trees.

Identification — features extraction phase: We slice the new acquired signal to overlapped
fragments of length L. Then, the wavelet packet transform is applied followed by energies
calculations of blocks of coefficients. Then, we apply three different transforms that are
determined by three versions of RSNOFP. As a result, we represent each fragment by three
different vectors of length [.

Identification — decision making phase: These vectors are submitted to the corresponding
versions of CART trees classifiers. In addition, the vectors are tested by a second classi-
fier that calculates the distances of the vectors from the pattern data sets associated with V
and N classes. The final decision on membership of the fragment is derived by combining the
answers for all the three vectors from both classifiers.

5 Description of the algorithm and its implementation

5.1 The algorithm

The algorithm is centered around three basic phases:
I. Extraction of characteristic features from V and N classes. It contains the following steps:

1. The analyzing wavelet filters are chosen.

2. The training sets of the signals are constructed by slicing the training signals into over-
lapped segments.

3. The wavelet packet transform is applied to these segments.
4. The energies in the blocks of the wavelet packet coefficients are calculated.

5. RSNOFP is called. It results in the embedding of the training sets of signals into lower-
dimensional reference sets that contain its characteristic features.

I1. Building the CART classification trees.
ITI. Identifying whether the new signal belongs to either V or N class:

1. The new signal is sliced into overlapped segments.

2. The wavelet packet transform is applied to these segments.

3. The energies in the blocks of the wavelet packet coefficients are calculated.
4

. The set of blocks energies of each segment is embedded into a lower-dimensional vector
that contains its characteristic features.

5. The distances of the vector, which contains characteristic features, from the reference
sets of V and N classes are calculated.



6. The vector is tested by CART classifier.

7. Decision whether the vector belongs to either V or N class is made.

Now we present a detailed description of the implementation of this algorithm.

5.2 Implementation

5.2.1 Extraction of characteristic features

Choice of the analyzing waveforms: A broad variety of orthogonal and biorthogonal filters,

which generate wavelet packets coefficients, are available ([9, 16, 3, 4]). We use the 6-th
order spline wavelet. This filter reduces the overlap between frequency bands associated with
different decomposition blocks. At the same time, the transform with this filter provides a
variety of waveforms that have a fair time-domain localization. For details see Appendix 1
(Section 8).

Signal preparation for training the algorithm: Initially, we gather as many recordings as

possible for V and N classes, which have to be separated. Then, we prepare from each
selected recording, which belongs to a certain class, a number of overlapped slices each of
length L = 27 samples, shifted by S < L samples with respect to each other. Altogether, we
prepare MY and M™ slices for the V and N classes, respectively. The slices are arranged into

M'U Mn
two matrices, where j=1,...,L: AV = {A;’j} ) and A" = {A?j} v
9, : 9, Z:

Embedding the sets of slices into sets of energies: We use the normalized [; norms of the

blocks as the energy measure. Then, the following operations are carried out:

1. The wavelet packet transform up to scale m (typically m = 6 if L = 1024) is applied to
each slice of length L from V and N classes. We take the coefficients from the sparsest
(coarsest) scale m. This scale contains L = 27/ coefficients that are arranged into 2™
blocks of length I = 277™ each of which is associated with a certain frequency band.
These bands form a near-uniform partition of size 2™ of the Nyquist frequency domain.

2. The “energy” of each block is calculated using the chosen measure. We obtain, to some
extent, the distribution of the “energies” of the slice A”(™(4,:) over various frequency
bands of widths Ng/m, where N is the Nyquist frequency. It is stored in the energy
vector E’;v ™) of length A = 2™ = L/I (typically, A = 64). The energy vectors are arranged

MU Mn
into two matrices, where , j = 1,..., A\, BV = {B;fj} and B" = {Agj} - The i-th
9 ,L: 9 ,L:
row of the matrix B is the vector E? (™) This vector is considered to be the averaged
Fourier spectrum of the slice AY (”)(2’, 1), as it is seen in Fig. 5. We consider this vector
to be a proxy of the slice. By the above operations we reduced the dimension of the
database by factor [ = 27~™,

Embedding of sets of energies into the sets of features: The subsequent operations yield

a further reduction of the dimensionality in the compressed sensing [10, 11] spirit. It is
achieved by the application of three versions of the RSNOFP scheme to the energy matrices
BY and B™. The RSNOFP scheme is described in Appendix II. As a result, we get three



pairs of the reference matrices: D7, & D7 .. Dy, & Dy, and Dy, & D)., and the
corresponding random matrices prand; Ppca a0d Pperm. These random matrices will be utilized

in the identification phase.

Compaction of the feature matrices in V-class: In order to refine the feature matrices of
V-class, we test their rows. Recall that each row is associated with a segment of a signal that
belongs to V-class. We calculate the Mahalanobis distances d and d" of each row in the
matrix Dy . from the sets D’ . and D} If for some row d* > d", then, we remove this

rand’
row from the matrix DY The same is done for the matrices DY and DY

rand® pca perm*

Conclusion: As a result of the above operations, the dimensionality of the training set was
substantially reduced. Typically, a segment of length 1024 is embedded into a 12-component
vector. Ostensibly, this part of the process looks computationally expensive, especially if, for
better robustness, large training sets are involved. This procedure is called once and it is
done off-line before the detection phase that is done on-line. Altogether, formation of three
pairs of reference matrices requires 2-3 minutes of CPU time on a standard PC.

Figure 6 displays one row from matrix Dj,,,, and one row from matrix Dj, .. These are sets

of features from a segment in V-class and a segment in N-class.

CLASS WV CLASS N

Figure 6: Left: one row from the matrix Dj,,,, (features of a segment from the V-class). Right:

one row from the matrix D}, (features of a segment from the N-class).

5.3 Building the Classification and Regression Trees (CARTSs)

Once we have D}, . & D!, Dy, & Dy, and Dy, & Dj.,.., which are three pairs of the
reference matrices, we proceed to build the classifiers. For this purpose we use vectors, which form
rows in the reference matrices. The construction of the tree is done by a binary split of the space of
input patterns X — {X;(JX2UJ...UX,}, so that, once a vector appeared in the subspace Xy,
its membership could be predicted with a sufficient reliability. The answer is the class the vector is
assigned to and the probability of this assignment. The basic idea behind the split is that the data
in each descendant subset is “purer” than the data in the parent subset. The scheme is described
in full details in the monograph [5]. A brief outline that is tailored to acoustic processing is given

in [1].



After the construction of the three classification trees Trond , Tpea and Tperm with three pairs
of reference matrices, we are in a position to classify new signals that were not used in the training
phase.

5.4 Identification of an acoustic signal

An acoustic signal to be identified is preprocessed by the same operations that were used on the
training signals.

Preprocessing of a new acoustics signal. Preprocessing is done similarly to the feature ex-
traction phase.

1. This signal is sliced to M overlapped segments of length L = 27 samples each, shifted
with respect to each other by S samples. The wavelet packet transform up to scale m
is applied to each slice. We take the coefficients from the sparsest (coarsest) scale m
that are arranged into 2™ blocks of length [ = 2/7™. The “energy” of each block is
calculated with the chosen measure. Thus, each i-th slice is embedded into an energy
vector E; of length A = 2™ = L/I. The energy vectors are arranged in the matrix
B ={B;;},i=1,..,M, j =1,..., A, where the i-th row of the matrix B is the vector
E;.

2. In order to embed the energy matrix B into the features spaces, we multiply it subse-
quently by the random matrices prand, Ppca @0d pperm. These multiplications produce
three features matrices Dyond, Dpea and Dperrm, where the i-th row in each matrix is
associated with the i-th segment of the processed signal.

Identification of a single segment. To identify the i-th segment of a signal, we take three
vectors, T, Upeq and Upe,,, which form the i-th rows of the matrices Dyand, Dpea and

Dperm, respectively.

1. These vectors are submitted to their respective versions Tqnd, Tpca and Tperm of the
classification tree. Once a vector is submitted to the tree, it is assigned to one of the
subsets X, of the input space X. These trees produce three decisions T qnd, Tpea and
Tperm together with the corresponding probabilities prund, Ppca and pperm. The decision
7(, determines the most probable membership of the segment. Here (-) stands for rand,
or pca or perm. The value 1) = 1 if the CART assigns the segment to V-class and
7(.y = 0 otherwise.

2. The distances (for example, Mahalanobis or Euclidean) between the vectors @ i

. rand’ “pca
and Up,,,,, and the respective pairs of the reference sets D}, & Dy Dy.. & D}

rand’ *~pca pca
and DY & DI are calculated. This calculation produces three decisions 7,qnd, Tpca

perm perm

and Tperm together with the corresponding probabilities prand, Ppeca and pperm in the
following way. Let d” and d" be the distances of a vector 17%_) from the respective pair of
the reference sets Dfy and D). If d¥ < d" then the decision is 7(.) = 1 (the segment is
assigned to V-class), otherwise 7(.) = 0 (the segment is assigned to N-class). If d” < d"
then the membership probability in the V-class is defined as p.y =1 —d" /d™, otherwise
Py = 0. This classification scheme is similar to the well known Linear Discriminant
Analysis (LDA) classifier [13]. If the Mahalanobis distances are used then it is identical
to LDA. We call this scheme the Minimal Distance (MD) classifier.



3. Two thresholds values ¢ and £ are set and the results for the i-th segment are combined
into three 3-component column vectors 7 ,, gj;i?ca and gj}ijerm, where:

i 1, ifpoy>t

otherwise,
1, ifpy >t (1)
4 )(2) - {0, otherwise,

)(3) = T() X T()-
Identification of a recording.

1. The vectors gj’f,and, g;ica and gjﬁ,eTm are gathered into three matrices Y,.qnd, Ypca and Yperm
of size 3 x M, where M is the number of overlapping segments produced from the
analyzed signal. The vectors gj’é) serve as the i-th columns in the respective matrices Y.

2. The rows of the matrices are processed by a moving average.

3. The matrices Y,und, Ypca and Ypern, are combined into the matrix Y in the following
way. Each entry in Y is defined as the median value of the respective entries of the three
matrices:

Y(i,j) = median (Y}and(i,j), Y;?ca(iaj)a Yperm(iaj)) . (2)

Conclusions. The matrix Y contains the results for the analyzed signal. Its first row contains the
averaged answers (which have significant probabilities) from the CART classifier. Its value
at each point is the number of positive (class V) answers in the vicinity of this point, which
is divided by the length of the vicinity. It represents the “density” of the positive answers
around the corresponding segment. The structure of the second row is similar to the structure
of the first row with the difference that these answers come from the MD classifier instead of
answers from the CART classifier. The third row of the matrix Y combines the answers from
both classifiers. First, these answers are multiplied by each other. The combined answer is
equal to one for segments where both classifiers produce the answer one (V-class) and zero
otherwise. Thus, the classifiers cross-validate each other. Then, the results are processed by
the application of the moving average providing the “density” for the positive answers. This
row in the matrix Y yields the most robust result from the detection process with minimal
false alarm.

We presented a scheme for the detection of the arrival of any moving vehicle. Obviously, the
scheme is also applicable for the detection of the arrival of the sought after vehicles.

6 Experimental results

We conducted a series of experiments to detect the arrival of vehicles of arbitrary type in the
presence of surrounding noises.

Altogether 200 recordings were available. They were taken in five different areas. Many record-
ings contained sounds emitted by different vehicles combined with the sounds of wind, speech,
aircrafts etc. The original sampling rate (SR) was 48000 samples per second (SPS). The signals
were downsampled to SR of 1000 SPS. The motion dynamics, the distances of vehicles from the
receiver, the surrounding conditions were highly diverse.

10



6.1 Detection experiments

The first task was to form the reference database of signals with known membership (training) for
building the classifiers. This database was derived from the recordings by clipping the corresponding
fragments. The CAR fragments were extracted from 10 recordings, 5 recordings were used for the
TRUCK fragments and the same number for the VAN fragments. Diverse non-vehicle fragments
were extracted from 35 recordings. Altogether, 38 recordings were involved in the training process
(most of them contained sounds from different sources). We tested various families of wavelet
packets and various norms for the feature extraction and various combinations of features presented
to the MD and CART classifiers. The best results were achieved with wavelet packet transform
that uses the sixth order spline filters and the {; norm.

We separated the reference signals into two groups. One group (V class) contains all signals
associated with vehicles and the other group (N class) contains all the non-vehicles signals. The
signals were sliced into overlapped segments of length L. = 1024 that were shifted with respect to
one another by S = 256, thus, the overlap was 3/4 of a fragment. We extracted the characteristic
features from the segments as explained in Section 5.2.1. Each segment was expanded by the
wavelet packet transform up to 6th level (scale) and the /; norm was used as an “energy” measure
for all the 64 blocks of the 6th level. As a result of the procedures that were described in Section
5.2.1, we selected various sets of discriminant blocks. These procedures produced three pairs of
reference matrices: D] . & D! . Dp., & D, and D)., & Dy, with the corresponding
random matrices prand, Ppca @A Pperm. Each matrix has 12 columns according to the number of
characteristic features. These matrices were used for the MD classification and also were utilized
for building three CART trees Trand, Tpca and Tperm. For the MD classification, we used all the
available features (12), unlike building the CART trees, where better results were achieved with
sets containing only 8 features.

All the available recordings were employed in the detection phase. A recording number k was
embedded into three features matrices Df(m & D;fca and D;ferm, where the i-th row of each matrix is
associated with the i-th segment of the recording (see Section 5.4). Each row was tested with the
MD and CART classifiers. The results were gathered into the Y* matrix. The Euclidean distance
was used for the MD classification.

In Figs. 7-15, we present a few results from the experiments on detection of vehicles of arbitrary
types. All the figures are identically organized. Each comprises four figures. The top figure depicts
the original recording #&. The next three figures present five rows from the Y* matrix with respect
to time scale. The second from the top figure presents the combined answers (the median from three
answers) from CART classifiers processed by the moving average. The third from the top figure
similarly displays the results from the MD classifiers. The bottom figure illustrates the combined
results from both classifiers. These are the answers from both classifiers are multiplied with each
other and processed by the moving average.

6.1.1 Examples

Recording # 1: We display in Fig. 7 the results from testing recording # 1. This recording
participated in the training phase. It is apparent that arrivals of a car and a track at around
40 and 55 seconds from the start of the recording, respectively, are correctly detected by the
CART and MD classifiers.
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Figure 7: Results from testing recording # 1. The recording contains sounds emitted by a car (at
around 40 sec) and a truck (at around 55 sec). This recording participated in the training phase.

Recording # 2: We display in Fig. 8 the results from testing recording # 2. This recording
participated in the training phase. Arrival of two cars one at around 11 and another at
around 27 seconds from start of the recording, respectively, are correctly detected by the
CART and MD classifiers. The sound of an helicopter became audible 27 seconds from start
of the recording. This sound is present till the end of the recording. It initiated some false
alarms, which were eliminated by combining the classifiers (bottom figure).

0.5 - helicopter

0 10 >0 =0 a0 50 =] 70
Figure 8: Results from testing recording # 2. The recording contains sounds emitted by a car (at

around 11 sec) and by another car (at around 27 sec). This recording participated in the training
phase.

12



Recording # 3: We display in Fig. 9 the results from testing recordings # 3. A fragment of
60 seconds from start of the recording participated in the training phase for N class. A
loud speech is present in the non-vehicle background. It lasted 100 seconds from start of
the recording. In addition, there was a a plane sound from second 107 till the end of the
recording. A van briefly passed by at around 105 second from start of the recording. It was
correctly detected by the CART and MD classifiers. The number of false alarms was reduced
by combining the classifiers (bottom figure).

speech & wind

]} 20 A0 =0 30 10 120

Figure 9: Results of testing recording # 3. The recording contains loud speech through 100 sec.
from start, sounds emitted by a car (at around 105 sec) and sound of a plane (from 107 sec till
the end of the recording). A fragment of 60 seconds from start of the recording participated in the
training phase for the class N.

Recording # 4: We display in Fig. 10 the results from testing recordings # 4. This recording
did not participate in the training phase. In the beginning of the recording, sound from a
remote vehicle is heard. Then, the jumpy vehicle passed by the receiver at around 70, 134
and 200 seconds from start. In its last passage, it was followed by another car. All the events
were correctly detected by the CART and MD classifiers. The MD classifier produced some
false alarms, which were eliminated by combining the classifiers (bottom figure).
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Figure 10: Results from testing recording # 4. In the beginning, the sound from a remote vehicle
is heard. The jumpy vehicle passed by the receiver at around 70 sec. from start, at around 134

sec. and at around 200 sec.. In last passage, it was followed by another car. The recording did not
participate in the training phase.

Recording # 5: We display in Fig. 11 the results from testing recordings # 5. This recording
did not participate in the training phase. In the beginning of the recording, a truck passed
by the receiver followed by a tender. At around 70 seconds from start of the recording a car
followed by a truck passed by. In the end, a minibus and a car arrived. All the events were
correctly detected by CART and MD classifiers for each sampling rate. The MD classifier
produced some false alarms, which were reduced by combining the classifiers (bottom figure).
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Figure 11: Results from testing recording # 5. In the beginning of the recording a truck passed by
the receiver followed by a tender. At around 70 sec. from the start, a car followed by a truck passed
by. In the end a minibus and a car arrived. This recording did not participate in the training phase.

Recording # 6: We display in Fig. 12 the results from testing recordings # 6. The recording did
not participate in the training phase. Two trucks passed by the receiver moving in opposing
directions at around 50 seconds from start. Strong wind was present. The event was correctly
detected by CART and MD classifiers. The MD classifier produced some false alarms, which
were reduced by combining the classifiers (bottom figure).
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Figure 12: Results from testing recording # 6. Two trucks passed by the receiver in opposing
directions at around 50 sec. from start. Strong wind was present at the scene. The recording did
not participate in the training phase.
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Recording # 7: We display in Figs. 13 the results from testing recordings # 7. The recording
did not participate in the training phase. A truck passed by the receiver from 30 seconds to
190 seconds from start. Then, a strong sound from a plane dominated the acoustics till the
end of the recording. The truck was correctly detected by the CART and MD classifiers. The
MD classifier produced some false alarms, which were reduced by combining the classifiers
(bottom figure). The plane was not assigned to V class.
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Figure 13: Results from testing recording # 7. A truck passed by the receiver from 30 sec. to 190
sec. from the start, then a strong sound from a plane dominated the acoustics till the end of the
recording. Strong wind was present. This recording did not participate in the training phase.

Recording # 8: We display in Figs. 14 the results from testing recordings # 8. The recording did
not participate in the training phase. A truck followed by a minibus passed by the receiver
at around 40 seconds from start and one more truck at around 65 seconds. Strong wind
was present. The vehicles were correctly detected by the CART and MD classifiers. The
MD classifier produced some false alarms, which were eliminated by combining the classifiers
(bottom figure).
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Figure 14: Results from testing recording # 8. A truck followed by a minibus passed by the receiver
at around 40 sec. from start and one more truck at around 65 sec.. Strong wind was present. This
recording did not participate in the training phase.

Recording # 9: We display in Fig. 15 the results from testing recordings # 9. The recording did
not participate in the training phase. A sound from a truck was heard within the intervals 15
to 50 seconds and 80 to 110 seconds from start. Then, a plane sound appeared. It lasted till
the end of the recording. The truck was correctly detected by the CART and MD classifiers.
The plane was not assigned to V class. The MD classifier performed worse.
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Figure 15: Results from testing recording # 9. Sound from a truck was heard within the intervals
15 to 50 sec. and 80 to 110 sec. from start, then the sound from a plane appeared at the acoustics,
which lasted till the end of the recording. This recording did not participate in the training phase.
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Comments
e The detection experiments demonstrate the relevance of our approach to feature extraction.
e Combination of three schemes for feature extraction performs better than any single scheme.
e Combining the classifiers MD with CART significantly reduces the number of false alarms.

e The algorithm produced satisfactory detection results even when the conditions of the real
signals essentially differ from the training data and the surrounding conditions. When the
conditions of the captured signals were close to the training conditions, the detection is almost
perfect.

e The algorithm performs similarly on signal with sampling rates of 1000 SPS and 600 SPS. In
few cases, the results for SR of 1000 SPS were significantly better than those for SR of 600
SPS.

7 Conclusions

We presented a robust algorithm that detects the arrival of a vehicle of arbitrary type via the
analysis of its acoustic signature against an existing database of recorded and processed acoustic
signals.

To minimize the number of false alarms, we constructed an acoustic signature of a certain vehicle
using the distribution of the energies among blocks which consist of its wavelet packet coefficients.
This distribution serves as an averaged version of the Fourier spectrum of the signal. To reduce the
dimensionality of the features sets, we designed a scheme of random search for the near-optimal
footprint (RSNOFP), which proved to be an efficient tool for the extraction of a small number of
characteristic features of the objects to be detected.

As decision units for detection, a classifier that is based on the minimal distance (MD) from the
reference data sets and the Classification and Regression Tree (CART) classifier were used. These
classifiers cross-validated each other.

The detection process is fast and can be implemented in real time.

This technology, which has many algorithmic variations, is generic and can be used to solve
a wide range of classification and detection problems such as process control, which are based
on acoustic processing and, more generally, for classification and detection of signals which have
near-periodic structure. Distinguishing between different vehicles can also be achieved via this
technology.

8 Appendix I: Wavelet and wavelet packet transforms

Wayvelet, in general, and wavelet packet, in particular, transforms are widespread and have been
described comprehensively in the literature [9, 17, 16]. Therefore, we restrict ourselves to mention
only relevant facts that are necessary to understand the construction of the algorithm.

The output from the application of the wavelet transform to a signal f of length n = 27 is a
set of n correlated coefficients of the signal with scaled and shifted versions of two basic waveforms
— the father and mother wavelets. The transform is implemented through iterated application of
a conjugate pair of low— (L) and high— (H) pass filters followed by downsampling. In the first

18



decomposition step, the filters are applied to f and, after downsampling, the result has two blocks
wg and w} of the first scale coefficients, each of size n/2. These blocks consist of the correlation
coeflicients of the signal with 2-sample shifts of the low frequency father wavelet and high frequency
mother wavelet, respectively. The block wg contains the coefficients necessary for the reconstruction
of the low-frequency component of the signal. Because of the orthogonality of the filters, the energy
(l2 norm) of the block wé is equal to that of the component Wol. Similarly, the high frequency
component Wl1 can be reconstructed from the block w%. In this sense, each decomposition block is
linked to a certain half of the frequency domain of the signal.

While block wi is stored, the same procedure is applied to block wé in order to generate
the second level (scale) of blocks wg and w? of size n/4. These blocks consist of the correlation
coefficients with 4-sample shifts of the two times dilated versions of the father and mother wavelets.
Their spectra share the low frequency band previously occupied by the original father wavelet.
Then, wg is decomposed in the same way and the procedure is repeated m times. Finally, the
signal f is transformed into a set of blocks f — {w{’, w*, fw’ln_l, w’ln_z, R w%, w%} up to the
m-th decomposition level. This transform is orthogonal. One block is remained at each level
(scale) except for the last one. Each block is related to a single waveform. Thus, the total number
of waveforms involved in the transform is m + 1. Their spectra cover the whole frequency domain
and split it in a logarithmic form. Each decomposition block is linked to a certain frequency band
(not sharp) and, since the transform is orthogonal, the [ norm of the coefficients of the block is
equal to the lo norm of the component of the signal f whose spectrum occupies this band.

Through the application of the wavelet packet transform, many more waveforms, namely, 27
waveforms at the j—th decomposition level are involved. The difference between the wavelet packet
and wavelet transforms begins in the second step of the decomposition. Now both blocks w(l) and w}
are stored at the first level and at the same time both are processed by the pair of L and H filters,
which generate four blocks w3, w?, w3, w3 in the second level. These are the correlation coefficients
of the signal with 4-sample shifts of the four libraries of waveforms whose spectra split the frequency
domain into four parts. All of these blocks are stored in the second level and transformed into eight
blocks in the third level, etc. The involved waveforms are well localized in time and frequency
domains. Their spectra form a refined partition of the frequency domain (into 2/ parts in scale 7).
Correspondingly, each block of the wavelet packet transform describes a certain frequency band.

Flow of the wavelet packet transform is given by Fig. 16. The partition of the frequency domain
corresponds approximately to the location of blocks in the diagram.
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Figure 16: Flow of the wavelet packet .

There are many wavelet packet libraries. They differ from each other by their generating filters
L and H, the shape of the basic waveforms and their frequency content. In Fig. 17, we display the
wavelet packets derived from the spline of 6-th order after decomposition into three scales. While
the splines do not have a compact support in time domain, they are well localized. They produce
perfect splitting of the frequency domain (see Fig. 17 right).

Figure 17: Wavelet packets derived from the spline of 6-th order after decomposition into three
scales (left) and their spectra (right).

There is a duality in the nature of the wavelet coefficients of a certain block. On one hand, they
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indicate the presence of the corresponding waveform in the signal and measure its contribution.
On the other hand, they evaluate the contents of the signal inside the related frequency bands. We
may argue that the wavelet packet transform bridges the gap between time-domain and frequency-
domain representations of a signal. As we advance into coarser level (scale), we see a better
frequency resolution at the expense of time domain resolution and vice versa. In principle, the
transform of a signal of length n = 27 can be implemented up to the J-th decomposition level.
At this level there exist n different waveforms, which are close to the sine and cosine waves with
multiple frequencies. In Fig. 18, we display a few wavelet packets derived from the spline of the
6-th order after decomposition into six levels . The waveforms resemble the windowed sine and
cosine waves, whereas their spectra split the Nyquist frequency domain into 64 bands.

Figure 18: Wavelet packets derived from the spline of 6-th order after decomposition into six scales
(left) and their spectra (right).

9 Appendix II: Random search for a near optimal footprint (RSNOFP)
scheme

RSNOFP: version I. A random matrix R; of size r x A, where r < A (typically, r = 20) is
created. Entries of the matrix Ry are Gaussian random variables. The rows in the matrix
are normalized. The matrix BY (defined in section 5.2) is multiplied by the matrix R;. As

a result, we obtain a new matrix C¥ = BY-R; = {C’f]} of size MY x r. Each row in C" is

associated with the corresponding slice from AY. To select the most valuable columns in the
matrix C?, we average the columns of this matrix

MUZ|CJ\—{C ,i=1.,r

Let K be the set of indices k < r of the largest coordinates of the vector ¢¥ (typically, k = 12).
Then, the columns, whose indices do not belong to K, are removed from the matrix C¥ and
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the matrix DV of size MV X k is obtained. This operation is equivalent to multiplication of
B" with the matrix p of size k x A, which is derived from R; by removing the rows, whose
indices do not belong to K. Thus, the initial matrix AY consisting of the V-class slices, whose
size was, for example, MY x 1024, is reduced to the matrix DV of the random footprints of the
slices. The size of DV is M"Y x 12. To produce a similar reduction for the matrix A™ in N-class
slices, we multiply the N-class energy matrix B™ with the matrix p. As a result, we obtain
the random footprints matrix D™ = B™-p of size M™ x 12. We consider the coordinates of
the i-th row of the matrix DV(") as the set of k characteristic features of the i-th slice from
the matrix AV,

Now, the Mahalanobis distances u;, 1 = 1,..., M", of each row in the V-class matrix DV from
the matrix D™ are computed. Then, the sequence {y;} is averaged

1 &L
A= MV ZMZ
i=1

The value A is considered to be distance between the sets DV and D™ of features. The
matrices DY, D™ p and the value A are stored and we proceed to optimize the features.

All the above operations are conducted using a random matrix Rs, whose structure is similar
to the structure of the matrix R;. As a result, we obtain the features matrices D3 and Dy,
the random matrix po and the distance value Ay. The distance value Ao is compared to the
stored value A. Assume, Ay > A. This means that the features matrices Dj and D3 are
better separated from each other than the stored matrices DV and D™. In this case, we denote
D3, Dy, pa and the value Ay as DY, D", p and the value A, respectively. They are stored
while replacing the previous stored items. If Ay < A then the stored items are left intact.

We iterate this procedures up to 500 times. In the end, we stored the features matrices D"
and D™ such that the “distance” A between them among all the iterations is maximal. We
have stored the reduced random matrix p and the pattern matrices DY and D™, which will

be used in the identification phase. These items are denoted as D?

n
rand’ Drand and Prand-

RSNOFP: Version II. This version is similar, to some extent, to Version I. The difference is
that, instead of selecting the most valuable columns in the matrix CV of size MY X r, we
apply the Principal Component Analysis (PCA) to this matrix. As a result, we obtain the
matrix P = {P, ;} of size r x r. Each column of P contains coefficients for one principal
component. The columns are arranged in decreasing component variance order. The size of
P is reduced to r x k by retaining only the first & columns

Po={P},i=1,.,r j=1,..,k

We obtain the feature matrix DV for the V-class by multiplying C¥ by Pj:

DY = CU'Pk = BU'Rl-Pk = Bv-p, where p = Rl'Pk.

The size of the matrix p is k x A. Similarly, we produce the feature matrix D" for the N-class:
D™ = B".p. Similarly to Version I, we measure the “distance” A between the feature sets D"
and D™. The matrices DV, D™, p and the value A are stored and we proceed to optimization
of the features, which is identical to Version I. In the end, we stored the features matrices D"
and D" and the matrix p. These items are denoted by D7 .., D7, and ppcq.

pcar ~pca
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RSNOFP: version III. This version differs from versions I and II. Here, we do not multiply the
energy matrix BY by a random matrix but instead we perform a random permutation of the
columns and retain the first r» columns. Thus, we get the matrix C of size MV x r. Note,
that this transform can be presented as the multiplication of the matrix BY by a matrix T
of size A x r, C¥ = BV-T, where each column consists of zeros except for one entry, which is
equal to 1.

Example: Assume that the matrix 7" is of size 4x 3 that executes the permutation [1234] —
[3142] of the columns of a matrix of size 4 x 4 while retaining the first three columns:

SO = O O
o O O
_ o O O

The other operations are similar to the operations in Version II. We apply to the matrix C?
the PCA algorithm, which results in the matrix P = {P; ;} of size r x r of coefficients of the
principal components. The size of P is reduced to r X k by retaining only the first k& columns

Pk = {P@j}, 1= 1, Ty ] = 1, ...,]{7.

We obtain the feature matrix DV for the V-class by multiplying C¥ by Pj:

DY = CUPk = BU'Rl'Pk = Bv-p, where P = Rlpk

The size of the matrix p is k x A. Similarly, we produce the feature matrix D" for the N-class:
D" = B™p. We measure the “distance” A between the sets of features DV and D™. The
matrices DY, D", p and the value A are stored and we proceed to optimize the features, which
is identical to Versions I and II. In the end, the features matrices DY and D™ and the matrix
p are stored. They are denoted as D}, Dy, and pperm.

perm> = perm

We graphically illustrate the relations between the RSNOFP procedures (version IT) by the diagram
in Fig. 19.
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Figure 19: RSNOFP procedures (version IT). WPT stands for wavelet packet transform.
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