Skip to main content
Log in

Distributed stabilisation of spatially invariant systems: positive polynomial approach

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The paper gives a computationally feasible characterisation of spatially distributed controllers stabilising a linear spatially invariant system, that is, a system described by linear partial differential equations with coefficients independent on time and location. With one spatial and one temporal variable such a system can be modelled by a 2-D transfer function. Stabilising distributed feedback controllers are then parametrised as a solution to the Diophantine equation ax + by = c for a given stable bi-variate polynomial c. The paper is built on the relationship between stability of a 2-D polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are usually bilinear in the coefficients of the original polynomials. For low-order discrete-time systems it is shown that a linearising factorisation of the polynomial Schur-Cohn matrix exists. For higher order plants and/or controllers such factorisation is not possible as the solution set is non-convex and one has to resort to some relaxation. For continuous-time systems, an analogue factorisation of the polynomial Hermite-Fujiwara matrix is not known. However, for low-order systems and/or controller, positivity conditions on the closed-loop polynomial coefficients can be invoked. Then the computational framework of linear matrix inequalities can be used to describe the stability regions in the parameter space using a convex constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augusta, P., Hurák, Z., & Rogers, E. (2007). An algebraic approach to the control of statially distributed systems—the 2-D systems case with a physical application. In: Preprints of the 3rd IFAC symposium on system, structure and control. IFAC.

  • Bamieh B., Paganini F., Dahleh M. (2002) Distributed control of spatially invariant systems. Automatic Control, IEEE Transactions on 47(7): 1091–1107. doi:10.1109/TAC.2002.800646

    Article  MathSciNet  Google Scholar 

  • Barnett S. (1983) Polynomials and linear control systems. Marcel Dekker Inc, New York

    MATH  Google Scholar 

  • Bose, N. (Ed.). (1985). Multidimensional systems theory: Progress, directions and open problems in multidimensional systems. D. Riedel Publishing Company, iSBN 90-277-1764-8.

  • Brockett R. W., Willems J. L. (1974) Discretized partial differential equations: Examples of control systems defined on modules. Automatica 10(5): 507–515. doi:10.1016/0005-1098(74)90051-X

    Article  MathSciNet  MATH  Google Scholar 

  • Cichy B., Galkowski K., Rogers E., Kummert A. (2011) An approach to iterative learning control for spatio-temporal dynamics using nd discrete linear systems models. Multidimensional Systems and Signal Processing 22: 83–96

    Article  MathSciNet  MATH  Google Scholar 

  • Cichy, B., Gakowski, K., & Rogers, E. (to be published). Iterative learning control for spatio-temporal dynamics using crank-nicholson discretization. Multidimensional Systems and Signal Processing.

  • D’Andrea, R., & Dullerud, G. E. (2003). Distributed control design for spatially interconnected systems. IEEE Transactions on Automatic Control 48, 9.

    Google Scholar 

  • Dudgeon D.E., Mersereau R.M. (1984) Multidimensional digital signal processing. Prentice-Hall, New Jersey ISBN 0-13-604959-1

    MATH  Google Scholar 

  • Dumitrescu B. (2007) Positive trigonometric polynomials and signal processing applications (1st ed.). Springer, Berlin

    MATH  Google Scholar 

  • Genin Y., Hachez Y., Nesterov Y., Stefan R., Van Dooren P., Xu S. (2002) Positivity and linear matrix inequalities. European Journal of Control 8: 275–298

    Article  Google Scholar 

  • Genin Y., Hachez Y., Nesterov Y., Van Dooren P. (2003) Optimization problems over positive pseudo-polynomial matrices. SIAM Journal on Matrix Analysis and Applications 25: 57–79

    Article  MathSciNet  MATH  Google Scholar 

  • Goodman D. (1977) Some stability properties of two-dimensional linear shift-invariant digital filters. Circuits and Systems, IEEE Transactions on 24(4): 201–208

    Article  MATH  Google Scholar 

  • Gorinevsky D. (2002) Loop shaping for iterative control of batch processes. Control Systems Magazine, IEEE 22(6): 55–65. doi:10.1109/MCS.2002.1077785

    Article  Google Scholar 

  • Gorinevsky D., Stein G. (2003) Structured uncertainty analysis of robust stability for multidimensional array systems. Automatic Control, IEEE Transactions on 48(9): 1557–1568. doi:10.1109/TAC.2003.816980

    Article  MathSciNet  Google Scholar 

  • Henrion D., Garulli A. (2005) Positive Polynomials in Control. Springer, Berlin

    MATH  Google Scholar 

  • Henrion D., Tarbouriech S., Šebek M. (1999) Rank-one LMI approach to simultaneous stabilization of linear systems. Systems and Control Letters 38(2): 79–89

    Article  MathSciNet  MATH  Google Scholar 

  • Henrion D., Šebek M., Bachelier O. (2001) Rank-one LMI approach to stability of 2-D polynomial matrices. Multidimensional Systems and Signal Processing 12(1): 33–48

    Article  MathSciNet  MATH  Google Scholar 

  • Jovanovic M., Bamieh B. (2005) Lyapunov-based distributed control of systems on lattices. Automatic Control, IEEE Transactions on 50(4): 422–433. doi:10.1109/TAC.2005.844720

    Article  MathSciNet  Google Scholar 

  • Jury E. I. (1978) Stability of multidimensional scalar and matrix polynomial. Proceedings of the IEEE 6(9): 1018–1047

    Article  MathSciNet  Google Scholar 

  • Justice, J. H., & Shanks, J. L. (1973). Stability criterion for N-dimensional digital filters. IEEE Transaction on automatic control, pp 284–286.

  • Kamen E. W. (1975) On an algebraic theory of systems defined by convolution operators. Theory of Computing Systems 9(1): 57–74. doi:10.1007/BF01698126

    MathSciNet  MATH  Google Scholar 

  • Kamen, E. W. (1978) Lectures on algebraic systems theory: Linear systems over rings. Contractor report 316, NASA.

  • Kamen E. W., Khargonekar P. (1984) On the control of linear systems whose coefficients are functions of parameters. Automatic Control, IEEE Transactions on 29(1): 25–33

    Article  MathSciNet  MATH  Google Scholar 

  • Khargonekar P., Sontag E. (1982) On the relation between stable matrix fraction factorizations and regulable realizations of linear systems over rings. Automatic Control, IEEE Transactions on 27(3): 627–638

    Article  MathSciNet  MATH  Google Scholar 

  • Krstic, M., & Smyshlyaev, A. (2008). Boundary control of PDEs: A course on backstepping designs. : SIAM.

  • Kučera V. (1979) Discrete linear control. Wiley, New York

    MATH  Google Scholar 

  • Löfberg, J. (2004). Yalmip: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan, http://control.ee.ethz.ch/~joloef/yalmip.php.

  • Mastorakis, N. E. (1997) A new stability test for 2-D systems. In: Proceedings of the 5th IEEE Mediterranean Conference on control and systems (MED ’97).

  • Mastorakis N. E. (1999) A method for computing the 2-D stability margin based on a new stability test for 2-D systems. Multidimensinal systems and signal processing 10: 93–99

    Article  MathSciNet  MATH  Google Scholar 

  • Rami, M. A., & Henrion, D. (2010). Inner approximation of conically constrained sets with stability aplication. to be published.

  • Rogers E., Gałkowski K., Owens D. H. (2007) Control systems theory and applications for linear repetitive processes, Lecture notes in control and information sciences, vol 349. Springer, Berlin

    Google Scholar 

  • Rouchaleau, Y. (1972) Linear, discrete time, finite dimensional, dynamical systems over some classes of commutative rings.

  • Šebek, M. (1994). Multi-dimensional systems: Control via polynomial techniques. Prague, Czech Republic: Dr.Sc. thesis, Academy of Sciences of the Czech Republic.

  • Serban, I., & Najim, M. (2007). A new multidimensional Schur-Cohn type stability criterion. In: Proceedings of the 2007 American Control Conference.

  • Šiljak D. (1973) Algebraic criteria for positive realness relative to the unit circle. Journal of the Franklin Institute 296: 115–122

    Article  MathSciNet  MATH  Google Scholar 

  • Šiljak, D. (1975). Stability criteria for two-variable polynomials. IEEE Transaction on Circuits and Systems 22(3).

  • Sontag E. (1976) Linear systems over commutative rings: A survey. Ricerche di Automatica 7: 1–34

    Google Scholar 

  • Stein G., Gorinevsky D. (2005) Design of surface shape control for large two-dimensional arrays. IEEE Transactions on Control Systems Technology 13(3): 422–433

    Article  Google Scholar 

  • Stewart G., Gorinevsky D., Dumont G. (2003) Feedback controller design for a spatially distributed system: the paper machine problem. Control Systems Technology, IEEE Transactions on 11(5): 612–628. doi:10.1109/TCST.2003.816420

    Article  MathSciNet  Google Scholar 

  • Strikwerda J. C. (1989) Finite difference schemes and partial differential equations. Wadsworth and Brooks, Belmont

    MATH  Google Scholar 

  • Strintzis M. G. (1977) Test of stability of multidimensional filters. IEEE Transaction on automatic control CAS- 24(8): 432–437

    MathSciNet  MATH  Google Scholar 

  • Sturm J. F. (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11–12: 625–653

    Article  MathSciNet  Google Scholar 

  • Trentelman H. L., Rapisarda P. (1999) New algorithms for polynomial J-spectral factorization. Math Control Signals Systems 12: 24–61

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Augusta.

Additional information

The work was financially supported by the Ministry of Education of the Czech Republic under the project Centre for Applied Cybernetics (1M0567).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augusta, P., Hurák, Z. Distributed stabilisation of spatially invariant systems: positive polynomial approach. Multidim Syst Sign Process 24, 3–21 (2013). https://doi.org/10.1007/s11045-011-0152-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-011-0152-5

Keywords

Navigation