Skip to main content
Log in

Exact linear modeling with polynomial coefficients

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Given a finite set of polynomial, multivariate, and vector-valued functions, we show that their span can be written as the solution set of a linear system of partial differential equations (PDE) with polynomial coefficients. We present two different but equivalent ways to construct a PDE system whose solution set is precisely the span of the given trajectories. One is based on commutative algebra and the other one works directly in the Weyl algebra, thus requiring the use of tools from non-commutative computer algebra. In behavioral systems theory, the resulting model for the data is known as the most powerful unfalsified model (MPUM) within the class of linear systems with kernel representations over the Weyl algebra, i.e., the ring of differential operators with polynomial coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antoulas A. C., Willems J. C. (1993) A behavioral approach to linear exact modeling. IEEE Transactions on Automatic Control 38: 1776–1802

    Article  MATH  MathSciNet  Google Scholar 

  • Bose N. K. (1982) Applied multidimensional systems theory. Van Nostrand Reinhold, New York, London

    MATH  Google Scholar 

  • Bose, N. K. (eds) (1985) Multidimensional systems theory. D. Reidel, Dordrecht

    MATH  Google Scholar 

  • Bose N. K. (2003) Multidimensional systems theory and applications (2nd ed.). Kluwer, Dordrecht

    MATH  Google Scholar 

  • Bose N. K. (2007) Two decades of Gröbner bases in multidimensional systems. Radon Series Computational Applied Mathematics 3: 1–22

    Google Scholar 

  • Charoenlarpnopparut C., Bose N. K. (1999) Multidimensional FIR filter bank design using Gröbner bases. IEEE Transactions on Circuits Systems II 46: 1475–1486

    Article  MATH  Google Scholar 

  • Charoenlarpnopparut C., Bose N. K. (2001) Gröbner bases for problem solving in multidimensional systems. Multidimensional Systems Signal Processing 12: 365–376

    Article  MATH  MathSciNet  Google Scholar 

  • Goodearl K. R., Warfield R. B. Jr. (2004) An introduction to noncommutative noetherian rings (2nd ed.). London Mathematical Society, London

    Book  MATH  Google Scholar 

  • Greuel, G.-M., Pfister, G., & Schönemann, H. (2009). Singular 3-1-0—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de.

  • Kuijper M., Polderman J. W. (2004) Reed-solomon list decoding from a system-theoretic perspective. IEEE Transactions on Information Theory 50: 259–271

    Article  MathSciNet  Google Scholar 

  • Levandovskyy, V. (2006). Plural, a non-commutative extension of Singular. In A. Iglesias, & N. Takayama (Eds.), Mathematical software—ICMS 2006. Lecture Notes in Computer Science Vol. 4151. Springer.

  • Levandovskyy, V., Schindelar, K., & Zerz, E. (2010). Exact linear modeling using ore algebras. Journal of Symbolic Computation.

  • Lin Z., Xu L., Bose N. K. (2008) A tutorial on Gröbner bases with applications in signals and systems. IEEE Transactions on Circuits Systems I 55: 445–461

    Article  MathSciNet  Google Scholar 

  • Lin Z., Xu L., Wu Q. (2004) Applications of Gröbner bases to signal and image processing: A survey. Linear Algebra and its Applications 391: 169–202

    Article  MATH  MathSciNet  Google Scholar 

  • Schindelar, K., Levandovskyy, V., & Zerz, E. (2008). Linear exact modeling with variable coefficients. In Proceedings of the 18th international symposium on mathematical theory networks systems (MTNS), Blacksburg.

  • Schindelar, K. (2010). Algorithmic aspects of algebraic system theory. Ph.D. Thesis, RWTH Aachen University.

  • Willems J. C. (1986) From time series to linear system. Part II: Exact modelling. Automatica 22: 675–694

    Article  MATH  MathSciNet  Google Scholar 

  • Zerz E. (2000) Topics in multidimensional linear systems theory. Lecture notes in control and information sciences. Springer, London

    Google Scholar 

  • Zerz E. (2005) Characteristic frequencies, polynomial-exponential trajectories, and linear exact modeling with multidimensional behaviors. SIAM Journal on Control Optimization 44: 1148–1163

    Article  MATH  MathSciNet  Google Scholar 

  • Zerz, E. (2006). Recursive computation of the multidimensional MPUM. In Proceedings of the 17th international symposium on mathematical theory networks systems (MTNS), Kyoto.

  • Zerz E. (2008) The discrete multidimensional MPUM. Multidimensional Systems Signal Processing 19: 307–321

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Zerz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerz, E., Levandovskyy, V. & Schindelar, K. Exact linear modeling with polynomial coefficients. Multidim Syst Sign Process 22, 55–65 (2011). https://doi.org/10.1007/s11045-010-0125-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-010-0125-0

Keywords

Navigation