Skip to main content
Log in

Fast minimization methods for solving constrained total-variation superresolution image reconstruction

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the problem of reconstructing a high-resolution image from several decimated, blurred and noisy low-resolution versions of the high-resolution image. The problem can be formulated as a combination of the total variation (TV) inpainting model and the superresolution image reconstruction model. The main purpose of this paper is to develop an inexact alternating direction method for solving such constrained TV image reconstruction problem. Experimental results are given to show that the proposed algorithm is effective and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertsekas D. P. (1982) Constrained optimization and Lagrange multiplier methods. Academic Press, New York

    MATH  Google Scholar 

  • Bose N., Boo K. (1998) High-resolution image reconstruction with multisensors. International Journal of Imaging Systems and Technology 9: 294–304

    Article  Google Scholar 

  • Bose, N., Ng, M., & Yau, A. (2006). A fast algorithm for image super-resolution from blurred observations. EURASIP Journal on Applied Signal Processing, V2006, Article ID 35726, p. 14

  • Chan T., Ng M., Yau A., Yip A. (2007) Superresolution image reconstruction using fast inpainting algorithms. Applied and Computational Harmonic Analysis 23: 3–24

    Article  MATH  MathSciNet  Google Scholar 

  • Chan T., Shen J. (2001) Mathematical models for local non-texture inpainting. SIAM Journal on Applied Mathematics 62: 1019–1043

    MathSciNet  Google Scholar 

  • Chan T., Yip A., Park F. (2005) Simultaneous image inpainting and blind deconvolution. International Journal of Imaging Systems and Technology 15(1): 92–102

    Article  Google Scholar 

  • Chaudhuri, S. (eds) (2001) Super-resolution imaging. Kluwer, Boston

    Google Scholar 

  • Chen G., Teboulle M. (1994) A proximal-based decomposition method for convex minimization problems. Mathematical Programming 64: 81–101

    Article  MATH  MathSciNet  Google Scholar 

  • Combettes P. L., Wajs V. R. (2005) Signal recovery by proximal forward–backward splitting. Multiscale Modeling and Simulation 4(4): 1168–1200

    Article  MATH  MathSciNet  Google Scholar 

  • Douglas J., Rachford H. H. (1956) On the numerical solution of heat conduction problems in two or three space variables. Transactions of the American Mathematical Society 82: 421–439

    MATH  MathSciNet  Google Scholar 

  • Eckstein J., Bertsekas D. P. (1992) On the Douglas-Rachford splitting method and the proximal points algorithm for maximal monotone operators. Mathematical Programming 55: 293–318

    Article  MATH  MathSciNet  Google Scholar 

  • Esser, E. (2009). Applications of Lagrangian-based alternating direction methods and connections to split Bregman, UCLA Cam Report, April.

  • Gabay D., Mercier B. (1976) A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Computational Optimization and Applications 2: 17–40

    MATH  Google Scholar 

  • Gabay, D. (1983). Applications of the method of multipliers to variational inequalities. In M. Fortin & R. Glowinski (Eds.), Augmented Lagrange methods: Applications to the solution of boundary-valued problems (pp. 299–331). North Holland, Amsterdam, The Netherlands: Elsevier.

  • Glowinski R. (1984) Numerical methods for nonlinear variational problems. Springer, New York, Berlin, Heidelberg, Tokyo

    MATH  Google Scholar 

  • Goldstein T., Osher S. (2009) The split Bregman method for L 1-regularized problems. SIAM Journal on Imaging Sciences 2(2): 323–343

    Article  MATH  MathSciNet  Google Scholar 

  • He B. S., Liao L.-Z., Han D. R., Yang H. (2002) A new inexact alternating directions method for monotone variational inequalities. Mathematical Programming Series A 92: 103–118

    Article  MATH  MathSciNet  Google Scholar 

  • He, B. S., & Yuan, X. M. (2009). The unified framework of some proximal-based decomposition methods for monotone variational inequalities with separable structure, manuscript.

  • Huang Y., Ng M., Wen Y. (2008) A fast total variation minimization method for image restoration. SIAM Multiscale Modeling and Simulation 7: 774–795

    Article  MATH  MathSciNet  Google Scholar 

  • Kang, M., & Chaudhuri, S. (2003). IEEE Signal Processing Magazine, Special Issue of Superresolution Image Reconstruction, 20.

  • Liao H., Li F., Ng M. (2009) On selection of regularization parameter in total variation image restoration. Journal of the Optical Society of America A 26: 2311–2320

    Article  MathSciNet  Google Scholar 

  • Lin F., Ching W., Ng M. (2004) Preconditioning regularized least squares problems arising from high-resolution image reconstruction from low-resolution frames. Linear Algebra and its Applications 391: 149–168

    Article  MATH  MathSciNet  Google Scholar 

  • Martinet B. (1970) Regularision d’inéquations variationnelles par approximations successive. Revue Francaise d’Automatique et Informatique Recherche Opérationnelle 126: 154–159

    MathSciNet  Google Scholar 

  • Ng M., Bose N., Koo J. (2002) Constrained total least squares computations for high resolution image reconstruction with multisensors. International Journal of Imaging Systems and Technology 12: 35–42

    Article  Google Scholar 

  • Ng M., Bose N. (2003) Mathematical analysis of super-resolution methodology. IEEE Signal Processing Magazine 20: 49–61

    Article  Google Scholar 

  • Ng, M., Bose, N., & Chan, R. (2004). Guest editorial of high-resolution image reconstruction. International Journal of Imaging System and Technology, 14, 35.

    Google Scholar 

  • Ng M., Chan R., Chan T., Yip A. (2000) Cosine transform preconditioners for high resolution image reconstruction. Linear Algebra and its Applications 316: 89–104

    Article  MATH  MathSciNet  Google Scholar 

  • Ng, M., Chan, T., Kang, M., & Milanfar, P. (2006a). Guest editorial of special issue on super-resolution imaging: Analysis, algorithms, and applications. EURASIP Journal on Applied Signal Processing, 1–2.

  • Ng, M., Lam, E., & Tong C. (2006b). Guest editorial of special issue on the international conference on superresolution imaging. Multidimensional Systems and Signal Processing, 57–58.

  • Ng, M., Weiss, P. A., & Yuan, X. M. (2009). Solving constrained total-variation problems via alternating direction methods, manuscript.

  • Ng M., Yau A. (2005) Super-resolution image restoration from blurred low-resolution images. Journal of Mathematical Imaging and Vision 23: 367–378

    Article  MathSciNet  Google Scholar 

  • Ng M., Yip A. (2001) A fast MAP algorithm for high-resolution image reconstruction with multisensors. Multidimensional Systems and Signal Processing 12: 143–164

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen N., Peyman M. (2000) A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution). Circuits, Systems, and Signal Processing 19: 321–338

    Article  MATH  Google Scholar 

  • Nikolova M. (2004) A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Vision 20(1–2): 99–120

    Article  MathSciNet  Google Scholar 

  • Nocedal J., Wright S. J. (1999) Numerical optmization. Springer, New York, Berlin, Heidelberg

    Book  Google Scholar 

  • Rajan D., Chaudhuri S. (2002) An MRF-based approach to generation of super-resoltuion images from blurred observations. Journal of Mathematical Imaging and Vision 16: 5–15

    Article  MATH  MathSciNet  Google Scholar 

  • Rockafellar R. T. (1976) Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization 126: 877–898

    Article  MathSciNet  Google Scholar 

  • Rockafellar R. T. (1976) Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of Operations Research 1: 97–116

    Article  MATH  MathSciNet  Google Scholar 

  • Rudin L., Osher S., Fatemi E. (1992) Nonlinear total variation based noise removal algorithms. Physica D 60: 259–268

    Article  MATH  Google Scholar 

  • Steidl G., Teuber T. (2010) Removing multiplicative noise by Douglas-Rachford splitting method. Journal of Mathematical Imaging and Vision 36: 168–184

    Article  Google Scholar 

  • Weiss P., Blanc-Féraud L., Aubert G. (2009) Efficient schemes for total variation minimization under constraints in image processing. SIAM Journal of Scientific Computing 31: 2047–2080

    Article  MATH  Google Scholar 

  • Wu, C., Zhang, J., & Tai, X. (2009). Augmented Largrangian method for total variation restoration with non-quadratic fidelity, CAM-09-82, UCLA CAM Report.

  • Yang, J.-F., & Zhang, Y. (2010). Alternating direction method for L1 problems in compressive sensing, TR09-37, CAAM Report, Rice University.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, M., Wang, F. & Yuan, XM. Fast minimization methods for solving constrained total-variation superresolution image reconstruction. Multidim Syst Sign Process 22, 259–286 (2011). https://doi.org/10.1007/s11045-010-0137-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-010-0137-9

Keywords

Navigation